
MAP-MATCHING OF RADAR IMAGES AND ELECTRONIC 
CHARTS USING THE HAUSDORFF DISTANCE 

Tzu C. Shen and Andrés R. Guesalaga 
Department of Electrical Engineering, Catholic University of Chile, 4860 Vicuna Mackenna,  

Casilla 306-22, Santiago, Chile 

Keywords: Map-matching, pattern recognition, radar calibration 

Abstract: This paper describes a new method of image pattern recognition based on the Hausdorff Distance. The 
technique looks for similarities between a given pattern and its possible representations within an image. 
This method performs satisfactorily when confronted to image perturbations or partial occlusions. An 
extension of the classical Hausdorff Distance technique chooses the best candidate among multiple sub-
optimal solutions. The search strategy is based on the Branch and Bounds algorithm, where cells with low 
probability of containing the optimal solution are pruned, while feasible cells are divided again until the 
optimal solution is found. By using this strategy, exhaustive and no-informative searches are avoided among 
the possible combinations, reducing the processing time considerably. A case study is presented, where the 
proposed method is applied to calibration of surveillance radars using hydrographic charts as models for the 
radar echo images. 

1 INTRODUCTION 

It has been suggested that approximately 8%-10% of 
vessels are now fitted with some form of electronic 
chart systems (ECS) (Bailey, 2001). Furthermore a 
standardization in chart formatting has been 
observed in the last decades, where the International 
Hydrographic Organisation has played a major role 
developing the S57 standard for digital hydrographic 
data transfer (IHO, 2000). 

The integration of ECS and radar scan images is 
becoming a must in navigation consoles and it can 
be used for purposes other than navigation. In this 
paper, the use of integrated imagery obtained from 
navigation radars and ECS is addressed by 
proposing an automatic map-matching technique to 
estimate biases of radars and remove them from 
range and bearing measurements. The aim of such 
technique is to improve the accuracy of these 
monitoring system, i.e. navigation, target 
designation and surveillance among others. 

This tool can be particularly useful for track-to-
track association procedures and track fusion (Hall 
and Garga, 1999), where multiple sensors 
interchange information of radar contacts but each 
with deviations caused by factors such as difference 
in sampling periods, sensor noise and distortions 
caused by biases in range and bearing 

measurements. It is mandatory for such systems to 
reduce these kind of errors to a minimum, so a 
simple technique to perform periodic calibrations of 
these biases would be welcomed.  

In modern navigation systems, an additional 
problem arises due to the vulnerability of GPS to 
spoofing or satellite denial. This is a matter of 
particular concern in countries that do not conform 
the military elite (Taylor, 2003). 

Previous work in map-matching has been 
reported in the literature, mainly for airborne 
systems. In a previous work (Wilson et al, 1995), a 
discrete relaxation technique is used for registering 
incomplete radar images acquired from synthetic 
aperture radars. They use a maximum-likelihood 
technique to match Doppler beam  sharpened images 
to digital maps of rural terrain. Although these 
techniques are related to the scope of this paper, they 
differ in that the data is a sequence of non-
overlapping radar sweeps interspersed with 
substantial dead-regions. Furthermore, the 
application does not require precise calibration of 
the radar in terms of range and bearing offsets, and 
the problem of distorted regions is not an issue. A 
novel technique based on the extended Kalman filter 
has been recently proposed to estimate these offsets 
(Guesalaga, 2003). By defining at least two 
corresponding points from the radar image and the 
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electronic chart, the technique provides a rapid and 
accurate calibration in range and bearing, giving also 
estimates for the ship’s speed, heading, latitude and 
longitude. It does not require GPS nor speed 
information from the ship log unit. The method, 
however, relies on the operator to detect and select 
the corresponding points between the electronic 
chart and the radar image. This is a major 
disadvantage, since he has to disregard other more 
important functions, is prone to introduce significant 
errors and his performance can be affected by 
fatigue.  

The main objective of this work is the 
development of a pattern recognition algorithm to 
detect similarities between the radar measurements 
and the model, represented by the electronic chart. 
This will allow to find the corresponding points 
between the two sets of data automatically.  
The nature of the reference set (electronic charts) 
restricts the possible approaches to techniques based 
on models. Among them, some well-established 
methods are those based on correspondences 
(Anandan, 1989), correlation (Brock-Gunn and Ellis, 
1992) and exact methods (Fredriksson et al, 2002). 
There are other less popular techniques based on 
previous knowledge of the domain (Worral et al, 
1991), heuristics (Yuille et al, 1992) or contextual 
(Prokopowicz, 1994). 

Most of these methods do not perform 
satisfactorily for the problem stated, because objects 
can be totally or partially occluded or they can have 
important distortions due to the polar nature of the 
measurement (radar scans). Exact techniques or 
those that rely on rigid or previously known models 
for search, have to be discarded. These restrictions 
are liberated in correspondence techniques that are 
based on the Hausdorff Distance (Sim and Park, 
2001). Furthermore, the problem of semi-occluded 
objects and distortions are solved via extensions of 
the latter technique, i.e. the so called Partial 
Hausdorff Distance (Rucklidge, 1977) and the 
extensions to the algorithm proposed in the 
following sections.  

1.1 The Hausdorff Distance (HD) 

This technique is based on an rather “loose” 
approach of looking for similar objects, instead of 
trying to correlate pair of points in two images. By 
taking two sets of points, one being the model and 
the other the real image, the HD between them is 
small when every point in one of the sets is near to 
some point in the other image. 

Figure 1 shows a geometric representation of the 
HD when used for pattern recognition. Here sets A 

and B are the model and real image respectively and 
by rotating and translating the model, a satisfactory 
matching is obtained.  

 

Figure 1: Geometric representation of the HD, before and 
after transformation 

 
Given two sets with a finite number of points, 

},...,,{ 21 paaaA = and },...,,{ 21 qaaaB = , the 
Hausdorff Distance between A and B is: 
 
          H(A,B) = max(h(A,B),h(B,A))        (1) 
 
where, 
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h(A,B)  is called the standard Hausdorff Distance 
between sets A and B. The algorithm sorts the points 
in A according to its distance to the nearest point in 
B and selects the largest as the result.  

For instance, if  h(A,B)=h, then every point in A 
is at most at a distance h of a point in B, and the 
point   (with distance h), is the point with the largest 
deviation. Figure 2 exemplifies the above concept 
for sets A and B, each containing two and three 
points respectively. It is important to note that this 
index is in most cases asymmetric respect to its 
inverse, i.e. h(A,B) ≠  h(B,A).  

1.2 Voronoi surface 

In practical applications, comparing only two sets of 
data is not enough, since although the reference 
pattern can be clearly defined, there are multiple 
candidates Bi that can be similar to the model A. In 
order to reduce the number of calculations, the 

a) before b) after  
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concept of Distance Transformation (Borgefors, 
1986) is introduced. Here, set A is pre-processed to 
an intermediate state called the Voronoi matrix V 
(Huttenlocher et al, 1992), for a subsequent 
matching of the latter matrix with the different 
candidates Bi. By doing so, set A is processed only 
once. 

From equations (1) and (2), HD can be written as: 
 
        )('),(),( bdmaxadmaxmaxBAH

BbAa ∈∈
=   (3) 

 
where   
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Figure 2: Standard Hausdorff Distance,  h(A,B) 

The function }|)(,{)( 2Rxxdxxd ∈=  is called 
the Voronoi Surface, and allows to perform the 
Distance Transformation by filling the points of V 
with the value dmax obtained from matrix A. A 
detailed description of the algorithm can be found in 
(Rucklidge, 1997). 

1.3 Modifications to the algorithm 

Some modifications to the previous algorithm had to 
be necessary for applications where sets A and B are 
not identical. This is normally caused by occlusions, 
measurement noise and image distortions caused by 
the technique used the image acquisition. The latter 
is particularly valid for radar images where the 
measured set is obtained in polar co-ordinates, so 
errors in range will cause a shrinkage or enlargement 
of the objects. Sometimes these differences can be 
also introduced in the intermediate stages such as 
edge detection, expansion, rotation, translation and 
others. To reduce the impact of these error sources, 
some further steps are introduced in the method and 

they are briefly described in the following 
paragraphs. 
 
Partial Hausdorff Distance 
The above mentioned sources of error will generate 
some false-positive points with a distance 
significantly larger that the one of any true-positive 
point. In order to eliminate the negative impact of 
those points on the HD calculation, the method 
chooses the jth distance instead of the largest one. 
The rejection of the largest values can imply loosing 
information, however, the effect is negligible when 
considering the whole sets A and B, and the 
improvement in the robustness of the method is 
significant. 
Mathematically:  
 

nKforbaminKBAh
Bb

j
Aa

K ≤≤−=
∈∈

1,),(      (5) 
 
where j

Aa
K
∈

 is the jth farthest distance between the 
points in  A  and those in B, and n is the number of 
points in B.  
For convenience, the number of points in the 
remaining set is defined in terms of a ratio of the 
total set, i.e. 10,* ≤≤= kandnkK . 
 
Handling Multiple Solutions 
When searching for the candidate that gives the best 
HD, several subsets Bi with similar values may 
appear. In these cases, some additional processing 
stages must be included in the procedure. These 
intermediate stages are: 
 
Inverse Hausdorff Distance (Rucklidge, 1997) 
Taking advantage of the asymmetric nature of the 
HD, in certain cases it is possible to reject false-
positives by interchanging the roles of A and B, i.e. 
h(B,A) is computed. False-positives will tend to give 
significantly higher values that that of a real 
solution, so they can be identified and eliminated. 
Figure 3 shows an example of a false-positive. 
 
The least HD average 
When two or more candidates with similar values 
for h(A, Bi) are found, an effective criteria to select 
the best set is by looking at their HD average. This 
implies that in the set chosen, more points in the 
image will resemble the model. 
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Figure 3: A false-positive case 

1.4 The Searching Strategy 

The search for the optimal solution is based on the 
application of a large number of transformations on 
the image. Some possible transformations or at least 
those of interest for our application are: translation 
(Cartesian displacement), rotation (angle) and 
enlargement (radial distance). The optimal solution 
would be the result of an image transformation of 
the three types of transformations listed above, 
applied over one of the sets, which gives the highest 
similarity between sets A and B. The number of 
transformations required in order to test all possible 
combinations would be prohibitive in terms of 
processing time if no additional information is 
provided to the searching procedure. Although it is 
not in the scope of this work, several searching 
techniques were tested, and the Branch and Bound 
method as described in (Breuel, 2003) was selected.  

1.5 Edge Detection 

In order to reduce the processing time further, 
images are segmented by applying an edge detector. 
The method used is the standard Sobel gradient as 
described  by Gonzales and Woods (1993). 

2 APPLICATION TO RADAR 
CALIBRATION 

The aim of this application is to calibrate a maritime 
radar by eliminating biases in bearing and range. 
Electronic Chart are used to map-match the radar 

images obtained with a navigation radar. The 
matching is made by looking for the optimal 
combination of basic transformations produced by 
translation, rotation and range offset. 

Due to the vulnerability of GPS systems and their 
induced errors (when selective availability is turned 
off), its used is not considered here, so estimation of 
Latitude an Longitude is also carried out. 

A novel method to estimate and correct these 
errors using the Extended Kalman Filter is described 
in the literature (Guesalaga, 2003). The method 
requires that the search for correspondences between 
the model (chart) and image (radar scan) must be 
made manually, i.e. the operator has to click over the 
corresponding points. This makes the method 
unattractive, so the purpose of this work is to 
provide a technique to find these correlations 
automatically, without the intervention from the 
operator.  

2.1 Transformation model 

Measurement points can be numerous and sparse. In 
fact, the larger the number of correspondence points 
the better the estimation accuracy. The same occurs 
with the separation of these correspondences, i.e. 
correspondence pairs covering 360 degrees and 
stretching along the full distance range should be 
sought. The transformation model used to match sets 
A and B is based in a reference system given in polar 
co-ordinates (due to the nature of the radar scanning) 
and the actual transformations produce non-rigid 
displacements of the objects in the image, so their 
shape is distorted.  

For a given point in the radar image, the 
measuring model is: 
 

ppiriip neeeRc ++++= )cos()( θθ  
qqiriiq neesineRc ++++= )()( θθ    (6) 

 
where iR and iθ are the polar co-ordinates of the 
point ci whose origin is given by the ship co-
ordinates ep and eq. Zero-mean  Gaussian noise np 
and nq are added to account for the errors in 
measuring correspondences in the radar scan image 
and they can be influenced by clutter, occlusions or 
broad radar pulses. 

As figure 4 shows, iR and iθ define each of the 
correspondence pairs. Variables re  and θe , in turn, 
are common to all points selected for matching and 
they describe the errors in measurements caused by 
biases in range and bearing respectively. The 
orientation variable θe  describes the rotation that 
suffers the radar image due to disturbances such as 
misalignments in the position sensors of the antenna 
(encoders, synchros, etc.), antenna boresight and the  

a) model b) image 

c) multiple solutions 
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azimuth error generated by the local level reference 
frame. 

Notice the difference between point ic , from the 
radar echo and the one from the chart iĉ . 
In order to show the behaviour of the HD technique, 
an example was carried out with radar data collected 
from a navigation console. An area of 163 x 170 
pixels is processed (see figure 5.a) where the grey 
zone is the radar echo and the brighter lines 
correspond to the electronic chart. A notorious miss-
match exists between both sets of data. Figure 5.b 
shows the hydrographic data and figure 5.c the 
segmented radar image after applying the edge 
detector. Finally, figure 5.d shows the matching of 
the two sets after applying the optimal 
transformation found by the method. 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.a) Zone of interest: radar image and electronic chart 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.b) Electronic chart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.c) Segmented radar image using edge detector 
 
 
 

p 

q
translation
(ep,eq) 

initial position (0,0)

Figure 4: Transformation model.

north radar 
echo 
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5.d) Final matching 

Figure 5: The different stages in the method 

Table 1 contains the values for the optimum 
transformation. The value found for the Partial 
Hausdorff Distance is 11 pixels for k=90%, i.e. 
every point in the radar image considered in the 
calculations is at most, at a distance of 11 pixels 
from its corresponding point in the electronic chart. 
 

Table 1: Optimum transformation values 
 

re  5.0 pixels 

θe  3.0 degrees 

ep 17.0 pixels 

eq -2.0 pixels 

 
Table 2 shows the improvements obtained in the 

matching. Ho corresponds to the HD before the 
optimum transformation has been applied. H is the 
HD when the modified version of the algorithm is 
applied. Notice the significant improvement 
obtained in the number of points existing in the 
range from 0 to 5 pixels (increase of 135%). The HD 
is also reduced significantly (38%) and the HD 
average drops by 45%. 

Figure 6 shows a distribution graph for the points 
with correspondences. The curve for the initial HD 
(Ho, crosses marks) contains less points in the left 
side of the graphic than the modified HD proposed 
in this paper (H, circle marks). 
 
 
 
 
 
 
 
 

Table 2: Comparison of initial situation (Ho) and after 
transformation (H)  

 
 Initial (Ho) Final (H) 
d = 0 pixels 16 points 38 points 
d = 1 pixel 21 points 66 points 
d = 2 pixels 21 points 56 points 
d = 3 pixels 21 points 41 points 
d = 4 pixels 16 points 37 points 
d = 5 pixels 21 points 35 points 
d ≤ 5 pixels 116 points 273 points 
HD (k=90%) 18 pixels 11 pixels 
HD average 11.24 pixels 6.10 pixels 

 
The example shown above must be accompanied 

by at least one other zone of search for 
correspondence in order to achieve observability 
when estimating radar biases (Guesalaga, 2003). In 
this test, three zones are used. 

Figure 7 shows the initial situation for the 
complete scan of the radar. A miss-match between 
the radar image and chart is clearly caused not only 
by linear translations but also by rotation, and a less 
evident range deformation. After applying the 
estimation technique described in this paper for the 
three zones shown in the figure, which in turn feed 
the Extended Kalman Filter described in Guesalaga 
(2003) for a sequence of 50 radar scans, the 
optimum transformation is found and the result is 
presented in figure 8. 
 
 

 
 

 

 

 

 
 

Figure 6: Hausdorff Distance distribution of corresponding 
points 

 

Distribution of 
corresponding points 

distance [pixels]
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Figure 7: Initial situation 

 

 
 

Figure 8: Final matching after optimum transformation 
 
 

3 CONCLUSIONS 

An extended version of the Hausdorff Distance 
algorithm has been successfully applied to map-
matching of radar images and electronic charts. 
The method allows to correlate radar images and 
hydrographic charts automatically in  order to detect 
calibration errors in radar surveillance systems and 
correct them accordingly. 

Several modifications have been introduced to the 
standard HD algorithm showing an excellent 
performance in terms of reductions in HD and 
greater number of corresponding points in the model 
being closer to their equivalent points in the image 
set. Indices such as the actual HD, its average and 
the number of points at distances of less than 5 
pixels, showed significant improvements of over 
30%, making the proposed technique a very 
attractive tool for the problem of radar calibration 
and map-matching. 

A critical parameter that needs to be tuned is the 
k ratio, which shortens the sorted list of points in the 
original image in order to reject false-positive 
points. This action showed to improve the matching 
substantially and the reduction in the total data to be 
processed showed no negative impact on the results. 
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