Multiple Biopotentials Acquisition System for Wearable Applications

Simone Benatti, B. Milosevic, Marco Tomasini, E. Farella, P. Schoenle, P. Bunjaku, G. Rovere, S. Fateh, Q. Huang, L. Benini

2015

Abstract

Wearable devices for monitoring vital signs such as heart-rate, respiratory rate and blood pressure are demonstrating to have an increasing role in improving quality of life and in allowing prevention for chronic cardiac diseases. However, the design of a wearable system without reference to ground potential requires multi-level strategies to remove noise caused from power lines. This paper describes a bio-potential acquisition embedded system designed with an innovative analog front-end, showing the performance in EEG and ECG applications and the comparison between different noise reduction algorithms. We demonstrate that the proposed system is able to acquire bio-potentials with a signal quality equivalent to state-of-the-art bench-top biomedical devices and can be therefore used for monitoring purpose, with the advantages of a low-cost low-power wearable devices.

References

  1. Anliker, U., Ward, J., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., Keita, F., Schenker, E., Catarsi, F., Coluccini, L., Belardinelli, A., Shklarski, D., Alon, M., Hirt, E., Schmid, R., and Vuskovic, M. (2004). AMON: a wearable multiparameter medical monitoring and alert system. Information Technology in Biomedicine, IEEE Transactions on, 8(4):415-427.
  2. Bazhyna, A., Christov, I., Gotchev, A., Daskalov, I., and Egiazarian, K. (2003). Powerline interference suppression in high-resolution ECG. In Computers in Cardiology, 2003, pages 561-564. IEEE.
  3. Benatti, S., Milosevic, B., Casamassima, F., Schonle, P., Bunjaku, P., Fateh, S., Huang, Q., and Benini, L. (2014). EMG-based hand gesture recognition with flexible analog front end. In proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS).
  4. Brown, L., van de Molengraft, J., Yazicioglu, R., Torfs, T., Penders, J., and Van Hoof, C. (2010). A low-power, wireless, 8-channel EEG monitoring headset. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages 4197-4200.
  5. Buxi, D., Berset, T., Hijdra, M., Tutelaers, M., Geng, D., Hulzink, J., van Noorloos, M., Romero, I., Torfs, T., and Van Helleputte, N. (2012). Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring. In Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE, pages 308- 311.
  6. Buzaki, G. (2006). Rhythms of the Brain. Oxford University press, London, 2nd edition.
  7. Casson, A., Yates, D., Smith, S., Duncan, J., and RodriguezVillegas, E. (2010). Wearable electroencephalography. Engineering in Medicine and Biology Magazine, IEEE, 29(3):44-56.
  8. Chen, X. and Wang, J. (2011). Design and implementation of a wearable, wireless EEG recording system. In Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on, pages 1-4.
  9. DeVaul, R., Sung, M., Gips, J., and Pentland, A. (2003). MIThril 2003: applications and architecture. In Wearable Computers, 2003. Proceedings. Seventh IEEE International Symposium on, pages 4-11.
  10. Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., and Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1):50.
  11. Moore, R. and Lopes, J. (1998). IFCN standards for digital recording of clinical EEG. the international federation of clinical neurophysiology. In Electroencephalogr Clin Neurophysiol Suppl. PubMED.
  12. Mundt, C., Montgomery, K., Udoh, U., Barker, V., Thonier, G., Tellier, A., Ricks, R., Darling, B., Cagle, Y., Cabrol, N., Ruoss, S., Swain, J., Hines, J., and Kovacs, G. (2005). A multiparameter wearable physiologic monitoring system for space and terrestrial applications. Information Technology in Biomedicine, IEEE Transactions on, 9(3):382-391.
  13. Nunez, P. and Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. Oxford University Press, London, 2nd edition.
  14. Omron R7 (2004). http://www.omron-healthcare.com/eu/ en/our-products/blood-pressure-monitoring/r7.
  15. Penders, J., van de Molengraft, J., Altini, M., Yazicioglu, F., and Van Hoof, C. (2011). A low-power wireless ECG necklace for reliable cardiac activity monitoring on-the-move. Proc. of the Intl. Conf. of the IEEE Engineering in Medicine and Biology Society.
  16. Philips MX40 (2011). http://www.usa.philips.com/healthcareproducts/HC862115/intellivue-mx40-wearablepatient-monitor.
  17. Schonle, P., Schulthess, F., Fateh, S., Ulrich, R., Huang, F., Burger, T., and Huang, Q. (2013). A DC-connectable multi-channel biomedical data acquisition ASIC with mains frequency cancellation. In ESSCIRC (ESSCIRC), 2013 Proceedings of the, pages 149-152.
  18. Serrano, Roberto E., e. a. (2003). Power line interference in ambulatory biopotential measurements. Proceedings of the 25th Annual International Conference of the IEEE, 4.
  19. Sullivan, T., Deiss, S., Jung, T.-P., and Cauwenberghs, G. (2008). A brain-machine interface using dry-contact, low-noise EEG sensors. In Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on.
  20. Vivago 8005 (2012). http://www.vivago.com/products-andservices/products/care-8005/.
  21. WHF(2012). http://www.world-heart-federation.org/cardio vascular-health/global-facts-map/.
  22. WHO (2012). http://www.who.int/mental health/neurology/ neurological disorders report web.pdf.
  23. Yazicioglu, R., Merken, P., Puers, R., and Van Hoof, C. (2008). A 200 uw eight-channel EEG acquisition ASIC for ambulatory EEG systems. Solid-State Circuits, IEEE Journal of, 43(12):3025-3038.
  24. Zivanovic, M. and González-Izal, M. (2013). Simultaneous powerline interference and baseline wander removal from ECG and EMG signals by sinusoidal modeling. Medical engineering & physics, 35(10):1431-1441.
Download


Paper Citation


in Harvard Style

Benatti S., Milosevic B., Tomasini M., Farella E., Schoenle P., Bunjaku P., Rovere G., Fateh S., Huang Q. and Benini L. (2015). Multiple Biopotentials Acquisition System for Wearable Applications . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: SmartMedDev, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 260-268. DOI: 10.5220/0005320302600268


in Bibtex Style

@conference{smartmeddev15,
author={Simone Benatti and B. Milosevic and Marco Tomasini and E. Farella and P. Schoenle and P. Bunjaku and G. Rovere and S. Fateh and Q. Huang and L. Benini},
title={Multiple Biopotentials Acquisition System for Wearable Applications},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: SmartMedDev, (BIOSTEC 2015)},
year={2015},
pages={260-268},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005320302600268},
isbn={978-989-758-071-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: SmartMedDev, (BIOSTEC 2015)
TI - Multiple Biopotentials Acquisition System for Wearable Applications
SN - 978-989-758-071-0
AU - Benatti S.
AU - Milosevic B.
AU - Tomasini M.
AU - Farella E.
AU - Schoenle P.
AU - Bunjaku P.
AU - Rovere G.
AU - Fateh S.
AU - Huang Q.
AU - Benini L.
PY - 2015
SP - 260
EP - 268
DO - 10.5220/0005320302600268