DEVELOPMENT OF ORIGINAL OPTICAL AND QUANTUM ELECTRONICS DEVICES FOR APPLICATIONS IN COMMUNICATIONS, METROLOGY AND SCIENCES

Hristo Kisov, Margarita Deneva, Elena Stoykova, Marin Nenchev

2012

Abstract

The goal of the report is to present the development – principles, theories and computer simulations, experiments and practical realizations, of original and competitive methods, elements and devices for quantum electronics, optical communications, metrology, remote sensing and sciences: multi-channel WDM system with independent tuning of each input/output, multi-wavelength laser with independent control of each wavelength, lasers with emission, spectrally fixed at reference atomic absorption line, injection-locking laser system for high (~106-108) and linear amplification of low-power (~ μW, nW) modulated laser light, optical analogue of the transistor action – optical transistor, system for remote (up to kilometres) measurement of small (mm) translational elongation – shrinking of objects, new solution of tunable sub-nanosecond lasers and lasers with rectangular nanosecond (~1 ns) pulse emission, including controlled duration and tunable wavelength. The basic element of the devices developed is stable and compact interference wedged structures in new composite solution with very narrow transmission (≤ 0.01 nm) in relatively large spectral range (≥1 nm). The laser active media used are solid-state, semiconductor and dye.

References

  1. Stoykova E., Nenchev M., 2010. Gaussian Beam Interaction with Air-gap Fizeau. Journal of the Optical Sociaty of America-JOSA A, Vol.27, 58-68.
  2. Deneva M., Stoykova E., Nenchev M., Barbe R., Keller J.C., 2010. Diode laser emission, spectrally fixed at atomic absorption line, Optics&Laser Technology, Vol.42, 301-307.
  3. Deneva M., Uzunova P., Nenchev M., 2007. Tunable subnanosecond laser pulse operation using an active mirror concept, Opt. Quant. Electron., Vol.39, 93-212.
  4. Louyer Y., Wallerand J., Himbert M., Deneva M., Nenchev M., Two-wavelength passive self-injection controlled operation of diode-dumped cw Yb-doped crystal lasers, 2003, Appl.Opt., Vol. 42, 4301-4315.
  5. Slavov D., Nenchev M., 2001. A comparative study of approaches for spectral control of Ti:Sapphire lasers. Optics Communications, Vol.200/1-6, 283-301.
  6. Delev A., Deneva M., Nenchev M., Stoykova E., Slavov D., 2001. Tunable subnanosecond pulse generation in a dye laser using overlapped pump pulses. Rev. Sci. Instrum., Vol.72, N°3, 164- 168, USA
  7. Keller J.C., Barbe R., Deneva M., Nenchev M., 2000. Unidirectional ring Ti3+:Sapphire laser generation at the wavelength of an atomic absorption line by bidirectional passive self-injection locking. Applied Phys. Letters, 76, 131-133.
  8. Nenchev M., 1978. Multicolor laser, Bul.pat. IIR, No25954 (Bulgaria).
  9. Slavov D., Deneva M., Stoykova E., Nenchev M., Barbe R., Keller J.C., 1998. Output control of a ring laser using bi-directional injection: a new approach for unidirectional generation at a reference atomic absorption line. Optics Communications.157,343 -351.
  10. Stoykova E., Nenchev M., 2001. Strong optical asymmetry of an interference wedge with unequal reflectivity mirror and its use in unidirectional ring laser oscillator-amplifier system. Applied Optics, 40, 5402-5412.
  11. Nenchev M., 1981. Tunable two-wavelength laser, Bulg. Pat. No 32703 (Bulgaria); Nenchev M., 1986. Two wavelength laser oscillator, Bulg. Paent,. No73793 (Bulgaria)
  12. Stoykova E., Nenchev M., 1996. Reflection and transmission of unequal mirrors interference wedge, Opt. Quantum. Electron. 27, 155-167.
  13. Deneva M., Stoykova E., Nenchev M., 1996. A novel technique for a narrow-line selection and wideband tuning of Ti3+:Sapphire and dye lasers, Rev. Sci. Instrum. 1705-1714.
  14. Gorris-Neveux M., Nenchev M., Barbe R., Keller J.C., 1995. A two-wavelength, passively self-injection locked, cw Ti3+:Sapphire laser. IEEE J. Quantum Electron. 31, 1263-1260.
  15. Nenchev M., Stoykova E., 1993. Interference wedge properties relevant to laser applications: transmission and reflection of the restricted light beams, Opt. Quantum Electron. 26, 789-799.
  16. Stoykova E., Nenchev M., 1994. Strong optical asymmetry of an interference wedge with unequal mirrors and its use in unidirectional ring laser designs. Opt Lett. 19, 1925-1927.
  17. Meyer Y., Nenchev M., 1984. Optical Selector Devices Using a Fizeu Wedge for Reflection. US Patent No4, 468, 775, USA
  18. Deneva M., Nenchev M., 2004. Development and application of a new device for light control by light (optical transistor). “Electronics-ET'04, International Conference, book 1, 181-185, ISBN 954-438-445-6, Bulgaria.
  19. Nenchev M., 1995. Device for forming of laser pulse, Bul.pat. IIR,No49797 (Bulgaria).
  20. Nenchev M. N., Meyer Y.H., Continuous Scanning System for Single-Mode Wedge Dye Lasers, 1982. Opt Lett. 7, 199-200.
  21. Gizrekht A., Kebedjiev A., Nenchev M., Peshev Z., Pestriakov E., 1989. Two wavelength emission from Ti3+:Sapphire crystal laser. Sov. J. Quant. Electron.,19, 1305-1306.
  22. Deneva M., Nenchev M., 2005. Development of original simple quantum electronic devices with emission passively frequency locked at atomic absorption line. “Electronics-ET'05”, International Conference, 186- 193, Book 2, ISBN 954438185, Bulgaria; Method and device for laser pulse shortening, Bulg. Patent No 35164/1995, Bulgaria.
  23. Gacheva L., Deneva M., Kalbanov M., Nenchev M., 2008. Development of original all-optical injection control competition and gain knock-down technique for laser line fixing at atomic absorption line. Inern. Confer. “Electronics ET'2008”. 135-142, Bulgaria.
  24. Deneva M., Nenchev M., 1999. Injection-locked linear amplifiers of a periodically modulated linear radiation using competitive second injection. LTL Plovdiv'99, International Symposium, 87-94, Bulgaria.
  25. Nenchev M., Deneva M., Recent results in the development of original quantum electronics and optical devices for applictions in communictions and metrology, J. Technical University of Plovdiv, 2011. Vol.16, book 1, 27-42, Bulgaria.
  26. Svelto O., Principle of lasers, 1998. Plenum, New York, 4-th edn.
Download


Paper Citation


in Harvard Style

Kisov H., Deneva M., Stoykova E. and Nenchev M. (2012). DEVELOPMENT OF ORIGINAL OPTICAL AND QUANTUM ELECTRONICS DEVICES FOR APPLICATIONS IN COMMUNICATIONS, METROLOGY AND SCIENCES . In Proceedings of the First International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS, ISBN 978-989-8565-28-0, pages 146-157. DOI: 10.5220/0005415201460157


in Bibtex Style

@conference{ictrs12,
author={Hristo Kisov and Margarita Deneva and Elena Stoykova and Marin Nenchev},
title={DEVELOPMENT OF ORIGINAL OPTICAL AND QUANTUM ELECTRONICS DEVICES FOR APPLICATIONS IN COMMUNICATIONS, METROLOGY AND SCIENCES},
booktitle={Proceedings of the First International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,},
year={2012},
pages={146-157},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005415201460157},
isbn={978-989-8565-28-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,
TI - DEVELOPMENT OF ORIGINAL OPTICAL AND QUANTUM ELECTRONICS DEVICES FOR APPLICATIONS IN COMMUNICATIONS, METROLOGY AND SCIENCES
SN - 978-989-8565-28-0
AU - Kisov H.
AU - Deneva M.
AU - Stoykova E.
AU - Nenchev M.
PY - 2012
SP - 146
EP - 157
DO - 10.5220/0005415201460157