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Abstract:         This paper uses the concept of sliding-mode control (SMC), as a special approach in nonlinear control theory, 
in aiding the design of a fuzzy controller. The mathematical specifics of the presented approach are given 
along with its performance analysis. It was concluded that the new approach with distinctive characteristics 
holds potential for coping with difficult control problems for a class of complex (generally nonlinear) 
systems. 

 
1 INTRODUCTION 

In the previous literature, fuzzy control, especially 
adaptive and self-learning fuzzy control, has been 
successfully applied for complex nonlinear control 
problems (Driankov, Hellendoorn and Reinfrank, 
1993; Passino and Yurkovich, 1998; Wang, 1993; 
Hwang and Lin, 1992; Takagi and Sugeno, 1983, 
1985; Jang, 1992a, 1992b). One of the most 
attractive features of adaptive fuzzy control is that 
linguistic knowledge elicited from domain expert or 
available input-output data set can be conveniently 
incorporated into the design process of fuzzy 
controller.  

In a sliding-mode controller (SMC), the sliding 
region is generally a hyper-plane. In the simple case 
of 2-D, the sliding region is simply a line. Separated 
by this sliding line, control force is switched to its 
maximum at one side and minimum at another. In 
the theory of SMC, it is usually presumed that the 
SMC controller can switch from one extreme to 
another extreme arbitrarily fast. Based on this 
assumption, the trajectory can remain along this line 
once it reaches it. In practice, nevertheless, it is well 
known in SMC theory that the trajectory of the 
system always chatter around this sliding line, rather 
than sliding strictly along it (Hung, Gao and Hung, 
1993; Slotine and Li, 1991). Thus the output of the 
SMC controller alternates its sign along the switch 
line.  

The synergism of fuzzy control and SMC has 
also been a hot research topic (Palm, 1992; Palm, 
Driankov and Hellendoorn, 1996; Palm and Stutz, 
2003). One reason, from the perspective of the basic 
property of a control system—stability property, 
may be that the mathematically strict stability 
analysis for a fuzzy controller is hard to establish 
and guarantee in general cases, contrarily that for a 
sliding-mode controller can be well resolved. 
Another advantage offered by the SMC method 
includes its capability for decoupling high-
dimensional systems into a body of lower-
dimensional sub-systems to achieve the 
dimensionality reduction for a complex multi-input 
multi-output (MIMO) control system (Hung, Gao 
and Hung, 1993). This advantage may be beneficial 
for avoiding the curse of dimensionality inherent in 
a fuzzy inference system (FIS) even with moderately 
number of input variables (Jang, 1993; Chen and 
Tsao, 1989). 

In this paper, to improve the transient 
performance of fuzzy controller, the state-space of 
control system is partitioned into a number of local 
cells, across individual cell state-space the sliding 
hyper-plane of SMC controller within its cell is 
designed separately in an adaptive fashion. The 
paper is organized in the following way. Firstly 
some basics of SMC are briefly introduced. In 
section III, the detailed approach of adaptive sliding-
mode fuzzy control (ASMFC) is developed. Finally 
its performance and unique features are discussed. 
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2 BASICS OF SMC METHOD 

Let us consider a class of continuous-time nonlinear 
dynamical system which is feedback linearizable 
and of the canonical form: 
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where [ ]⋅f  is an unknown continuous function 
(generally nonlinear), b>0 is the controller gain, 
( ) ℜ∈tx is the system’s state variable, and 
( ) ( ) ℜ∈ℜ∈ tytu , are the input variable and output 

variable of the system, respectively. Our goal is to 
force the state vector of the system (1) (where the 
superscript τ denotes the vector transpose) 

( ) ( ) ( ) ( )( )[ ]τtxtxtx n 1,,, −= L&tx  
to follow a predefined reference trajectory 

( ) ( ) ( ) ( )( )[ ]τtxtxtx n
rrrr

1,,, −= L&tx . 
Define the tracking error vector as the difference 

between the actual states and desired states, i.e., 
             ( ) ( ) ( )ttt rxxe −=                                          (2) 
then the control problem can be formalized as: find a 
control law ( )tu  such that ( ) 0lim =

∞→
t

t
e . 

A candidate of such a control law is 
   ( ) ( )[ ] ( ) ( ) ( ) ( )twttxFtu n

r +++Θ−= emtx τ,              (3) 
where ( )tw  is an auxiliary control input to be 
determined, [ ]⋅F  is a proper function with 
sufficiently rich parameter set Θ  used to well 
approximate unknown function [ ]⋅f  in eqn. (1), i.e., 

fF ˆ=  may be implemented by an adaptive fuzzy 
model (Jang, 1992a; Jang, 1992b; Jang, 1993), and 

[ ]1,,, 1 L−= nn mmτm  is an properly chosen vector 
that controls the performance of the closed-loop 
system with the control law (3). With this control 
law, the resulting closed-loop system is a linear one 
as 
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                (4) 
Our suggested control approach is formulated as 

the following procedures: 
1. Use a parameterized adaptive fuzzy model to 

approximate [ ]⋅f , i.e., adaptively update the 
parameter vector of fuzzy model such that for 

( ) nℜ∈∀ tx and an upper bound of error 0>ε , 

         ( )[ ] ( )[ ] ., ε≤−Θ txtx fF                                  (5) 
2. Apply the SMC approach to design ( )tw  to 

guarantee the global stability property of the 
close-loop system. 

Using the standard SMC design approach, define 
an error measure below: 
        ( ) ( )( ) ( )( ) etentets nn ++−+= −− L21 )1( λλ         (6) 
where constant 0>λ . Then the equation ( ) 0=ts is 

called a switching surface in space nℜ on which 
( )te  approaches to zero exponentially, i.e., 

asymptotical tracking performance is achieved. 
For simplicity, introduce a kind of differential 

operator to express the above differential polynomial 
as 
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The control law in eqn. (3) guarantees the system 

state trajectory, whatever the initial condition may 
be, will approach and subsequently maintain on the 
sliding surface ( ) 0=ts , if the condition 

( ) ( ) ( )tststs η−≤⋅ &                                     (8) 
holds. Here η  is a positive constant, which restricts 
that the state trajectory hits the sliding surface in a 
finite time (Hung, Gao and Hung, 1993; Slotine and 
Li, 1991). Thus ( ) 0→te  exponentially with a time 
constant ( ) λ1−n . 

Taking 
[ ]λλλτ ,,)1(,,0 21 L−− −= nn nm                     (9) 

differentiating eqn. (6), and inserting eqn. (5) into it 
yield 

( ) ( )( ) ( )( )( ) ( )., twFfts +Θ−= txtx&                  (10) 
and 

( ) ( )( ) ( )( )( ) ( )[ ] ( ).sgn, stwFf
dt

tsd
+Θ−= txtx        (11) 

Then condition (8) always maintains if we choose 
             ( ) ( ) ( ).sgn stw ηε +−=                                (12) 

By substituting eqns. (9) and (11) into eqn. (3), 
eventually we have the control law 
( ) ( ) ( ) [ ] ( )
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(13) 
then the closed-loop system (4) can asymptotically 
track the reference state trajectory specified 
beforehand with guarantee of global stability 
property (Jang, 1992b). 
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3 CASE STUDY: A 2-D FEEDBACK 
LINEARIZYBLE NONLINEAR 
SYSTEM 

Consider a 2nd-order system described by state-
space equation 

( ) ( ) ( )[ ] )(, tbutxtxftx += &&&                                  (14) 
One feasible control law of SMC for 2nd-order 

system eqn. (14) may be chosen as: 
vsgku +⋅−= )(φ                                           (15) 

where v is an equivalent control used when the 
system state lies in the sliding mode, constant 0>k  
represents the maximum output of SMC controller. 
According to eqn. (6), the switching hyper-plane is 

.0=+= ees λ&                                                 (16) 
There are many ways to define )(sgφ  in eqn. (15) 

for different purposes. Three candidate functions for 
define )(sgφ  are given here: 
1. Sign function, i.e., 
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Introduction of the sign function )sgn(s often causes 
chattering problem for a SMC controller. One way 
to alleviate the problem is to use another nonlinear 
function below. 
2. Saturation function, i.e., 
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where φ  is a constant that determines the width of 
the boundary layer around the switching surface. 
In actuality, the control law resulting from this 
selection of )(sgφ  is a continuous approximation of 
the ideal relay control (Hung, Gao and Hung, 1993; 
Slotine and Li, 1991). Another possible variant is as 
follows. 
3. Hyperbolic tangent function, i.e., 

( ) )tanh(
φφ
ssg =                                                 (19) 

In all the above three cases, provided sufficiently 
large k, SMC controller of form (15) has been shown 
to be asymptotically stable (Hung, Gao and Hung, 
1993; Slotine and Li, 1991). 

For a 2-D system, the controller structure and the 
corresponding control surface are illustrated in 
Figure 1. 
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Figure 1: Three examples of SMC controllers in 2-D case. 

4 ADAPTIVE SLIDING-MODE 
FUZZY CONTROL (ASMFC) 

From the perspective of optimal control theory, 
SMC falls into the category of time sub-optimal 
control. As is well known in optimal control theory, 
the result of a time optimal control problem for a 
regulator with set-point input is a type of Bang-Bang 
control with respect to a nonlinear switching curve 
shown in Figure 2. Figure 2 also illustrates the 
control surface resulting from the nonlinear 
switching function. 

Since a fuzzy inference system (FIS) can 
integrate and coordinate different control algorithms 
in a seamless way by using fuzzy decision-making 
logic according to the available fuzzy knowledge 
and data base, we can directly incorporate the design 
conception of SMC into the development of a fuzzy 
controller without causing any undesirable effects. 
In Takagi-Sugeno-Kang (TSK) fuzzy model, the 
output of each fuzzy if-then rule is explicitly and 
generally expressed as a linear combination of 
controller inputs plus a constant term (Takagi and 
Sugeno, 1983; Takagi and Sugeno, 1985; Hoffmann 
and Nelles, 2001). 

In fact, the rule output can also be a more 
generally nonlinear function of the rule input 
variables. In this section, we express the output of 
each fuzzy rule, i.e., the control output when the 
states enter into a local cell space, a switching 
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function of state vector. In this way, we carefully 
design a new adaptive fuzzy controller by borrowing 
the notion of SMC, which actually leads to an 
adaptive sliding-mode fuzzy control approach 
presented in this short paper. In our approach, the 
parameters in the output of each fuzzy rule that 
covers different cell of state space are determined by 
different SMCs that operate over the corresponding 
cell state-space, whose concept was proposed by 
Chen and Tsao (1989).  

e
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sliding line 

trajectory
0

trajectory 

[state plane] 

 
Figure 2: Nonlinear switching curve and control surface. 

 
For the ASMFC controller, the error and the rate 

of error are taken as the its inputs. Its l-th fuzzy if-
then rule in the rule base takes the format of 

lR : if e  is lF1  and e&  is lF2 , 

  then )(
l

lll ceeksatu
φ
λ ++

=
&

                         (20) 

where lF1 and lF2  represent the linguistic label, i.e., 
input fuzzy set, which can be characterized by 
proper parameterized membership function defined 
over the corresponding universe of discourse.  

With only a small number of if-then rules, 
ASMFC can generate a complex nonlinear switching 
function, which is difficult to achieve by standard 
SMC method. Also note that the rule output in 
expression (20) need not to be a saturation function, 
it could be either a sign function or hyperbolic 
tangential function described before.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Fuzzification of error e  and its rate e& . 
 

In the case of a 2-D system, the switching line 
can be either a function of e , or a function of e& . In 
this case only a very small number of fuzzy rule 
patches are required to cover the switching function 
of single variable. Therefore in an ASMFC 
controller the number of if-then fuzzy rules is 
reduced to a reasonable and manageable amount and 
thus the curse of dimensionality arising from multi-
variable fuzzy controller can be avoided. 

To approximate the switching curve shown in 
Figure 2, we assign 3 linguistic labels (described by 
their own properly-parameterized membership 
functions) to input variable e  and e& , respectively. 
The fuzzification of e  and e&  is illustrated in Figure 
3, where symbols ‘ZO’, ’NS’, ’PS’ represent the 
corresponding linguistic terms ‘zero’, ‘negative 
small’, and ‘positive small’, respectively. In this 
case, we partition the universe of discourse of both 
input variables into 3 overlapping fuzzy subsets, and 
hence we have 9 fuzzy rules in the rule-base of 
fuzzy controller and the state space is partitioned 
into 9 localized cells. Extensive simulation 
experiments have demonstrated that the 9-rule base 
suffices to well approximate the desired switching 
curve. The control surface and sliding surface are 
shown in Figure 4. 
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Figure 4: Control surface and sliding surface for an 
ASMFC controller with only 9 fuzzy if-then rules. 

5 CONCLUSIONS 

In this short article an adaptive sliding mode fuzzy 
control approach is proposed with some analysis of 
its property for addressing nonlinear control 
problems. This approach combines the concept of a 
branch of nonlinear control theory, namely SMC, 
and that of a fuzzy inference system that can 
uniformly approximate any nonlinear function with 
arbitrary degree of accuracy. In this sense, global 
stability of the control system designed by this 
approach can be mathematically established (Jang, 
1992b; Hung, Gao and Hung, 1993; Slotine and Li, 
1991). Nevertheless, be aware that the presented 
approach seems only applicable to the class of 
nonlinear systems over which the feedback 
linearization technique can be performed. 
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