3D RECONSTRUCTION FOR TEXTURELESS SURFACES - Surface Reconstruction for Biological Research of Bryophyte Canopies

Michal Krumnikl, Eduard Sojka, Jan Gaura, Oldřich Motyka

2009

Abstract

This paper covers the topic of three dimensional reconstruction of small textureless formations usually found in biological samples. Generally used reconstructing algorithms do not provide sufficient accuracy for surface analysis. In order to achieve better results, combined strategy was developed, linking stereo matching algorithms with monocular depth cues such as depth from focus and depth from illumination. Proposed approach is practically tested on bryophyte canopy structure. Recent studies concerning bryophyte structure applied various modern, computer analysis methods for determining moss layer characteristics drawing on the outcomes of a previous research on surface of soil. In contrast to active methods, this method is a non-contact passive, therefore, it does not emit any kind of radiation which can lead to interference with moss photosynthetic pigments, nor does it affect the structure of its layer. This makes it much more suitable for usage in natural environment.

References

  1. Bachmaier, M. and Backes, M. (2008). Variogram or semivariogram - explaining the variances in a variogram. Precision Agriculture.
  2. Bouguet, J.-Y. (2005). Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/- calib doc/index.html.
  3. Brodie, H. J. (1951). The splash-cup dispersal mechanism in plants. Canadian Journal of Botany, (29):224-230.
  4. Chaudhuri, S., Rajagopalan, A., and Pentland, A. (1999). Depth from Defocus: A Real Aperture Imaging Approach. Springer.
  5. Coleman, Jr., E. and Jain, R. (1981). Shape from shading for surfaces with texture and specularity. In IJCAI81, pages 652-657.
  6. Crum, H. (2001). Structural Diversity of Bryophytes, page 379. University of Michigan Herbarium, Ann Arbor.
  7. Darboux, F. and Huang, C. (2003). An simultaneousprofile laser scanner to measure soil surface microtopography. Soil Science Society of America Journal, (67):92-99.
  8. Heikilla, J. (2000). Geometric camera calibration using circular control points. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, (10):1066- 1077.
  9. Heikilla, J. and Silven, O. (1997). A four-step camera calibration procedure with implicit image correction. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR97), pages 1106- 1112.
  10. Horn, B. (1986). Robot Vision. MIT Press.
  11. Horn, B. and Brooks, M. (1986). The variantional approach to shape from shading. In Computer Vision Graphics and Image Processing, volume 22, pages 174-208.
  12. Howard, I. P. and Rogers, B. J. (1996). Binocular Vision and Stereopsis, pages 212-230. Oxford Scholarship Online.
  13. Jarvis, R. A. (1983). A perspective on range finding techniques for computer vision. In IEEE Trans. Pattern Analysis and Machine Intelligence, volume 5, pages 122-139.
  14. Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):920-932.
  15. Kolmogorov, V. and Zabih, R. (2001). Computing visual correspondence with occlusions using graph cuts. iccv, 02:508.
  16. Liao, M., Wang, L., Yang, R., and Gong;, M. (2007). Light fall-off stereo. Computer Vision and Pattern Recognition, pages 1-8.
  17. Magda, S., Kriegman, D., Zickler, T., and Belhumeur, P. (2001). Beyond lambert: reconstructing surfaces with arbitrary brdfs. In ICCV, volume 2, pages 391-398.
  18. Motyka, O., Krumnikl, M., Sojka, E., and Gaura, J. (2008). New approach in bryophyte canopy analysis: 3d image analysis as a suitable tool for ecological studies of moss communities? In Environmental changes and biological assessment IV. Scripta Fac. Rerum Natur. Univ. Ostraviensis.
  19. Nayar, S. K., Watanabe, M., and Noguchi, M. (1996). Realtime focus range sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1186- 1198.
  20. Ogale, A. and Aloimonos, Y. (2005). Shape and the stereo correspondence problem. International Journal of Computer Vision, 65(3):147-162.
  21. Ortiz, A. and Oliver, G. (2000). Shape from shading for multiple albedo images. In ICPR, volume 1, pages 786-789.
  22. Prados, E. and Faugeras, O. (2005). Shape from shading: a well-posed problem? In Computer Vision and Pattern Recognition, volume 2, pages 870-877.
  23. Proctor, M. C. F. and Tuba, Z. (2002). Poikilohydry and homoiohydry: antithesis or spectrum of possibilites? New Phytologist, (156):327-349.
  24. Rice, S. K., Collins, D., and Anderson, A. M. (2001). Functional significance of variation in bryophyte canopy structure. American Journal of Botany, (88):1568- 1576.
  25. Rice, S. K., Gutman, C., and Krouglicof, N. (2005). Laser scanning reveals bryophyte canopy structure. New Phytologist, 166(2):695-704.
  26. Sun, J., Li, Y., Kang, S. B., and Shum, H.-Y. (2005). Symmetric stereo matching for occlusion handling. In CVPR 7805: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 2, pages 399-406, Washington, DC, USA. IEEE Computer Society.
  27. Wedekind, J. (2002). Fokusserien-basierte rekonstruktion von mikroobjekten. Master's thesis, Universitat Karlsruhe.
  28. Xiong, Y. and Shafer, S. (1993). Depth from focusing and defocusing. Technical Report CMU-RI-TR-93- 07, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
  29. Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations. In International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673.
  30. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, (11):1330-1334.
Download


Paper Citation


in Harvard Style

Krumnikl M., Sojka E., Gaura J. and Motyka O. (2009). 3D RECONSTRUCTION FOR TEXTURELESS SURFACES - Surface Reconstruction for Biological Research of Bryophyte Canopies . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009) ISBN 978-989-8111-65-4, pages 95-100. DOI: 10.5220/0001539400950100


in Bibtex Style

@conference{biosignals09,
author={Michal Krumnikl and Eduard Sojka and Jan Gaura and Oldřich Motyka},
title={3D RECONSTRUCTION FOR TEXTURELESS SURFACES - Surface Reconstruction for Biological Research of Bryophyte Canopies},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)},
year={2009},
pages={95-100},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001539400950100},
isbn={978-989-8111-65-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)
TI - 3D RECONSTRUCTION FOR TEXTURELESS SURFACES - Surface Reconstruction for Biological Research of Bryophyte Canopies
SN - 978-989-8111-65-4
AU - Krumnikl M.
AU - Sojka E.
AU - Gaura J.
AU - Motyka O.
PY - 2009
SP - 95
EP - 100
DO - 10.5220/0001539400950100