A Possibility of Fast Running of Tyrannosaurus rex by the Result of Evolutionary Computation

Yoshiyuki Usami

2014

Abstract

The author examined the effectiveness of the optimization strategy of evolutionary computation and the conventional simulated annealing method when studying the locomotor motion of bipedal animals. The simulated annealing method is known as a powerful tool for finding near-optimal solutions for combinatorial problems such as the NP-complete problem. However, the author found the evolutionary computational strategy more effective at finding near-optimal solutions of the running motion of bipedal animals. The author conducted extensive simulations of the running motion of the large, bipedal dinosaur Tyrannosaurus rex based on realistic, biological parameters. The author’s simulations found that T.rex could run quickly, up to 14 m/s, which is faster than the beings.

References

  1. Alexander, R. Mc. N., 1976. Estimates of speeds of dinosaurs. Nature 261: 129-130.
  2. Alexander, R. Mc. N. and Jayes, A. S., 1983. A dynamic similarity hypothesis for the gaits of quadrupedal mammals, J. Zool. 201: 135-152.
  3. Alexander, R. Mc. N., 1989. The Dynamics of Dinosaurs and Other Extinct Giants (Columbia University Press, New York).
  4. Alexander, R. Mc. N, 2006. Dinosaur biomechanics, Proc. Roy. Soc. B 273: 1849-1855.
  5. Bakker, R. T., 1986. Dinosaur Heresies (William Morrow, New York).
  6. Bates, K. T., Manning, P. L., Hodgetts, D. & Sellers, W. I. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling, PLoS ONE, (2009) 4 (2): e4532 doi:10.1371/journal.pone.0004532.
  7. Day, J. J., Norman, D. B., Upchurch, P. and Powell, H. P., 2002. Dinosaur locomotion from a new trackway, Nature 415: 494-495.
  8. Farlow, J. O., 1981. Estimates of dinosaur speeds from a new trackway site in Texas. Nature 294: 747-748.
  9. Fogel, L. J., 1995. The Valuated State Space Approach and Evolutionary Computation for Problem Solving,” In Computational Intelligence: A Dynamic System Perspective, edited by M Palaniswami, Y Attikiouzel, RJ Marks, D Fogel, and T Fukuda, IEEE Press, NY, pp. 129-136.
  10. Fraser, A. and Burnell, D., 1970. Computer Models in Genetics. New York: McGraw-Hill.
  11. Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley Professional. ISBN 978-0201157673.
  12. Gatesy, S. M., Baker, M. and Hutchinson, J. R., 2009. Constraint-Based Exclusion of Limb Poses for Reconstructing Theropod Dinosaur Locomotion. J. Vert. Paleo 29: 535-544.
  13. Hutchinson, J. R. and Garcia, M., 2002. Tyrannosaurus was not a fast runner. Nature 415: 1018-1021.
  14. Hutchinson, J. R., 2004. Biomechanical modeling and sensitivity analyis of bipedal running ability. II. Extinct taxa, J. Morph. 262: 441-461.
  15. Hutchinson, J. R., Anderson, F. C., Blemker, S. S. and Delp, S. L., 2005. Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a threedimensional musculoskeletal computer model: implications for stance, gait, and speed, Paleobiology 32: 676-701.
  16. Hutchinson, J. R. Ng-Thow-Hing, V. and Anderson, F. C. A 3D interactive method for estimating body segmental parameters in animals: Application to the turning and running performance of Tyrannosaurus rex, J. Theor. Bio., (2007) 246: 660-680.
  17. Hutchinson, J. R., Bates, K. T., Molnar, J., Allen, V. and Makovicky, P. J., 2011. Computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth, PlosOne 6: e26037(1-20).
  18. Holland, J., 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press. ISBN 978- 0262581110.
  19. Paul, G. S., 1988. Predatory Dinosaurs of the World (Simon & Schuster, New York).
  20. Usami, Y. and Kitaoka, M., 1997. Traveling salesman problem and statistical physics, Intern. J. Modern Phys., 11: 1519-1544.
  21. Usami, Y. and Kano, Y., 1995. New method of solving the traveling sales man problem based on real space renormalization theory, Phys. Rev. Lett., 75: 1683- 1686.
  22. Usami, Y., et al., Reconstruction of Extinct Animals in the Computer”, Artificial Life VI, (C. Adamis, et al., eds. MIT Press 1998). pp 173-177.
  23. Usami, Y., 2014. Biomechanics of bipedal dinosaur: How fast could Tyrannosaurus run? (to be published).
  24. Sellers, W. I., Manning, P. L., Lyson, T., Stevens, K. and Margetts, L., 2009. Virtual palaeontology: gait reconstruction of extinct vertebrates using high performance computing, Palaeontologia Electronica 12.3.13A: 1-14.
Download


Paper Citation


in Harvard Style

Usami Y. (2014). A Possibility of Fast Running of Tyrannosaurus rex by the Result of Evolutionary Computation . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 145-152. DOI: 10.5220/0005031701450152


in Bibtex Style

@conference{ecta14,
author={Yoshiyuki Usami},
title={A Possibility of Fast Running of Tyrannosaurus rex by the Result of Evolutionary Computation},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},
year={2014},
pages={145-152},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005031701450152},
isbn={978-989-758-052-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - A Possibility of Fast Running of Tyrannosaurus rex by the Result of Evolutionary Computation
SN - 978-989-758-052-9
AU - Usami Y.
PY - 2014
SP - 145
EP - 152
DO - 10.5220/0005031701450152