DESIGN OF A BIO-INSPIRED WEARABLE EXOSKELETON FOR APPLICATIONS IN ROBOTICS

Michele Folgheraiter, Bertold Bongardt, Jan Albiez, Frank Kirchner

2009

Abstract

In this paper we explain the methodology we adopted to design the kinematics structure of a multi-contact point haptic interface. We based our concept on the analysis of the human arm anatomy and kinematics with the intend to synthesize a system that will be able to interface with the human limb in a very natural way. We proposed a simplified kinematic model of the human arm using a notation coming from the robotics field. To find out the best kinematics architecture we employed real movement data, measured from a human subject, and integrated them with the kinematic model of the exoskeleton. This allow us to test the system before its construction and to formalize specific requirements. We also implemented and tested a first passive version of the shoulder joint.

References

  1. Bar-Cohen, Y., Mavroidis, C., Bouzit, M., Dolgin, B., Harm, D. L., Kopchok, G., and White, R. (2001). Virtual reality robotic telesurgery simulations using memica haptic system. In Electroactive polymer actuators and devices, SPIE proceedings series, volume 4329, pages 357-363.
  2. Carignan, C., Liszka, M., and Roderick, S. (2005). Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. Advanced Robotics, 2005. ICAR 7805. Proceedings., 12th International Conference on, pages 524-531.
  3. Chen, Y., Zhang, J., Yang, C., and Niu, B. (2007). The workspace mapping with deficient-dof space for the puma 560 robot and its exoskeleton arm by using orthogonal experiment design method. Robot. Comput.- Integr. Manuf., 23(4):478-487.
  4. Dollar, A. and Herr, H. (2008). Lower extremity exoskeletons and active orthoses: Challenges and state-of-theart. Robotics, IEEE Transactions on, 24:144-158.
  5. Griffin, W. B., Provancher, W. R., and Cutkosky, M. R. (2005). Feedback strategies for telemanipulation with shared control of object handling forces. Presence: Teleoper. Virtual Environ., 14(6):720-731.
  6. Gupta, A., O'Malley, M. K., Patoglu, V., and Burgar, C. (2008). Design, control and performance of ricewrist: A force feedback wrist exoskeleton for rehabilitation and training. Int. J. Rob. Res., 27(2):233-251.
  7. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In Giralt, G. and Hirzinger, G., editors, Robotics Research: The 7th International Symposium, pages 195-207. Springer Verlag.
  8. Hokayem, P. and Spong, M. (2006). Bilateral teleoperation: An historical survey. Automatica, 42:2035-2057.
  9. IJsselsteijn, W. A., de Kort, Y. A. W., and Haans, A. (2006). Is this my hand i see before me? the rubber hand illusion in reality, virtual reality, and mixed reality. Presence: Teleoper. Virtual Environ., 15(4):455-464.
  10. Kim, Y. S., Lee, S., Cho, C., Kim, M., and Lee., C.-W. (2001). A new exoskeleton-type masterarm with force reflection based on the torque sensor beam. Robotics and Automation - Proceedings 2001 ICRA. IEEE International Conference on, 2623:2628-2633.
  11. Klopcar, N. and Lenarcic, J. (2005). Kinematic model for determination of human arm reachable workspace. Meccanica, (40):203219.
  12. Kwon, D.-S., Ryu, J.-H., Lee, P.-M., and Hong, S.-W. (2000). Design of a teleoperation controller for an underwater manipulator. In Robotics and Automation, 2000. Proceedings. ICRA apos;00. IEEE International Conference on, pages 3114-3119.
  13. Mistry, M., Mohajerian, P., and Schaal, S. (2005). An exoskeleton robot for human arm movement study. In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages 4071- 4076.
  14. Perry, J., Rosen, J., and Burns, S. (2007). Upper-limb powered exoskeleton design. Mechatronics, IEEE/ASME Transactions on, 12:408 - 417.
  15. Schiele, A. and van der Helm, F. (2006). Kinematic design to improve ergonomics in human machine interaction. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 14(4):456-469.
  16. Schiele, A. and Visentin, G. (2003). The esa human arm exoskeleton for space robotics telepresence. In 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS.
  17. Song, D. H., Lee, W. K., and Jung, S. (2005). Control and interface between an exoskeleton master robot and a human like slave robot with two arm. In Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, pages 319- 324.
  18. Yu, A. B. (2003). A taxonomy and comparison of haptic actions for disassembly tasks.
  19. Zhao, J.-S., Zhou, K., and Feng, Z.-J. (2004). A theory of degrees of freedom for mechanisms. Mechanism and Machine Theory, 39(6):621-643.
Download


Paper Citation


in Harvard Style

Folgheraiter M., Bongardt B., Albiez J. and Kirchner F. (2009). DESIGN OF A BIO-INSPIRED WEARABLE EXOSKELETON FOR APPLICATIONS IN ROBOTICS . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009) ISBN 978-989-8111- 64-7, pages 414-421. DOI: 10.5220/0001550704140421


in Bibtex Style

@conference{biodevices09,
author={Michele Folgheraiter and Bertold Bongardt and Jan Albiez and Frank Kirchner},
title={DESIGN OF A BIO-INSPIRED WEARABLE EXOSKELETON FOR APPLICATIONS IN ROBOTICS},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)},
year={2009},
pages={414-421},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001550704140421},
isbn={978-989-8111- 64-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)
TI - DESIGN OF A BIO-INSPIRED WEARABLE EXOSKELETON FOR APPLICATIONS IN ROBOTICS
SN - 978-989-8111- 64-7
AU - Folgheraiter M.
AU - Bongardt B.
AU - Albiez J.
AU - Kirchner F.
PY - 2009
SP - 414
EP - 421
DO - 10.5220/0001550704140421