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Abstract: The novel Hessian-based pruning (HBP) technique to optimize the feed-forward (FF) neural network (NN) 
configuration in a dynamic manner is proposed. It is then used to optimize the extant NNC (Neural Network 
Controller) as the verification exercise. The NNC is designed for dynamic buffer tuning to eliminate buffer 
overflow at the user/server level. The HBP optimization process is also dynamic and operates as a renewal 
process within the service life expectancy of the target FF neural network. Every optimization renewal cycle 
works with the original NN configuration. In the cycle all the insignificant NN connections are marked and 
then skipped in the subsequent operation before the next optimization cycle starts. The marking and 
skipping operations together characterize the dynamic virtual pruning nature of the HBP. The interim 
optimized NN configuration produced by every HBP cycle is different, as the response to the current system 
dynamics. The verification results with the NNC indicate that the HBP technique is indeed effective because 
all the interim optimized/pruned NNC versions incessantly and consistently yield the same convergence 
precision to the original NNC predecessor, and with a shorter control cycle time. 

1 INTRODUCTION 

The novel Hessian-based pruning (HBP) technique 
proposed in this paper is for dynamic optimization 
of feed-forward neural network configurations. It 
operates as a renewal process within the life 
expectancy of the target neural network. In every 
renewal cycle all the weights of the arcs in the 
original NN configuration are re-computed. Then, 
the significance of the arcs/connections is sorted by 
the impact of the weight on the NN convergence 
accuracy. Those insignificant arcs are first identified 
and then skipped in the NN operation between two 
successive optimization cycles. The suite of 
activities: cyclic computation of arc weights, 
marking them, and skipping them is known as 
dynamic optimization (virtual pruning) in the HBP 
context. The HBP technique is verified with the 
NNC (Neural Network Controller) (Lin, 2003) with 
a FF configuration. The aim of the NNC is to 
provide dynamic buffer tuning (Ip, 2001, Wong, 

2002) that eliminates buffer overflow at the 
user/server level. The preliminary experimental data 
indicates that the interim optimized NNC (ONNC) 
versions never fail to perform with the same 
precision as the un-optimized NNC predecessor (Lin, 
2002) with a shorter control cycle time.  

2 RELATED WORK 

Using controllers to smoothen out industrial 
processes has a long and successful history. The 
traditional controllers usually combine the P 
(proportional), D (derivative) and I (integral) control 
elements in different ways. For example, the PID (i.e. 
“P+I+D”) controller is the most widely used in 
industry. The modern controllers involve soft 
computing techniques, such neural network, genetic 
algorithms, and fuzzy logic extensively. Therefore, 
industrial controllers can be hard-algorithmic models 
that base on mathematical models or 
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expert/intelligent mechanisms that adapt the control 
parameters dynamically at runtime. Recently the 
control techniques for industrial processes are being 
transferred and adapted for dynamic buffer tuning. 
The objective is to prevent buffer overflow in 
Internet TCP channels (Braden, 1998). The NNC is 
one of the expert controller models designed to 
eliminate buffer overflow at the user-level (Lin, 
2002, Wong, 2002). But, it has two distinctive 
shortcomings: 
a) It has a long control cycle time that would lead to 

deleterious effect, which means that by the time 
the corrective action is computed the actual 
problem to be rectified has already gone. 

b) It is difficult to decide when the NNC controller 
is sufficiently trained on-line.  

The NNC is a FF neural network that works by 
backpropagation and controls with the  
objective function. It consistently maintains the 
given  safety margin about the reference QOB  
ratio or QOB  (represented by the “0” in ).  
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The problem of the NNC real-life application is its 
long average control cycle time (CTC) of 10800 
clock/T cycles. The CTC is measured with the 
Intel’s VTune Performance Analyzer (Vtune). The 
neutral clock cycles can be converted into the 
physical time for any platform of interest. For 
example, if the NNC is running on a platform 
operating at  MHz, then the physical CTC 
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implying . The previous analysis (Lin, 
2002) indicates that the long CTC diminishes the 
chance of deploying the NNC for serious real-time 
applications, especially over the Internet. The 
control accuracy of the NNC, however, makes it 
worthwhile to optimize its configuration in a 
dynamic manner so that the  in operation is 
consistently reduced. For this reason the NNC is 
chosen as the test-bed for the novel HBP technique. 
The “HBP+NNC” combination is known as the 
Optimized NNC (ONNC) model. 
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3 THE HESSIAN-BASED 
PRUNING TECHNIQUE  

The HBP operation is based on dynamic sensitivity 
analysis. The rationale is to mark and inhibit/skip a 
FF neural network connection if the error/tolerance 
of the neural computation is insensitive to its 
presence. For the NNC the error/tolerance is the 

ed by “0” in th 2}∆  objective function. 
The core argument for t  technique is: “if a 
neural network converges toward a target function 
so will its derivatives (Gallant, 1992)”. In fact, the 
main difference among all the performance-learning 
laws identified from the literature (Hagan, 1996) is 
how they leverage the different parameters (e.g. 
weights and biases). The HBP adopts the Taylor 
Series (equation (3.1)) as the vehicle to differentiate 
the relative importance of the different neural 
network (NN) parameters. The meanings of the 
parameters in equation (3.1) are: F() - the function, 
w - the NN connection weight, ∆w – the change in w, 
∇F(w) - the gradient matrix, and ∇

∆±  band about th  reference, symbolically 

mark ,0{
he HBP

e RQOB

e 

2F(w) - the 
Hessian matrix.  The other symbols in the equations 
are: T for transpose, O for higher order term, n for 

the nth term, and 
1w∂

∂ for partial differentiation.  

 
F(w+∆w) = F(w) + ∇F(w)T∆w  

+
2
1
∆wT∇2F(w)∆w + O(||∆w ||3)+……(3.1) 
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The preliminary ONNC verification results confirm 
that the HBP performs as expected and concur with 
the previous experience. With the equation (3.1) the 
learning/training process should converge to the 

RQOB  reference, which is mathematically called 
the get global minimum surface. The convergence 
makes the gradient vector ∇F(w) insignificant and 
eliminates the “∇F(w)

tar

T ∆w” term from equation 
(3.1). This implies not only that the larger ordinal 
terms in equation (3.1) can be ignored but also a 
possible simpler form (equation (3.4)). Further 
simplification of equation (3.4) based on: 
∆F=F(w+∆w)-F(w), yields equation (3.5). 

F(w+∆w) = F(w) + 
2
1
∆wT∇2F(w)∆w…(3.4) 

∆F=
2
1
∆wT∇2F(w)∆w…(3.5) 

H ss is applied to the 
Learner immediately after it has completed training 
The BP optimization proce
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and before it swaps to be the Chief. The details 
involved are as follows: 
Use Taylor series (equation (3.1)) to identify the 
significant neural network parameters. 

tions. 

 its neural computation. 

ctions is 

Choose appropriate learning rates for the significant 
parameters to avoid convergence oscilla
Mark the synaptic weights that have insignificant 
impact on the Taylor series. 
After the Learner has become the Chief, it excludes 
all the marked connections in
The exclusion is represented by equation (3.6), and 
the net effect is the virtual pruning of the 
insignificant connections. In every optimization 
cycle within the service life of the target neural 
network the same skeletal FF configuration is 
always the basis for pruning, based on the 
Lagrangian index S (to be explained later). 
In the initial phase of the optimization cycle the 
importance of all the neural network conne
sorted by their weights. For example, for the NNC 
these weights represent the different degrees of 
impact on the convergence speed and accuracy. The 
fact that the HBP optimization is a renewal process 
makes it dynamic and adaptive.  
wi+∆wi=0…(3.6)

)()(
2 w wFS ∆= ∇

y equatio

1 2 wUTT ww +∆−∆ λ ii
…(3.7a) 

If ∆w in equation (3.5) is replaced b n (3.6), 
then the Lagrangian equation (3.7a) is formed. Now 
equation (3.1) is a typical constrained optimization 
problem. The symbols: U T

i
and λ in equation (3.7b) 

are the unit vector and the Lagrange multiplier 
respectively. The optim  change in the weight 
vector w

um
i (equation (3.6)) is shown in equation 

(3.7b). Every entry in wi associates with a unique 
Lagrangian index Si (equation (3.7c)). In the HBP 
optimization cycle the Si values are sorted so that the 
less significant wi (connection weight) is excluded 
from the operation. For the NNC twin system the 
exclusion/pruning starts from the lowest Si for the 
Learner and stops if the current exclusion affects the 
convergence process. Only after the pruning process 
has stopped that the Learner can become the Chief. 
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4 THE PRELIMINARY ONNC 
RESULTS 

Different ONNC optimization experiments were 
conducted. The preliminary verification results indicate 
that the HBP technique is indeed effective for pruning of 
the NNC configuration in the cyclical and dynamic 
manner. The skeletal configuration for the ONNC 
prototype is 10 input neurons, 20 neurons for the hidden 
layer, and one output neuron. This FF neural network 
configuration is fully connected, with 200 connections 
between the input layer and the hidden layer, and 20 
connections between the hidden layer and the output layer. 
Figure 1 compares the control output of the NNC, the 
ONNC and the algorithmic PID controller (Lin, 2002). 
The PID controller always prevents buffer overflow at the 
server level, and it is used here for comparative purpose 
with the same input data. The hidden layer in the ONNC 
has only 187 connections on average after the HBP 
optimization, instead of the original 220 in the skeletal 
configuration. That is, 33 of connections are 
skipped/pruned under the HBP control. The most 
important of all is that the experimental results in the 
verification exercise confirm that the interim ONNC 
versions always produce the same level of buffer overflow 
elimination efficacy as the un-optimized NNC, with 
shorter control cycle times. The ONNC, however, has a 
larger mean deviation (MD) than the un-optimized NNC, 
with MD defined as: kQOBMD

k
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i ⎥
⎦

⎤
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⎣
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−∆= ∑

=1

|| . The average 

ONNC control cycle time is only 9250 clock pulses 
compared to the 10800 for the up-optimized predecessor.  
 

 
Figure 1: A NNC optimization/pruning experimental result 
 …(3.7c) 
For comparative purposes, Table 1 summarizes the 
average amount of buffer size adjustment (in ratio) 
for two actual cases: “Case 1” and “Case 2” by four 
different controllers designed for dynamic buffer 
tuning. The input traffic to these controllers are the 
same, and the adjustment size in ratio is calculated 
with respect to the current buffer size, which is taken 
as 1 or 100%. For example, the mean PID 
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adjustment change/size in “Case 1” is 0.14 or 14% 
for either the buffer elongation or the shrinkage 
operation. That is, the average amplitude of dynamic 
buffer tuning for “Case 1” is 0.28 or 28%. The 
traffic pattern of the TCP channel during the “Case 
1” experiment is heavy-tailed, as confirmed by the 
Selfis Tool (Karagiannis, 2003). The pattern for 
“Case 2” is random because the mean m of the 
distribution for the traffic trace is approximately 
equal to its standard deviation δ  (i.e. δ≈m ). 
 
Table 1: A summary of the average buffer adjustment size 

and amplitude 

  
PID (Ip, 
2001) ONNC 

FLC 
(Lin, 2003) 

GAC 
(Wong, 
2002) 

 
Traffic 
pattern 

C a s e  1  –  me a n 
ad jus tment  s i ze 0.140 0.0265 0.0267 0.0299

Heavy-
tailed 
(i.e. 

LRD) 

(mean adjustment 
a m p l i t u d e ) 

≈ ≈0.28
4 

0.05
3 ≈ 0.053 ≈ 0.06

 

C a s e  2  –  me a n 
ad jus tment  s i ze 0.1373 0.0293 0.0296 0.0324

Random

Mean adjustment 
size (in ratio) for 
20 different study 
c a s e s 0.139 0.0279 0.0282 0.0311

 

Mean adjustment 
amplitude (in ratio) 
f o r  a b o v e  2 0 
d i f f e r e n t  c a s e s 

≈ 0.27
7 

≈ 0.05
6 ≈ 0.056 

≈ 0.06
2 

 

5  CONCLUSION 

The HBP technique is proposed for dynamic cyclical 
optimization of FF neural network configurations 
(e.g. the NNC). The optimization is, in effect, virtual 
pruning of the insignificant NN connections. With 
the NNC every HBP optimization cycle starts with 
the same skeletal configuration. The experimental 
results show that the interim ONNC versions always 
have a shorter control cycle time. The ONNC model 
is actually the “HBP+NNC” combination. The 
verification results indicate that the average ONNC 
control cycle time is 14.3 percent less than that of 
the un-optimized NNC predecessor. In the 
optimization process the connections of the NNC are 
evaluated and those have insignificant impact on the 
dynamic buffer tuning process are marked and 
virtually pruned. The pruning process is logical or 
virtual because it does not physically remove the 
connections but excludes them in the neural 
computation only. The HBP is applied solely to the 
stage when Learner has just completed training and 
before it swaps to assume the role as the Chief.  
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