Photon-pair Generation in Chalcogenide Glass - Role of Waveguide Linear Absorption

Nuno A. Silva, Armando N. Pinto

2014

Abstract

We investigate the impact of waveguide loss on the generation rate of quantum correlated photon-pairs through four-wave mixing in a chalcogenide glass fiber. The obtained results are valid even when the photon-pairs are generated in a medium with non-negligible loss, αL>> 1. The impact of the loss is quantified through the analysis of the true, total and accidental counting rates at waveguide output. We use the coincidence-to- accidental ratio (CAR) as a figure of merit of the photon-pair source. Results indicate that, the CAR parameter tends to decrease with the increase of the waveguide length, until L < 1/α. However, a continuous increase of the waveguide length tends to lead to an increase on the CAR value. In that non-negligible loss regime, αL>>1, we are able to observe a significant decrease on the value of all coincidence counting rates. Nevertheless, that decrease is even more pronounced on the accidental counting rate. Moreover, for waveguide length L = 10/α we are able to obtain a CAR of the order of 70, which is higher than the CAR value for the specific case of α = 0 with L = 2 cm, i.e. CAR=42. This indicates that the waveguide loss can improve the degree of quantum correlation between the photon-pairs.

References

  1. Agrawal, G. (2001). Nonlinear Fiber Optics. Academic Press, 3 edition.
  2. Castelletto, S. A. and Scholten, R. E. (2008). Heralded single photon sources: a route towards quantum communication technology and photon standards. The European Physical Journal Applied Physics, 41:181-194.
  3. Chen, J., Lee, K. F., Liang, C., and Kumar, P. (2006). Fiberbased telecom-band degenerate-frequency source of entangled photon pairs. Opt. Lett., 31(18):2798-2800.
  4. Clark, A. S., Collins, M. J., Judge, A. C., Mägi, E. C., Xiong, C., and Eggleton, B. J. (2012). Raman scattering effects on correlated photon-pair generation in chalcogenide. Opt. Express, 20:16807-16814.
  5. Eggleton, B., Vo, T., Pant, R., Schr, J., Pelusi, M., Yong Choi, D., Madden, S., and Luther-Davies, B. (2012). Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser & Photonics Reviews, 6:97-114.
  6. Fiorentino, M., Voss, P., Sharping, J., and Kumar, P. (2002). All-fiber photon-pair source for quantum communications. Photonics Technology Letters, IEEE, 14(7):983 -985.
  7. Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H. (2002). Quantum cryptography. Rev. Mod. Phys., 74(1):145- 195.
  8. Harada, K., Takesue, H., Fukuda, H., Tsuchizawa, T., Watanabe, T., Yamada, K., Tokura, Y., and Itabashi, S. (2010). Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide. Selected Topics in Quantum Electronics, IEEE Journal of, 16(1):325-331.
  9. He, J., Xiong, C., Clark, A. S., Collins, M. J., Gai, X., Choi, D.-Y., Madden, S. J., Luther-Davies, B., and Eggleton, B. J. (2012). Effect of low-raman window position on correlated photon-pair generation in a chalcogenide Ge11:5As24Se64:5 nanowire. Journal of Applied Physics, 112:123101.
  10. Lamont, M. R., Luther-Davies, B., Choi, D.-Y., Madden, S., and Eggleton, B. J. (2008). Supercontinuum generation in dispersion engineered highly nonlinear(g = 10 /w/m) As2S3 chalcogenide planar waveguide. Opt. Express, 16:14938-14944.
  11. Lin, Q., Yaman, F., and Agrawal, G. P. (2007). Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. Phys. Rev. A, 75(2):023803.
  12. Silva, N. and Pinto, A. (2013). Effects of losses and nonlinearities on the generation of polarization entangled photons. Lightwave Technology, Journal of, 31:1309- 1317.
  13. Silva, N. A. and Pinto, A. N. (2012). Role of absorption on the generation of quantum-correlated photon pairs through FWM. Quantum Electronics, IEEE Journal of, 48:1380 -1388.
  14. Ta'eed, V., Baker, N. J., Fu, L., Finsterbusch, K., Lamont, M. R. E., Moss, D. J., Nguyen, H. C., Eggleton, B. J., Choi, D.-Y., Madden, S., and Luther-Davies, B. (2007). Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express, 15:9205-9221.
  15. Voss, P. L., Kö prü lü , K. G., and Kumar, P. (2006). Ramannoise-induced quantum limits for c(3) nondegenerate phase-sensitive amplification and quadrature squeezing. J. Opt. Soc. Am. B, 23(4):598-610.
  16. Xiong, C., Helt, L. G., Judge, A. C., Marshall, G. D., Steel, M. J., Sipe, J. E., and Eggleton, B. J. (2010). Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. Opt. Express, 18(15):16206-16216.
  17. Xiong, C., Magi, E., Luan, F., Dekker, S., Sanghera, J., Shaw, L., Aggarwal, I., and Eggleton, B. (2009). Raman response in chalcogenide As2S3 fiber. In OptoElectronics and Communications Conference, 2009. OECC 2009. 14th, pages 1-2.
  18. Xiong, C., Marshall, G. D., Peruzzo, A., Lobino, M., Clark, A. S., Choi, D.-Y., Madden, S. J., Natarajan, C. M., Tanner, M. G., Hadfield, R. H., Dorenbos, S. N., Zijlstra, T., Zwiller, V., Thompson, M. G., Rarity, J. G., Steel, M. J., Luther-Davies, B., Eggleton, B. J., and O'Brien, J. L. (2011). Generation of correlated photon pairs in a chalcogenide As2S3 waveguide. Applied Physics Letters, 98(5):051101.
  19. Xiong, C., Monat, C., Collins, M., Tranchant, L., Petiteau, D., Clark, A., Grillet, C., Marshall, G., Steel, M., Li, J., O'Faolain, L., Krauss, T., and Eggleton, B. (2012). Characteristics of correlated photon pairs generated in ultracompact silicon slow-light photonic crystal waveguides. Selected Topics in Quantum Electronics, IEEE Journal of, 18(6):1676-1683.
  20. Yuan, Z.-S., Bao, X.-H., Lu, C.-Y., Zhang, J., Peng, C.-Z., and Pan, J.-W. (2010). Entangled photons and quantum communication. Physics Reports, 497:1 - 40.
Download


Paper Citation


in Harvard Style

A. Silva N. and N. Pinto A. (2014). Photon-pair Generation in Chalcogenide Glass - Role of Waveguide Linear Absorption . In Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-008-6, pages 5-10. DOI: 10.5220/0004651400050010


in Bibtex Style

@conference{photoptics14,
author={Nuno A. Silva and Armando N. Pinto},
title={Photon-pair Generation in Chalcogenide Glass - Role of Waveguide Linear Absorption},
booktitle={Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2014},
pages={5-10},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004651400050010},
isbn={978-989-758-008-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Photon-pair Generation in Chalcogenide Glass - Role of Waveguide Linear Absorption
SN - 978-989-758-008-6
AU - A. Silva N.
AU - N. Pinto A.
PY - 2014
SP - 5
EP - 10
DO - 10.5220/0004651400050010