Global Camera Parameterization for Bundle Adjustment

Čeněk Albl, Tomás Pajdla

2014

Abstract

Bundle adjustment is an important optimization technique in computer vision. It is a key part of Structure from Motion computation. An important problem in Bundle Adjustment is to choose a proper parameterization of cameras, especially their orientations. In this paper we propose a new parameterization of a perspective camera based on quaternions, with no redundancy in dimensionality and no constraints on the rotations. We conducted extensive experiments comparing this parameterization to four other widely used parameterizations. The proposed parameterization is non-redundant, global, and achieving the same performance in all investigated parameters. It is a viable and practical choice for Bundle Adjustment.

References

  1. Agarwal, S., Snavely, N., Seitz, S. M., and R. Szeliski, R. (2010). Bundle adjustment in the large. In ECCV (2), pages 29-42.
  2. Barfoot, T., Forbes, J. R., and Furgale, P. T. (2011). Pose estimation using linearized rotations and quaternion algebra. Acta Astronautica, 68:101 - 112.
  3. Byröd, M. and A° ström, K. (2010). Conjugate gradient bundle adjustment. In Proceedings of the 11th European conference on Computer vision: Part II, ECCV'10, pages 114-127, Berlin, Heidelberg. Springer-Verlag.
  4. Craig, J. (2005). Introduction to Robotics: Mechanics and Control. Addison-Wesley series in electrical and computer engineering: control engineering. Pearson Education, Incorporated.
  5. Crandall, D., Owens, A., and Snavely, N. (2011). Discretecontinuous optimization for large-scale structure from motion. IEEE Conference on Computer Vision and Pattern Recognition (2008), 286(26):3001-3008.
  6. Google (2012). Ceres solver.
  7. Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, second edition.
  8. Hazewinkel, M. (1987). Encyclopaedia of Mathematics (1). Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet ”Mathematical Encyclopaedia”. Springer.
  9. Heyden, A. and A°ström, K. (1997). Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. pages 438-443.
  10. Heyden, A. and A°ström, K. (1999). Flexible calibration: minimal cases for auto-calibration. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 1, pages 350-355 vol.1.
  11. Jeong, Y., Nister, D., Steedly, D., Szeliski, R., and Kweon, I.-S. (2010). Pushing the envelope of modern methods for bundle adjustment. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pages 1474- 1481.
  12. Konolige, K. (2010). Sparse sparse bundle adjustment. In British Machine Vision Conference, Aberystwyth, Wales.
  13. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A general framework for graph optimization. In IEEE International Conference on Robotics and Automation (ICRA).
  14. Lourakis, M. and Argyros, A. (2009). Sba: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software, 36:1-30.
  15. Microsoft (2008). Photosynth.
  16. Schmidt, J. and Niemann, H. (2001). Using quaternions for parametrizing 3-d rotations in unconstrained nonlinear optimization. In VISION, MODELING, AND VISUALIZATION 2001, pages 399-406. AKA/IOS Press.
  17. Shum, H., Ke, Q., and Zhang, Z. (1999). Efficient bundle adjustment with virtual key frames: a hierarchical approach to multi-frame structure from motion. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 2, pages -543 Vol. 2.
  18. Snavely, N. (2011). Bundler: Structure from motion (sfm) for unordered image collections. http://phototour.cs.washington.edu/bundler/.
  19. Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment - a modern synthesis. In Vision Algorithms: Theory and Practice, LNCS, pages 298-375. Springer Verlag.
  20. Wheeler, M. and Ikeuchi, K. (1995). Iterative estimation of rotation and translation using the quaternion.
Download


Paper Citation


in Harvard Style

Albl Č. and Pajdla T. (2014). Global Camera Parameterization for Bundle Adjustment . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 555-561. DOI: 10.5220/0004685505550561


in Bibtex Style

@conference{visapp14,
author={Čeněk Albl and Tomás Pajdla},
title={Global Camera Parameterization for Bundle Adjustment},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={555-561},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004685505550561},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Global Camera Parameterization for Bundle Adjustment
SN - 978-989-758-009-3
AU - Albl Č.
AU - Pajdla T.
PY - 2014
SP - 555
EP - 561
DO - 10.5220/0004685505550561