
On the Use of Regular Expressions and Exact-text Matching in
Computer-based Test Scoring Algorithms

Wojciech Malec a
Institute of Linguistics, John Paul II Catholic University of Lublin, Al. Racławickie, Lublin, Poland

Keywords: Regular Expressions, Exact-text Matching, Scoring Algorithms, Computer-based Language Testing.

Abstract: This paper addresses the issue of implementing two alternative approaches to developing automated scoring
algorithms in computer-based language testing. One of the approaches discussed is based on the application
of regular expressions and the other is based on exact-text matching. Although scoring algorithms that make
use of regular expressions are technologically very attractive, there is evidence to indicate that they are not
able to guarantee perfect scoring accuracy. Accordingly, in testing situations where decisions about the test
takers need to be made on the basis of test scores, as in school settings, exact-text matching may actually be
the preferred option. Moreover, whichever approach is adopted, it seems reasonably clear that automated
scoring should ideally be subject to some human verification. The paper includes a brief description of a
testing system where automated scoring employing exact-text matching is supplemented by human
verification of the results.

1 INTRODUCTION

Computer-based language tests can be automatically
scored using several approaches, which principally
depend on the type of expected response. First,
selected-response items, such as multiple choice or
true/false, are commonly scored either by means of a
rule known as ‘number right’ or through the use of
‘formula scoring’. The latter functions as a correction
for random guessing (see Budescu & Bar-Hillel,
1993, for more on formula-scoring rules). Second,
limited-production items, which include gap-filling
and short answer, can be automatically scored by
comparing the responses submitted by the test takers
with the keyed answers. The comparisons may be
made using either exact-text or regular-expression
matching (Carr & Xi, 2010; Carr, 2014). Finally,
automated scoring of extended-production tasks, such
as essays, can be performed with the aid of artificial
intelligence and machine learning techniques (e.g.
Kumar & Boulanger, 2020). However, although
automated essay scoring is generally faster, cheaper,
and fairer than human scoring, and frequently
claimed to be equally as reliable (Shermis, 2010, and
references therein), the appropriateness of using it

a https://orcid.org/0000-0002-6944-8044

alone in high-stakes situations has been called into
question (see Weigle, 2013, for a review).

This paper focuses on the scoring of limited-
production items, where the expected response ranges
approximately from one word to one sentence. The
paper discusses the use of regular-expression
matching as an alternative to exact-text matching and
points to the imitations of the former method. Finally,
the article briefly presents a web-based testing system
(WebClass) which combines automated scoring
algorithms with human verification of their output.

2 REGULAR-EXPRESSION
MATCHING

Regular expressions are sometimes utilized in
computerized testing systems to score the test takers’
limited-production responses. For example, Moodle
offers a 3rd-party plugin, which allows test
developers to create the so-called Regular Expression
Short-Answer questions (Rézeau, 2022). The key for
a question of this type can be single regular
expression, such as the one in (1a) or (1b) rather than
a number of alternative (acceptable) responses (i.e.

Malec, W.
On the Use of Regular Expressions and Exact-text Matching in Computer-based Test Scoring Algorithms.
DOI: 10.5220/0011115700003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 2, pages 555-561
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

555

bat, cat, and rat). This example clearly demonstrates
that the use of regular expressions is simply a more
economical solution compared to exact-text
matching.

(1a) [bcr]at

(1b) (b|c|r)at

Admittedly, manual generation of regular
expressions may be quite time consuming and error-
prone. However, as a further step in the development
of computerized short-answer scoring systems,
Ramachandran, Cheng, and Foltz (2015) offer a
method for automating the generation of regular
expressions. For many developers of computer-based
tests, including school teachers, solutions of this kind
seem to be an absolute necessity.

It is also worthy of note that in the case of limited-
production test items the usefulness of regular
expressions for the development of scoring
algorithms may depend on how precise the responses
are expected to be. Specifically, in certain tests of
language ability, a high degree of precision may be
necessary: this is often the case with vocabulary and
grammar tests. For example, although the phrase the
girl ride a bike may be understandable, it violates the
basic rule of subject-verb agreement in English.
Similarly, although the phrases sign on the dotted line
and sign on a dotted line are almost identical, the
former one is a more native-like expression. In such
situations, the number of acceptable responses may
be fairly limited, which means that a complete scoring
key can be based solely on exact-text matching, and
it may not be necessary to resort to using regular
expressions.

By contrast, in tests of reading or listening
comprehension, where grammatical accuracy is not a
priority, responses are typically accepted as correct as
long as they contain certain key terms, or keywords,
specified in the expected answer (the key). Therefore,
in constructing a scoring key the test item writer may
define a suitable regular expression that the scoring
algorithm will use to check whether all of the
necessary keywords are included in the responses
provided by the test takers. Nevertheless, developing
a perfectly reliable algorithm based on regular
expressions is not without its problems. This issue is
addressed in the next section.

2.1 Illustrative Example

Limited-production items may require test takers to
provide short statements or simple definitions. For
illustrative purposes, consider an item which elicits a
short sentence expressing the idea that bikes are

vehicles with two wheels. The prototypical expected
response might be as follows:

(2) A bike is a vehicle with two wheels.

In exact-text matching approaches, the statement
given in (2) would be the keyed answer for this test
item. However, the same idea can be expressed in
many other ways, including sentences containing
some grammatical errors (but perfectly
understandable). Examples of such sentences are
given below:

(3a) Bikes are vehicles which have two wheels.
A bike is a vehicle with two wheels.
The bike is vehicle with two wheels.
A bike is a vehicle that has two wheels.
Bike vehicles have two wheels.
Bike is vehicle on two wheels.

While all of the sentences in (3a) share a similar
structure (e.g., they begin with a noun phrase
containing the word bike, in either singular or plural
form), this is by no means the only possibility, as
evidenced by the following examples (again, not
necessarily correct in terms of grammar), the last of
which does not even contain a verb:

(3b) Vehicles called bikes have two wheels.
Two wheels are typical of vehicles like bikes.
Two wheels define vehicles such as bikes.
Number of wheel on a bike vehicle is two.
Vehicle with two wheels is called bike.
Bike – a two-wheel vehicle.

As an alternative to exact-text matching approaches,
all of the sentences in (3a) and (3b) could be
considered acceptable on the grounds that each of
them contains the following keywords (three of which
might be either singular or plural):

(4) bike(s), vehicle(s), two, wheel(s)

The keywords may appear in actual statements in the
order given (as in 3a) or in a completely different one
(as in 3b). Moreover, they may be optionally followed
or preceded by other words.

In a computer-based testing system, the scoring
algorithm could be designed to conduct a keyword
matching operation, for example using the
preg_match() function in PHP. For this to be
possible, the pattern required by the function in
question has to be a regular expression (or regex for
short). The regex for the keywords given in (4) may
be specified in the following way:

CSEDU 2022 - 14th International Conference on Computer Supported Education

556

(5) /^(?=.*\bbikes?\b)(?=.*\b
vehicles?\b)(?=.*\btwo\b)
(?=.*\bwheels?\b).+/i

The regular expression provided in (5) is within
slashes, followed by the i flag at the end, which
indicates that the search should be case-insensitive.
The caret (^) at the beginning is an anchor that
denotes the start of the string (although it may be
optional). The main part of the regex consists of four
capturing groups (inside parentheses), each
corresponding to one of the keywords in (4). Every
keyword requires a positive lookahead (denoted by
?=) and is also preceded by the dot (.) metacharacter
and the asterisk (*) quantifier (which together match
any character between zero and unlimited times, thus
making it possible for the response to optionally
include some other words, in addition to the
keywords). Moreover, each keyword is between word
boundaries (indicated by \b). Three of the keywords
have additionally a question mark at the end (which
means that the preceding s is optional in each case).
Finally, the last capturing group is followed by a dot
and a plus sign (+). These two symbols match any
character at least once (between one and unlimited
times). In effect, the dot and plus match the entire
expression on condition that all of the positive
lookahead assertions are true.

The regex in (5) is capable of matching each of
the sentences given in (3a) and (3b). In view of the
fact that, using exact-text matching approaches, these
sentences would all have to be included in the key (i.e.
in an array of alternative answers that deserve full
credit), the keyword approach based on regular
expressions is a neat solution. Despite this, however,
it is far from perfect as the regex in (5) would also
match sentences which are too vague to be accepted
as correct, for example:

(6) Vehicles including bikes have two wheels.
Bikes denoting vehicles have two wheels.

To make matters worse, it would match sentences
which are definitely incorrect, for example:

(7) Bikes are not vehicles with two wheels.
Bikes are vehicles with two or five wheels.
Bikes are vehicles with more than two wheels.
Bikes are vehicles with twenty two wheels.
Every vehicle with two wheels is a bike.

The opposite situation is also possible: some
sentences which correctly define bikes would not be
matched by the regex. Examples are given below:

(8) Bikes have a pair of wheels.
A bike is a vehicle with a pair of wheels.

A bike has one front and one rear wheel.
Bike – a two-wheeled vehicle.

It should be clear that the regex in (5) requires
modifications as it is not capable of matching every
possible correct response. Amongst other necessary
changes, the keyword vehicle would need to be made
optional. More importantly, however, even if the
regex is successfully adjusted to match all of the
examples presented above, it may be difficult to rule
out the possibility of someone producing yet another
alternative (and acceptable) response. One situation
in which the use of regular expressions may be
particularly challenging is when the keywords
include a word for which the number of acceptable
synonyms can be very large. The adjective good is a
case in point.

2.2 Regular Expressions Versus
Exact-text Matching

The question that arises in this context is whether the
use of keywords and regular expressions is a better
solution than exact-text matching. On the one hand, it
must be admitted that keyword matching is very
likely to result in fewer errors compared to exact-text
matching. On the other hand, even if the keyword
method results in only one mismatch (and the exact-
match method generates dozens of mismatches), there
remains the problem of identifying that single
mismatch in a set of responses submitted by the test
takers. And even if there are actually no mismatches,
there should be a way of making sure that this is
indeed the case. In all probability, the only solution is
some kind of human verification of the automated
scoring. Otherwise, some students may end up with
inaccurate scores (and we might not even be aware of
this).

However, if we accept that human verification is
a necessity, then exact-text matching is actually
superior to the keyword technique. The reason for this
is that the keyword approach can potentially make
two kinds of errors. As shown above, it can give full
credit to incorrect responses, which might be called
false positive mismatches, as in (7), or it can give no
credit to correct responses, which could be termed
false negative mismatches, as in (8) above. The exact-
match approach, by contrast, can only make one type
of error, namely false negative mismatches. This is
because, in the exact-match approach, it is impossible
for an answer to be included in the key and actually
deserve no credit (unless the answer is there by
mistake).

Suppose, for instance, that in the exact-match
approach we have an item with four different keyed
answers. Now, if test takers provide ten different

On the Use of Regular Expressions and Exact-text Matching in Computer-based Test Scoring Algorithms

557

responses, four of which match the key, then only the
remaining six will need to be taken care of in the
process of verification to determine whether or not
they are false negative mismatches. In the keyword
approach, by contrast, all of the ten responses will
need to be verified because, potentially, each of them
can be either a false positive or a false negative
mismatch.

In a sense, scoring systems that require human
verification could be regarded as detracting from the
attractiveness and utility of computer-based testing.
Unfortunately, it does not seem to be possible for
automated scoring to be one hundred percent
accurate, at least in the case of certain constructed-
response test items, and some kind of verification is
usually indispensable. This should not be taken to
suggest that humans make fewer errors than
computers. In fact, the opposite may well be true as
computer-based tests are generally more reliable in
that they make the scoring more consistent over time
and across test forms (e.g. Brown, 2016). However,
the point is that computers may not be able to make
the final decisions as to the lexical and grammatical
correctness of constructed responses. Indeed, at least
in school settings, it is teachers rather than computers
who are ultimately responsible for the scoring.
Accordingly, when teachers mark a response as
incorrect, it is their task to explain to the students why
it has not been accepted. If computerised testing
systems were to completely replace humans, they
would need to be perfectly accurate, and this may be
hard to achieve in cases where responses have to be
produced rather than selected.

3 WebClass

WebClass is a homegrown online platform that
combines a MySQL database with PHP scripts
running on a LiteSpeed web server (Malec, 2018). It
can be classified as an academic learning
management system (cf. Foreman, 2018) integrating
features such as learner management,
communication, content authoring, and assessment. It
has recently been used primarily as a web-based
assessment tool to develop online language tests for
university and secondary school students (Malec &
Malec, 2021). The testing component of the platform
can be utilised to create tests and quizzes of several
different types (including selected- and constructed-
response items as well as extended-response tasks),
administer them to students, monitor the test-taking
process, mark the responses automatically (but with a
possibility of verifying and overriding the scoring),

provide general and answer-specific feedback to the
test takers, analyse tests and items statistically, store
items in the item bank and then reuse them with the
aid of a test generator or by importing them into
existing tests (see also, e.g., Malec, 2015; Marczak,
Krajka, & Malec, 2016).

3.1 Scoring Algorithm

Limited-production items are scored on WebClass by
comparing each response submitted by the test takers
with the keyed answers. For reasons discussed above,
the comparison is made using exact-text matching
rather than keyword or regular-expression
approaches. An example is provided below of how
scoring works in practice, followed by a discussion of
human verification of automated scoring.

The operation of the scoring algorithm as applied
to limited-production items is illustrated using this
example from a language test:

(9) Use the Word Given
Complete the second sentence so that it means
the same as the first sentence, using the word
given.

This is, undoubtedly, the best road trip in my
life. SHADOW
This is, _______________________, the best
road trip in my life.

KEY
(1) without a shadow of a doubt
(2) beyond a shadow of a doubt

Additional Settings
Spelling errors permitted for partial credit: 2
Ignore: capitals, spaces, punctuation

Two keyed answers are provided for the item in (9),
but in theory there is no limit to the number of
acceptable alternatives. Additional settings, which
are relevant to the scoring algorithm, include the
number of spelling mistakes permitted for partial
credit (half a point) as well as instructions to disregard
capitalisation, spacing, and punctuation. The number
of spelling errors allowed for half a point depends on
the length and type of the expected answer. In some
cases, even one spelling mistake is undesirable. For
example, when the expected answer is a short word,
such as the preposition on, changing it to, for
example, in, would not be a minor error that deserves
partial credit. It is thus important to make sure that the
partial-credit error level specified for a given item
does not result in unacceptable responses being
awarded half points.

From a programming point of view, the scoring
algorithm determines the number of spelling mistakes

CSEDU 2022 - 14th International Conference on Computer Supported Education

558

using the levenshtein() function in PHP (more
on this function can be found in, e.g., Quigley &
Gargenta, 2007; see also Lisbach & Meyer, 2013, on
its use in linguistics). The function returns the so-
called Levenshtein distance, also known as the edit
distance, between two strings, i.e. the minimum
number of edit operations (insertions, deletions, or
replacements) required to convert one string into the
other. Partial credit is awarded on condition that the
Levenshtein distance between the response and any
of the keyed answers does not exceed the level
specified by the item constructor.

Some examples of responses to the item in (9) are
given in (10) below (the errors are underlined):

(10) Without a shadow of a doubt [1]
 without a shadow o fa doubt [1]
 beyond a shadow, of a doubt [1]

beyond a shaddow of a doubt [0.5]
without a shaddow of a doutb [0.5]
witout any shadow of doubt [0]

Each response above is followed by a score
automatically computed by the algorithm. In the first
three cases, the responses are awarded full credit
thanks to the fact that the algorithm is set to ignore
capitals, spaces, and punctuation, respectively. The
next two responses are awarded partial credit because
the number of spelling errors is not greater than the
number allowed. Finally, the last response receives
zero points because it contains three spelling mistakes
and is thus not similar enough to the key. Looking at
the responses scored by partial credit in (10), it might
be argued that the spelling errors are mere typos and
that these answers actually deserve full credit.
Moreover, the last response is not necessarily
completely wrong, and it might be given partial (or
even full) credit. These examples strongly suggest
that automated scoring can be significantly enhanced
by some kind of human verification.

3.1.1 Verification of Automated Scoring

In the testing system discussed here, score
verification follows test administration. The relevant
tool (illustrated in Figure 1) is a scrollable web page
presenting the teacher or test administrator with the
entire test, one item after another. Each item is
followed by incorrect responses (i.e. those for which
no matches have been found in the key) as well as the
names of the test takers who submitted the responses
(these names can optionally be hidden). For each such
response, the automated scoring can be changed into
partial or full credit. When the computer’s decision is
overridden, the response is saved in an array of

answers which deserve either full credit or partial
credit. The scoring algorithm first attempts to find a
match in these two arrays prior to determining the
number of spelling mistakes. If a match is found, the
computation of the Levenshtein distance is skipped.
Taking the above into account, the steps in the
operation of the scoring algorithm can be defined as
in Table 1. It should be added that each step is
executed only if none of the previous conditions is
met.

Table 1: The scoring algorithm on WebClass.

Step Condition Score
1 Response is empty 0
2 Response matches the key (optionally

disregarding capitalisation, spacing,
punctuation)

1

3 Response matches full-credit answers 1
4 Response matches partial-credit answers 0.5
5 Levenshtein distance does not exceed the

level allowed for partial credit
0.5

6 None of the above is true 0

Several comments are worth adding about the

score verification tool. First, responses which are
entirely correct (and do not contain any typos) can be
added to the key. Second, the arrays of full-credit and
partial-credit answers can be created earlier, i.e. at the
stage of test construction. However, during score
verification, the decisions are based on real responses
actually submitted rather than those which may
potentially be given by the test takers. Third, changes
made to the scoring of any given response have an
effect on every test submitted by all the test takers –
it is not necessary to repeat the procedure for each test
taker. Fourth, score verification can only be applied
to limited-production items – the scoring of selected-
response items is fully automated and cannot be
changed, whereas extended responses (such as
essays) are manually marked using an HTML editor.
Fifth, the verification tool can also be used to give
feedback to the test takers in the form of general and
answer-specific comments. Finally, the content of the
verification tool can be viewed ‘by students’ (not ‘by
items’), in which case a list is displayed of all the
students (grouped by classes) who have attempted the
test. For each individual, the test can then be opened
in a popup window where the scoring of her or his
responses can be verified and validated.

In classroom settings, some further uses for the
score verification tool are possible. For example,
teachers may use the web page (displayed on a screen
or wall by means of a projector) to discuss the results
with the whole class. When students do not see the
tool, the names provided for each incorrect response

On the Use of Regular Expressions and Exact-text Matching in Computer-based Test Scoring Algorithms

559

Figure 1: Verification of automated scoring on WebClass.

allow the teacher to easily address individual
students.

4 CONCLUSION

One of the oft-quoted benefits of the use of
technology for testing is that computer-based tests, as
opposed to their paper-based counterparts, can be
scored automatically. However, technology alone is
not capable of guaranteeing high precision of scoring
because automated scoring “can only be as accurate
as the human-produced answer keys” (Brown, 2016).
This article has discussed two approaches to
producing answer keys to limited-production test
items, namely exact-text matching and keyword
matching (based on regular expressions). The main
advantage of scoring algorithms implementing
keyword matching is that a single regular expression
can replace a whole array of keyed responses required
for exact-text matching. On the other hand, it is easy
to find examples of responses which ‘fall through the
cracks’ inherent in solutions employing regular-
expression matching. One possible conclusion to be
drawn from this is that natural language is too

complicated for regular expressions to handle it
impeccably.

However, if this conclusion is valid, the outcome
of machine scoring evidently requires some human
verification. Furthermore, as has been argued above,
another reasonable conclusion is that exact-text
matching (which can result in one type of errors)
allows for more time-efficient score verification than
does keyword matching (which can potentially result
in two types of errors).

The second part of the article has presented the
score verification tool available on WebClass, an
online learning management system. This tool
presents the teacher or test developer with incorrect
responses only. It does not show correct responses
because these are given full credit and do not need
any further verification. As explained above, this
solution is in accord with the exact-match approach.
An alternative solution based on the keyword method
would require the score verification tool to display all
of the responses submitted by the test takers simply
because every single response could potentially be
inappropriately scored (no matter how unlikely this
might be).

It is worth adding that the amount of time required
for score verification on WebClass partly depends on

CSEDU 2022 - 14th International Conference on Computer Supported Education

560

the level of difficulty of the test. If most of the test
takers know the correct answers, there are relatively
few incorrect responses that need any verification. By
contrast, if most of the students produce incorrect
responses, deciding which of them are appropriately
identified by the scoring algorithm as wrong may
require a considerable amount of time. The number of
responses that may need verification also depends on
the length of the expected answer. If the expected
answer is a single word or a short phrase, the
possibilities for alternative responses may be very
limited. It is then also much easier to create a
complete scoring key.

REFERENCES

Brown, J. D. (2016). Language testing and technology. In
F. Farr & L. Murray (Eds.), The Routledge Handbook
of Language Learning and Technology (pp. 141–159).
London: Routledge.

Budescu, D., & Bar-Hillel, M. (1993). To guess or not to
guess: A decision-theoretic view of formula scoring.
Journal of Educational Measurement, 30(4), 277–291.

Carr, N. T. (2014). Computer-automated scoring of written
responses. In A. J. Kunnan (Ed.), The Companion to
Language Assessment (Vol. 2, Chap. 64, pp. 1063–
1078). London: John Wiley & Sons.

Carr, N. T., & Xi, X. (2010). Automated scoring of short-
answer reading items: Implications for constructs.
Language Assessment Quarterly, 7(3), 205–218.
doi:10.1080/15434300903443958

Foreman, S. D. (2018). The LMS Guidebook: Learning
Management Systems Demystified. Alexandria, VA:
ATD Press.

Kumar, V., & Boulanger, D. (2020). Explainable automated
essay scoring: Deep learning really has pedagogical
value. Frontiers in Education, 5. doi:10.3389/
feduc.2020.572367

Lisbach, B., & Meyer, V. (2013). Linguistic Identity
Matching. Wiesbaden: Springer Vieweg.

Malec, W. (2015). The development of an online course in
Irish: Adapting academic materials to the needs of
secondary-school students. In A. Turula & M.
Chojnacka (Eds.), CALL for Bridges between School
and Academia (pp. 111–127). Frankfurt am Main: Peter
Lang.

Malec, W. (2018). Developing Web-Based Language Tests.
Lublin: Wydawnictwo KUL.

Malec, W., & Malec, M. (2021). WebClass jako narzędzie
do kontroli i oceny postępów w nauce. Języki Obce w
Szkole, 3/2021, 37–42.

Marczak, M., Krajka, J., & Malec, W. (2016). Web-based
assessment and language teachers – from Moodle to
WebClass. International Journal of Continuing
Engineering Education and Life-Long Learning, 26(1),
44–59.

Quigley, E., & Gargenta, M. (2007). PHP and MySQL by
Example. Upper Saddle River, NJ: Pearson Education,
Inc.

Ramachandran, L., Cheng, J., & Foltz, P. (2015, June 4).
Identifying patterns for short answer scoring using
graph-based lexico-semantic text matching. Paper
presented at the Tenth Workshop on Innovative Use of
NLP for Building Educational Applications, Denver,
Colorado.

Rézeau, J. (2022). Regular Expression Short-Answer
question type. Retrieved from https://docs.moodle.org/
311/en/Regular_Expression_Short-Answer_question_ty
pe

Shermis, M. D. (2010). Automated essay scoring in a high
stakes testing environment. In V. J. Shute & B. J.
Becker (Eds.), Innovative Assessment for the 21st
Century (pp. 167–185). New York: Springer.

Weigle, S. C. (2013). English language learners and
automated scoring of essays: Critical considerations.
Assessing Writing, 18(1), 85–99. doi:10.1016/j.asw.
2012.10.006

On the Use of Regular Expressions and Exact-text Matching in Computer-based Test Scoring Algorithms

561

