DETERMINE TASK DEMAND FROM BRAIN ACTIVITY

Matthias Honal, Tanja Schultz

2008

Abstract

Our society demands ubiquitous mobile devices that offer seamless interaction with everybody, everything, everywhere, at any given time. However, the effectiveness of these devices is limited due to their lack of situational awareness and sense for the users’ needs. To overcome this problem we develop intelligent transparent human-centered systems that sense, analyze, and interpret the user’s needs. We implemented learning approaches that derive the current task demand from the user’s brain activity by measuring the electroencephalogram. Using Support Vector Machines we can discriminate high versus low task demand with an accuracy of 92.2% in session dependent experiments, 87.1% in session independent experiments, and 80.0% in subject independent experiments. To make brain activity measurements less cumbersome, we built a comfortable headband with which we achieve 69% classification accuracy on the same task.

References

  1. Berka, C., Levendowski, D., Cvetinovic, M., et al., 2004. Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. Int. Journal of HCI, 17(2):151-170.
  2. Delorme A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134:9-21.
  3. Duta, M., Alford, C., Wilon, S., and Tarassenko, L., 2004. Neural Network Analysis of the Mastoid EEG for the Assessment of Vigilance. Int. Journal of HCI, 17(2):171-195.
  4. Fukunaga, K., 1972. “Introduction to Statistical Pattern Recognition”, Academic Press, New York, London.
  5. Honal, M. and Schultz, T., 2005. Identifying User State using Electroencephalographic Data, Proceedings of the International Conference on Multimodal Input (ICMI), Trento, Italy, October 2005.
  6. Hyväarinen, A. and Oja, E., 2000. Independent Component Analysis: Algorithms and Applications. Neural Networks, 13(4-5):411-430.
  7. Iqbal, S., Zheng, X., and Bailey, B., 2004. Task evoked pupillary response to mental workload in human computer interaction. In Proceedings of Conference of Human Factors in Computer Systems (CHI).
  8. Izzetoglu, K., Bunce, S., Onaral, B., Pourrezaei, K., and Chance, B., 2004. Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks. International Journal of HCI, 17(2):211-227.
  9. Jasper, H. H.. 1958. The ten-twenty electrode system of the International Federation. Electroencephalographic Clinical Neurophysiolgy, 10:371-375.
  10. Joachims, T. (1999). Making Large-Scale SVM Learning Practical, chapter 11.MIT-Press.
  11. Jung, T., Makeig, S., Humphries, C., Lee, T., Mckeown, M., Iragui, V., Sejnowski, T. (2000) Removing Electroencephalographic Artifacts by Blind Source Separation. Psychophysiology, 37(2):163-17
  12. Jung, T.P., Makeig, S., Stensmo, M., and Sejnowski, T.J., 1997. Estimating Alertness from the EEG Power Spectrum. IEEE Transactions on Biomedical Engineering, 4(1):60-69, January
  13. Pleydell-Pearce, C.W., Whitecross, S.E., and Dickson, B.T.. 2003. Multivariate Analysis of EEG: Predicting Cognition on the basis of Frequency Decomposition, Inter-electrode Correlation, Coherence, Cross Phase and Cross Power. In Proceedings of 38th HICCS
  14. Schmidt, F. and Thews, G. (editors) (1997). Physiologie des Menschen. Springer
  15. Smith, M., Gevins, A., Brown, H., Karnik, A., and Du, R., 2001. Monitoring Task Loading with Multivariate EEG Measures during Complex Forms of HumanComputer Interaction. Human Factors, 43(3):366-380.
  16. Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support Vector Machine Learning for Interdependent and Structured Output Spaces. In Proceedings of the ICML.
  17. Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J. (2000). SOM Toolbox for Matlab 5. Technical report, Helsinki University of Technology.
  18. Zschocke, S. (1995). Klinische Elektroenzephalographie. Springer
Download


Paper Citation


in Harvard Style

Honal M. and Schultz T. (2008). DETERMINE TASK DEMAND FROM BRAIN ACTIVITY . In Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2008) ISBN 978-989-8111-18-0, pages 100-107. DOI: 10.5220/0001069001000107


in Bibtex Style

@conference{biosignals08,
author={Matthias Honal and Tanja Schultz},
title={DETERMINE TASK DEMAND FROM BRAIN ACTIVITY},
booktitle={Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2008)},
year={2008},
pages={100-107},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001069001000107},
isbn={978-989-8111-18-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2008)
TI - DETERMINE TASK DEMAND FROM BRAIN ACTIVITY
SN - 978-989-8111-18-0
AU - Honal M.
AU - Schultz T.
PY - 2008
SP - 100
EP - 107
DO - 10.5220/0001069001000107