Impedance Control based Force-tracking Algorithm for Interaction Robotics Tasks: An Analytically Force Overshoots-free Approach

Loris Roveda, Federico Vicentini, Nicola Pedrocchi, Lorenzo Molinari Tosatti

2015

Abstract

In the presented paper an analytically force overshoots-free approach is described for the execution of robotics interaction tasks involving a compliant (of unknown geometrical and mechanical properties) environment. Based on the impedance control, the aim of the work is to perform force-tracking applications avoiding force overshoots that may result in task failures. The developed algorithm shapes the equivalent stiffness and damping of the closed-loop manipulator to regulate the interaction dynamics deforming the impedance control set-point. The force-tracking performance are obtained defining the control gains analytically based on the estimation of the interacting environment stiffness (performed using an Extended Kalman Filter). The method has been validated in a probing task, showing the avoidance of force overshoots and the achieved target dynamic performance.

References

  1. Albu-Schäffer, A., Ott, C., and Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research, 26(1):23-39.
  2. Colgate, E. and Hogan, N. (1989). An analysis of contact instability in terms of passive physical equivalents. In Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on, pages 404-409.
  3. Ferraguti, F., Secchi, C., and Fantuzzi, C. (2013). A tankbased approach to impedance control with variable stiffness. In Proceedings of the 2013 International Conference on Robotics and Automation (ICRA).
  4. Flügge, W. (1975). Viscoelasticity. Springer New York.
  5. Haykin, S. S. et al. (2001). Kalman filtering and neural networks. Wiley Online Library.
  6. Hogan, N. (1984). Impedance control: An approach to manipulation. In American Control Conference, 1984, pages 304-313.
  7. Ikeura, R. and Inooka, H. (1995). Variable impedance control of a robot for cooperation with a human. In Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on, volume 3, pages 3097-3102. IEEE.
  8. Jung, S., Hsia, T., and Bonitz, R. (2004). Force tracking impedance control of robot manipulators under unknown environment. Control Systems Technology, IEEE Transactions on, 12(3):474-483.
  9. Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. Robotics and Automation, IEEE Journal of, 3(1):43-53.
  10. Kugi, A., Ott, C., Albu-Schäffer, A., and Hirzinger, G. (2008). On the passivity-based impedance control of flexible joint robots. Robotics, IEEE Transactions on, 24(2):416-429.
  11. Lange, F., Bertleff, W., and Suppa, M. (2013). Force and trajectory control of industrial robots in stiff contact. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 2927-2934. IEEE.
  12. Lange, F., Jehle, C., Suppa, M., and Hirzinger, G. (2012). Revised force control using a compliant sensor with a position controlled robot. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 1532-1537. IEEE.
  13. Lee, K. and Buss, M. (2000). Force tracking impedance control with variable target stiffness. The Intern. Federation of Automatic Control, 16(1):6751-6756.
  14. Mason, M. T. (1981). Compliance and force control for computer controlled manipulators. Systems, Man and Cybernetics, IEEE Transactions on, 11(6):418-432.
  15. Oh, S., Woo, H., and Kong, K. (2014a). Frequency-shaped impedance control for safe human-robot interaction in reference tracking application.
  16. Oh, S., Woo, H., and Kong, K. (2014b). Stability and robustness analysis of frequency-shaped impedance control for reference tracking and compliant interaction. In World Congress, volume 19, pages 3557-3562.
  17. Ott, C., Mukherjee, R., and Nakamura, Y. (2010). Unified impedance and admittance control. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 554-561. IEEE.
  18. Raibert, M. and Craig, J. (1981). Hybrid position/force control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 103(2):126-133.
  19. Rethink (2012). 2015).
  20. Roveda, L., Vicentini, F., Pedrocchi, N., and Tosatti, Francesco Braghin, L. M. (2014). Impedance shaping controller for robotic applications in interaction with compliant environments. In International Conference on Informatics in Control (ICINCO).
  21. Roveda, L., Vicentini, F., and Tosatti, L. M. (2013). Deformation-tracking impedance control in interaction with uncertain environments. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 1992-1997. IEEE.
  22. Salisbury, J. K. (1980). Active stiffness control of a manipulator in cartesian coordinates. In Decision and Control including the Symposium on Adaptive Processes, 1980 19th IEEE Conference on, volume 19, pages 95-100.
  23. Seraji, H. and Colbaugh, R. (1993). Adaptive force-based impedance control. In Intelligent Robots and Systems' 93, IROS'93. Proceedings of the 1993 IEEE/RSJ International Conference on, volume 3, pages 1537-1544. IEEE.
  24. Seraji, H. and Colbaugh, R. (1997). Force tracking in impedance control. The International Journal of Robotics Research, 16(1):97-117.
  25. Villani, L., Canudas de Wit, C., and Brogliato, B. (1999). An exponentially stable adaptive control for force and position tracking of robot manipulators. Automatic Control, IEEE Transactions on, 44(4):798-802.
  26. Volpe, R. and Khosla, P. (1995). The equivalence of secondorder impedance control and proportional gain explicit force control. The International journal of robotics research, 14(6):574-589.
  27. Yang, C., Ganesh, G., Haddadin, S., Parusel, S., AlbuSchaeffer, A., and Burdet, E. (2011). Human-like adaptation of force and impedance in stable and unstable interactions. Robotics, IEEE Transactions on, 27(5):918- 930.
  28. Yoshikawa, T. (1987). Dynamic hybrid position/force control of robot manipulators-description of hand constraints and calculation of joint driving force. Robotics and Automation, IEEE Journal of, 3(5):386-392.
Download


Paper Citation


in Harvard Style

Roveda L., Vicentini F., Pedrocchi N. and Molinari Tosatti L. (2015). Impedance Control based Force-tracking Algorithm for Interaction Robotics Tasks: An Analytically Force Overshoots-free Approach . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-123-6, pages 386-391. DOI: 10.5220/0005565403860391


in Bibtex Style

@conference{icinco15,
author={Loris Roveda and Federico Vicentini and Nicola Pedrocchi and Lorenzo Molinari Tosatti},
title={Impedance Control based Force-tracking Algorithm for Interaction Robotics Tasks: An Analytically Force Overshoots-free Approach},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2015},
pages={386-391},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005565403860391},
isbn={978-989-758-123-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Impedance Control based Force-tracking Algorithm for Interaction Robotics Tasks: An Analytically Force Overshoots-free Approach
SN - 978-989-758-123-6
AU - Roveda L.
AU - Vicentini F.
AU - Pedrocchi N.
AU - Molinari Tosatti L.
PY - 2015
SP - 386
EP - 391
DO - 10.5220/0005565403860391