Algorithmic Surface Extraction from MRI Data - Modelling the Human Vocal Tract

D. Aalto, J. Helle, A. Huhtala, A. Kivelä, J. Malinen, J. Saunavaara, T. Ronkka

2013

Abstract

A procedure for the vectorisation and feature extraction of the human vocal tract is proposed. The raw data is obtained by high resolution 3D MRI. Because the amount of manual work in the data processing has been minimised, large datasets can be treated. The vectorised data can be used for both numerical as well as physical modelling of the vocal tract biophysics, including speech and applications in medicine.

References

  1. Aalto, D., Aaltonen, O., Happonen, R.-P., Malinen, J., Palo, P., Parkkola, R., Saunavaara, J., and Vainio, M. (2011). Recording speech sound and articulation in MRI. In Proceedings of BIODEVICES 2011, Rome, Italy.
  2. Aalto, D., Huhtala, A., Kivelä, A., Malinen, J., Palo, P., Saunavaara, J., and Vainio, M. (2012). How far are vowel formants from computed vocal tract resonances? arXiv:1208.5963, 13 pp.
  3. Antiga, L. (2003). Patient-Specific Modeling of Geometry and Blood Flow in Large Arteries. PhD thesis, Politecnico di Milano.
  4. Blender (2012). http://www.blender.org. cessed Nov. 7th, 2012.
  5. Criminisi, A., Shotton, J., and Konukoglu, E. (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Technical Report MSR-TR-2011-114, Microsoft Research.
  6. Dedouch, K., Horác?ek, J., Vampola, T., and C?erný, L. (2002). Finite element modelling of a male vocal tract with consideration of cleft palate. In Forum Acusticum, Sevilla, Spain.
  7. Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing, 2nd Ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.
  8. Hannukainen, A., Lukkari, T., Malinen, J., and Palo, P. (2007). Vowel formants from the wave equation. J. Acoust. Soc. Am. Express Letters, 122(1):EL1-EL7.
  9. Hirtum, A. V., Pelorson, X., and Estienne, O. (2011). Experimental validation of flow models for a rigid vocal tract replica. J. Acoust. Soc. Am., 130(4):2128-2138.
  10. Horác?ek, J., Uruba, V., Radolf, V., Veselý, J., and Bula, V. (2011). Airflow visualization in a model of human glottis near the self-oscillating vocal folds model. Applied and Computational Mechanics, 5:21-28.
  11. Lacis, U. (2012). Modelling air flow in larynx. Master's thesis, Umeå University.
  12. Lu, C., Nakai, T., and Suzuki, H. (1993). Finite element simulation of sound transmission in vocal tract. J. Acoust. Soc. Jpn. (E), 92:2577 - 2585.
  13. Lukkari, T. and Malinen, J. (2011). Webster's equation with curvature and dissipation. arXiv:1204.4075, 22 pp. + 5 pp. appendix.
  14. Materialise (2012). Mimics. http://biomedical. materialise.com/mimics. Accessed Nov. 7th, 2012.
  15. MeshLab (2012). Visual Computing Lab ISTI - CNR. http://meshlab.sourceforge.net/. Accessed Nov. 7th, 2012.
  16. Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China.
  17. Sachlos, E. and Czernuszka, J. T. (2003). Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 5:29-39; discussion 39-40.
  18. Story, B., Titze, I., and Hoffman, E. (1996). Vocal area functions from magnetic resonance imaging. J. Acoust. Soc. Am., 100(1):537-554.
  19. Takemoto, H., Mokhtari, P., and Kitamura, T. (2010). Acoustic analysis of the vocal tract during vowel productions by finite-difference time-domain method. J. Acoust. Soc. Am., 128(6):3724-3738.
  20. Vascular Modeling Toolkit (2012). http://www.vmtk.org. Accessed Nov. 7th, 2012.
  21. Vesom, G., Cahill, N. D., Gorelick, L., and Noble, J. A. (2008). Characterization of anatomical shape based on random walk hitting times. In In Proceedings of Mathematical Foundations of Computational Anatomy (MFCA 2008), New York.
  22. Šidlof, P., Horác?ek, J., and R? idký, V. (2012). Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds. Computers and Fluids. In press.
Download


Paper Citation


in Harvard Style

Aalto D., Helle J., Huhtala A., Kivelä A., Malinen J., Saunavaara J. and Ronkka T. (2013). Algorithmic Surface Extraction from MRI Data - Modelling the Human Vocal Tract . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 257-260. DOI: 10.5220/0004233302570260


in Bibtex Style

@conference{biodevices13,
author={D. Aalto and J. Helle and A. Huhtala and A. Kivelä and J. Malinen and J. Saunavaara and T. Ronkka},
title={Algorithmic Surface Extraction from MRI Data - Modelling the Human Vocal Tract},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={257-260},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004233302570260},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Algorithmic Surface Extraction from MRI Data - Modelling the Human Vocal Tract
SN - 978-989-8565-34-1
AU - Aalto D.
AU - Helle J.
AU - Huhtala A.
AU - Kivelä A.
AU - Malinen J.
AU - Saunavaara J.
AU - Ronkka T.
PY - 2013
SP - 257
EP - 260
DO - 10.5220/0004233302570260