ON SUPERVISED METRICS FOR SHAPE SEGMENTATION

Dibet Garcia Gonzalez, Miguel Garcia Silvente

2010

Abstract

Segmentation is one of the most critical steps in image analysis. Also, the quantification of the error commited during this step is not a straightforward task. In this work, the performance of some comparison function or metrics are studied, when just one object appears in the analyzed regions. We develop a method for rank many validation measures of segmentation algorithms. It is based on thresholding a test image with a range of threshold and to find the middle threshold value when the performance measure is minimum or maximum. The performance is plotted and the first derivate is employed in the ranking construction. We have determined that RDE and MHD are two performance measures that show the best results (both are the most selective).

References

  1. Adams, R. and Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6):641-647.
  2. Baddeley, A. (1992). Errors in binary images and an Lp version of the hausdorff metric. Nieuw Archief voor Wiskunde, 10:157-183.
  3. Boucheron, L., Harvey, N., and Manjunath, B. (2007). A quantitative object-level metric for segmentation performance and its application to cell nuclei. Lecture Notes of Computer Science, 4841:208-219.
  4. Cardoso, J. S. and Corte-Real, L. (2005). Toward a generic evaluation of image segmentation. IEEE Transactions on Image Processing, 14(11):1773-1782.
  5. Cavallaro, A., Gelasca, E. D., and Ebrahimi, T. (2002). Objetive evaluation of segmentation quality using spatiotemporal context. In IEEE International Conference on Image Processing, Rochester (New York).
  6. Comaniciu, D. and Meer, P. (1999). Mean shift analysis and applications. IEEE International Conference on Computer Vision, 2:1197.
  7. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26:297-302.
  8. Dubuisson, M. P. and Jain, A. K. (1994). A modified hausdorff distance for object matching. In Proceedings of 12th International Conference on Pattern Recognition, pages A-566-A-569.
  9. Everingham, M., Muller, H., and Thomas, B. (2001). Evaluating image segmentation algorithms using monotonic hulls in fitness/cost space. In Proceedings of the British Machine Vision Conference, pages 363-372.
  10. Freixenet, J., Muoz, X., Raba, D., Mart, J., and Cuf, X. (2002). Yet another survey on image segmentation: Region and boundary information integration. Lecture Notes of Computer Science, 2352:408-422.
  11. Huang, J. and Ling, C. X. (2005). Using auc and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge Data Eng, 17(3):299-310.
  12. Janasievicz, R., Pinheiro, G., and Facon, J. (2005). Measuring the quality evaluation for image segmentation. Lecture Notes of Computer Science, 3773:120-127.
  13. Joo, S., Yang, Y., Moon, W., and Kim, H. (2004). Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features. IEEE Transactions on Medical Imaging, pages 1292-1300.
  14. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, pages 321-331.
  15. Kiyan, T. and Yildirim, T. (2004). Breast cancer diagnosis using statistical neural networks. Journal of Electrical & Electronics Engineering, 4:1149-1153.
  16. Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th International Conference Computer Vision, volume 2, pages 416-423.
  17. Meyer, F. (1992). Color image segmentation. In Proceedings of the International Conference on Image Processing and Its Application, pages 303-306.
  18. Monteiro, F. and Campilho, A. (2006). Performance evaluation of image segmentation. Lecture Notes of Computer Science, 4141:248-259.
  19. Polak M, Zhang H, P. M. (2009). An evaluation metric for image segmentation of multiple objects. Image and Vision Computing, 27(8):1223-1227.
  20. Popovic, A., de la Fuente, M., Engelhardt, M., and Radermacher, K. (2007). Statistical validation metric for accuracy assessment in medical image segmentation. International Journal of Computer Assisted Radiology and Surgery, 2:169-181.
  21. Pratt, W. K. (1997). Digital image processing. John Wiley and Sons, New York.
  22. Pratt, W. K., Faugeras, O. D., and Gagalowicz, A. (1978). Visual discrimination of stochastic texture fields. IEEE Transactions on Systems, Man and Cybernetics Part B, 8(11):796-804.
  23. Rosenberger, C. (2006). Adaptative evaluation of image segmentation results. International Conference on Pattern Recognition, 2:399-402.
  24. Sezgin, M. and Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1):146- 165.
  25. Shentona, M., Gerigb, G., McCarleya, R., Szekelyc, G., and Kikinisd, R. (2002). Amygdalahippocampal shape differences in schizophrenia: the application of 3d shape models to volumetric mr data. Psychiatry Research Neuroimaging, 115:15-35.
  26. Vilalta, R. and Oblinger, D. (2000). A quantification of distance bias between evaluation metrics in classification. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 1087- 1094.
  27. Yang-Mao, S.-F., Chan, Y.-K., and Chu, Y.-P. (2008). Edge enhancement nucleus and cytoplast contour detector of cervical smear images. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics, 38(2):353-366.
  28. Zhang, H., Cholleti, S., Goldman, S. A., and Fritts, J. (2006). Meta-evaluation of image segmentation using machine learning. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
  29. Zhang, H., Frits, J. E., and Goldman, S. A. (2008). Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding, 11:260-280.
  30. Zhang, Y. J. (1996). A survey on evaluation methods for image segmentation. Pattern Recognition, 29(8):1335-1346.
Download


Paper Citation


in Harvard Style

Garcia Gonzalez D. and Garcia Silvente M. (2010). ON SUPERVISED METRICS FOR SHAPE SEGMENTATION . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 468-473. DOI: 10.5220/0002759004680473


in Bibtex Style

@conference{biosignals10,
author={Dibet Garcia Gonzalez and Miguel Garcia Silvente},
title={ON SUPERVISED METRICS FOR SHAPE SEGMENTATION},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={468-473},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002759004680473},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - ON SUPERVISED METRICS FOR SHAPE SEGMENTATION
SN - 978-989-674-018-4
AU - Garcia Gonzalez D.
AU - Garcia Silvente M.
PY - 2010
SP - 468
EP - 473
DO - 10.5220/0002759004680473