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Abstract:  This paper focuses on the development and implementation of an intelligent hierarchical controller for the 
vibration control of a deployable manipulator. The emphasis is on the use of knowledge-based tuning of the 
low-level controller so as to improve the performance of the system. To this end, first a fuzzy inference 
system (FIS) is developed. The FIS is then combined with a conventional modal controller to construct a 
hierarchical control system. Specifically, a knowledge-based fuzzy system is used to tune the parameters of 
the modal controller. The effectiveness of the hierarchical control system is investigated through numerical 
simulation studies. Examples are considered where the system experiences vibrations due to initial 
disturbance at the flexible revolute joint or due to maneuvers of a deployable manipulator. The results show 
that the knowledge-based hierarchical control system is quite effective in suppressing vibrations induced 
due to the above mentioned disturbances. Results suggest that performance of the modal controller could be 
significantly improved through knowledge-based tuning. 

1 INTRODUCTION 

Among the fundamental developments in the 
modern control theory are the two sets of analytical 
results that underlie the linear quadratic regulator 
(LQR) and eigenstructure assignment regulator 
(EAR). Design and implementation of practical 
control of flexible structures have been 
accomplished using both the design techniques 
(Junkins, 1993). In the LQR approach, the central 
feature is the minimization of a quadratic 
performance index, subject to a linearized system 
model. However, a major drawback of the LQR is 
that it has no direct control of the system 
eigenstructure, which determines not only the level 
of stability but also the specific nature of the 
response to a control input (e.g., a step function). 
The LQR method does not involve the assignment of 
the system eigenstructure in a specified manner. 
Consequently, it is desirable to employ a control 
strategy that has the capability to modify the system 
eigenstructure appropriately to meet specified 
requirements. Such a control approach would prove 
more effective if the capability of the parameter 
tuning is available as well. To this end, a modal 
control strategy is introduced here. An intelligent 
control system, which combines a modal controller 
and a fuzzy tuning structure, is developed to 

‘intelligently’ assign the system eigenstructure so as 
to obtain better performance of the controller in 
terms of response speed, overshoot, and steady state 
offset. Simulation studies have been carried out 
using this intelligent control system to suppress 
vibrations of a ground-based deployable 
manipulator. The approach may be conveniently 
applied to a space-based manipulator as well. 

2 CONTROL SYSTEM 
DEVELOPMENT 

2.1 Eigenvalue Assignment  

A linear system may be expressed in the state-space 
form as 

L L L= +x Ax Bu& ,                                           (1) 

where the time-dependent state vector Lx contains 
generalized coordinates and their first time 
derivatives of the system. The square matrix A is 
composed of the matrices of mass, damping and 
stiffness. The term B Lu (t) represents the effect of a 
control action, with Lu (t) and B being the control 
force (torque) vector and actuator placement matrix, 
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respectively. As is normally the case in such studies, 
all states are assumed to be available thus making 
the system observable. By introducing state 
feedback, the control input uL can be written as 

L L= −u Kx .                                                     (2) 
Thus one obtains a closed loop system 

( - )L L=x A BK x& .                                           (3) 
In Equation (3), matrix -A BK  decides the 

modal parameters of the closed loop system, such as 
the modal frequencies, damping ratios and mode 
shapes. A relation exists, between the modal 
parameters of the system and the eigen-parameters 
of matrix A-BK, as eigen-parameters decide the 
controlled behavior of the closed loop system 
(Nishitani,1998), Equation (3). To obtain the relation 
explicitly, it is useful to define some notations. 
Assuming A-BK to be a matrix of real-numbers, the 
eigenvalues and eigenvectors of A-BK appear as 
conjugate pairs. Let  2 1iλ −  and 2iλ  be the ith pair of 

eigenvalues, and 2 1i−z  and 2iz be the corresponding 

ith pair of eigenvectors. Also let ,  i iω ζ  and ni 
denote, respectively, the modal frequency, damping 
ratio and mode shape of the ith mode. Then we have: 
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                      for i = 1 to n ,                    (4) 
where j = 1− , and n is the number of degrees of 
freedom of the system.  

Equation (4) gives a one-to-one mapping 
between the system modal parameters and the eigen-
parameters of matrix A-BK. Therefore, if the modal 
parameters , i  and i iω ζ n  are specified in the 
domain, one can calculate the corresponding 
eigenvalues and eigenvectors for the closed loop 
system using Equation (4). Moreover, according to 
Equation (3), if one can modify and assign the 
eigenstructure at desired values by selecting proper 
feedback matrix K, the modal property of the system 
can be modified accordingly. This is the essence of 
the modal control procedure. It is also the reason 
why modal control is also called eigenvalue 
assignment control. 

2.2 Hierarchical Structure 

The control system developed for the deployable 
manipulator system has a three-level structure. This 
hierarchical form combines the advantages of a crisp 
controller, i.e. a modal controller, with those of a 
soft, knowledge-based, supervisory controller. The 
overall structure can be developed into three main 
layers (de Silva, 1995). 
Bottom Layer 

The bottom layer deals with information coming 
from sensors attached to the system. This type of 
information is characterized by a large amount of 
high resolution data points produced and collected at 
high frequency. The crisp controller used is a state 
feedback regulator with feedback gain matrix 
determined using the eigenstructure assignment 
approach. The control algorithm can be described as: 

;
-  ;

= +
=
x Ax Bu
u Kx
&

                                              (5) 

where u is the control action and K the feedback 
matrix. 
Intermediate Layer 

The data processing for monitoring and 
evaluation of the system performance occurs in the 
intermediate layer. Here high-resolution, crisp data 
from sensors are filtered to allow  representation of 
the current state of the manipulator. This servo-
expert layer acts as an interface between the crisp 
controller, which regulates the servomotors at the 
bottom layer, and the knowledge-based controller at 
the top layer. The intermediate layer handles such 
tasks as performance specification, response 
processing, and computation of performance indices. 
This stage involves, for example, averaging or 
filtering of the data points, and computation of the 
rise time, overshoot, and steady state offset. 
Top Layer 

The knowledge base and the inference engine in 
the uppermost layer are used to make decisions that 
achieve the overall control objective, particularly by 
improving the performance of low-level direct 
control. This layer can serve such functions as 
monitoring the performance of the overall system, 
assessment of the quality of operation, tuning of the 
low-level controllers, and general supervisory 
control. In this layer, there is a high degree of 
information fuzziness and a relatively low control 
bandwidth. Figure 1 presents the hierarchical 
structure of the three-level control system.
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2.3 Performance Specification, 

Evaluation, and Classification 

The desired performance of the system is specified 
in terms of the following time domain parameters: 

• Rise time (  ); dRST
• Overshoot, if underdamped ( ); dOVS
• Offset at steady state ( ). dOFS

These three parameters are used to present the 
desired performance of the system. The rise-time is 
chosen as the time it takes for the response to reach 
95% of the desired steady-state response. The 
overshoot is calculated at the first peak of the 
response. The steady-state offset is computed by 
taking the difference between the average of the last 
third of the response and the desired response. 

The corresponding time domain parameters are 
obtained from the response of the actual system, 
with the subscript r referring to the real system 
response as: , , and . Once 
evaluated, the parameters of the real system are 
compared with the desired ones to get the index of 
deviation. For each performance attribute, an index 
of deviation is calculated using the following 
equation, 

rRST rOVS rOFS

     Index of deviation of attribute = 1  −     thi
 
 

th

th

i desired attribute
i actual attribute

                                       (6) 

The index is defined in such a way that the value of 
1 corresponds to the worst-case performance, while 
zero means the actual performance of the system, for 
that particular attribute, exactly meets the 
specification. The indices are calculated according 
to: 

1 (d
i

r

RST
RST ERR

RST
= − = 1) ;                             (7) 

1 d
i

r

OVS
OVS ERR

OVS
= − = (2) ;                          (8) 

1 d
i

r

OFS
OFS ERR

OFS
= − = (3) .                           (9) 

These indices represent the performance of the 
system and hence should correspond to the context 
of the rulebase of system tuning. The index of 
deviation is therefore fuzzified into membership 
values according to the five selected primary fuzzy 
states: Highly Unsatisfactory (HIUN), Needs 
Improvement (NDIM), Acceptable (ACCP), In 
Specification (INSP) and Over Specification 
(OVSP). In order to obtain a discrete set of 
performance indices K(i), threshold values TH(i) are 
defined for each index of deviation over the interval 
-∞  to 1, as given in Table 1.  
 
Table 1: Mapping from the index of deviation to a discrete 

performance index 

The performance indices obtained in this 
manner are the input to a Fuzzy Inference System 
(FIS) which tunes the modal frequencies and 
damping ratios of the closed-loop system. The 
output from FIS is the tuning action that is used to 
update modal frequencies and modal damping ratios 

Discrete 
Performance 
Index K(i) 

Index of Deviation 

5 ERR(i) < 0 
4 0 < ERR(i)  TH(1) ≤
3 TH(1) ≤  ERR(i) TH(2) ≤
2 TH(2)  ERR(i)  TH(3) ≤ ≤
1 TH(3) ≤  ERR(i) ≤  1 

Information 
Abstraction

Intelligent 
Supervisor

K+ −

r u

Bottom Layer 

Intermediate 
Layer 

Top Layer 

Response 

Direct 
Controller 

Manipulator 

Figure 1: Schematic representation of the three-level controller. 
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of the closed-loop system. Therefore, closed-loop 
poles can be modified correspondingly.    

2.4 Fuzzy Tuner Layer 

At the highest level of the hierarchical structure, 
there is a knowledge base for tuning a crisp 
controller. This knowledge may originate from 
human experts or some form of archives, and is 
expressed as linguistic rules containing fuzzy terms. 
For each  status  (context)  of  the system, a 
conceptual abstraction is computed, and the expert 
knowledge is transformed into a mathematical form 
by the use of the fuzzy set theory and fuzzy logic 
operations. A Fuzzy Inference System (FIS) has 
been built using the Matlab Toolbox to this end. To 
construct the system, one must first assign a 
membership function to each of the performance 
indices and tuning parameters. Then the knowledge 
base should be created. Taking performance indices 
as the input, Fuzzy Inference System carries out 
such tasks as fuzzification of the performance 
indices, operations of the fuzzy set, and defuzzifying 
of the tuning actions. The output of the FIS is a crisp 
tuning action corresponding to numerical context 
values of the system condition. 

The tuned parameters are chosen to be the 
modal frequencies and modal damping ratios. As 
mentioned before, eigenstructure of the closed loop 
system plays a key role in determining the system 
performance. Required performance can be achieved 
by properly assigning the system eigenstructure. 
There are relationships between system 
eigenstructure and system modal parameters 
(Equation 4). They provide a way to modify the 
eigenstructure by tuning modal frequencies and 
modal damping ratios. These modal parameters are 
physically meaningful and hence chosen as the tuned 
parameters. 

If iω  and iζ  represent the  modal 
frequency and damping ratio, respectively, the 
relationship between modal parameters and system 
eigenstructure is given by Equation (4). At each 
tuning step, the values of 

thi

iω  and iζ  are updated 
according to the tuning actions obtained from the 
Fuzzy Inference System (FIS). Once updated, the 
new values of parameters iω  and iζ  are used to 
determine the new desired eigrnstructure of the 
system. Relations used for updating niω  and iζ  are: 

;

;/

/

new old
i i i is
new old
i i i ise

ω ω ω ω

ζ ζ ζ ζ

= + ∆

= + ∆
en

n

                             (10) 

where the subscript ‘new’ denotes the updated value 
and ‘old’ refers to the previous value. The 
incremental action taken by the fuzzy controller is 
denoted by iω∆  and iζ∆ . Parameters isenω  and 

isenζ  are introduced to adjust sensitivity of tuning, 
when needed. 

2.5 Construction of Fuzzy Inference 
System 

The expert tuning knowledge for a modal controller 
may utilize heuristics such as those given in Table 2. 
One may define the primary fuzzy sets for the 
performance indices for each context variable (i.e., 
RST,  OVS, and OFS) as given in Table 3. Fuzzy 
tuning variables are defined as follows: 
DFREQi = Change in the  modal frequency; thi
DDAMPi = Change in the modal damping ratio. thi
Each tuning variable may be expressed with fuzzy 
sets and representative numerical values that are 
listed in Table 4. The rulebase for control parameter 
tuning is given in Figure 2. 
 

Table 2: Heuristics of modal control tuning. 

 

Actions for Performance 
Improvement 

Context 
Modal 

Frequency 
niω  

Modal 
Damping 
Ratio iζ  

Rise Time (RST) Increase Decrease 
Overshoot (OVS) ------ Increase 

Offset (OFS) Increase Decrease 

Table 3:   Fuzzy labels of performance indices 

 

Context Fuzzy Set Perform. 
Index Notation Fuzzy Value 

1 HIUN Highly Unsatisfactory 
2 NDIM Needs Improvement 
3 ACCP Acceptable 
4 INSP In Specification 
5 OVSP Over-Specification 

Triangular membership functions for the 
performance attributes RST, OVS, OFS and for the 
fuzzy tuning actions DFREQ i , DDAMP i  are given 
in Figure 3 and Figure 4, respectively. Each fuzzy 
action or condition quantity has a representative 
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value, which is assigned a membership grade equal 
to unity. The decreasing membership grade around 
that representative value introduces a degree of 
fuzziness.  

 
Table 4: Tuning fuzzy sets and representative numerical 

values 
Tuning Fuzzy Set 

Notation Fuzzy Value 
Integer 
Value 

PL Positive Large 3 
PM Positive Moderate 2 
PS Positive Small 1 
ZR Zero 0 
NS Negative Small -1 
NM Negative Moderate -2 
NL Negative Large -3 

3 GROUND-BASED SIMULATION 

3.1 Modeling of a Ground-Based 
Manipulator System 

The ground-based manipulator system considered 
for fuzzy tuning modal control is shown in Figure 5. 
The system consists of a single module manipulator 
carrying a point-mass payload held by the end 
effector. The module has two rigid links. The first 
link undergoes slewing motion through a flexible 
revolute joint. The other link can be deployed and 
retrieved by the rigid prismatic joint. The motion of 

the manipulator is confined to the horizontal plane, 
i.e. the gravity effects are not present. 

The revolute joint is considered flexible. It is 
modeled by a linear torsional spring, with stiffness 
K,  that connects the rotor of the servomotor to the 
slewing link. The angular motion of the rotor with 
respect to stator is denoted byα . The angular 
deformation of the torsional spring is given by β . 
Thus θ α β= +  is the total angular displacement of 
the slewing link. 

3.2  Control System and Simulation 
Results 

As mentioned before, the hierarchical structure used 
combines the advantages of a crisp modal controller 
with those of a soft, knowledge-based, supervisory 
controller. The three layers of the structure 
implement such tasks as collection of information 
coming from sensors, data processing and 
information abstraction, as well as general 
supervisory control.  

This hierarchical control system is used to 
suppress the vibrations of the manipulator system 
described in Figure 5. The effectiveness of the 
control system is assessed by studying suppression 
of vibrations caused by different disturbances. In the 
first two cases, the initial disturbances at the flexible 
joint of the manipulator are considered. The length 
of the module may be specified at a fixed value 
through the Lagrange multiplier. Therefore, the 
subsystem considered for control simulation has two 

Figure 2:  Rulebase for the control parameter tuning.
 

      If  RST is HIUN,     then DFREQ i  is PL,  DDAMP i  is NM, 
or   If  RST is NDIM,     then DFREQ i  is PM,  DDAMP i  is NS, 
or   If  RST is ACCP,     then DFREQ i  is PM,  DDAMP i  is ZR, 
or   If  RST is INSP,       then DFREQ i  is ZR,  DDAMP i  is ZR, 
or   If  RST is OVSP,      then DFREQ i  is NS,  DDAMP i  is ZR, 
or   If  OVS is HUIN,     then DFREQ i  is NM,  DDAMP i  is PL, 
or   If  OVS is NDIM,     then DFREQ i  is NS,  DDAMP i  is PM, 
or   If  OVS is ACCP,     then DFREQ i  is ZR,  DDAMP i  is PS, 
or   If  OVS is INSP,      then DFREQ i  is ZR,  DDAMP i  is ZR, 
or   If  OVS is OVSP,     then DFREQ i  is PS,  DDAMP i  is NS, 
or   If  OFS is HIUN,     then DFREQ i  is PM,  DDAMP i  is NS, 
or   If  OFS is NDIM,     then DFREQ i  is PS,  DDAMP i  is NS, 
or   If  OFS is ACCP,    then DFREQ i  is ZR,  DDAMP i  is NS, 
or   If  OFS is INSP,      then DFREQ i  is ZR,  DDAMP i  is ZR, 
or   If  OFS is OVSP,     then DFREQ i  is NS,  DDAMP i  is ZR, 
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degrees of freedom, with , , ,α β α β&& as the system 
state variables. The parameters for the first 
simulation case are given in Figure 6. 

The initial feedback control gain is determined 
using the Linear Quadratic Regulator (LQR). Based 
on this, tuning action takes place. The tuning process 
involves analysis of the response to an initial 
disturbance listed in Figure 7, with respect to the 
performance requirements of rise time, overshoot, 
and steady-state error. The feedback gain matrix is 
updated by the supervisory controller accordingly.   

Figure 7(a) shows the system response when 
controlled using the LQR strategy. The initial 
displacement (= 2°) of the torsional spring at the 
revolute joint results in vibrations at α and β . The 
suppression of the vibrations can be observed due to 
the application of the LQR controller. As can be 
seen, the convergence speed is slow in this case, and 
significant vibration remains after 10 seconds. 
Figure 7(b) shows the results after fuzzy tuning is 
applied. It can be observed that the convergence 
speed is much faster compared to that in the LQR 

controlled case. Within 4 seconds, the vibrations in 
each degree of freedom are eliminated. Further 
more, the peak amplitudes of the vibrations are 
sign

hnique (FLT). The desired profiles 
are described as 

ificantly reduced. 
In the above case, the response of a ground-

based deployable manipulator, experiencing 
vibrations due to the initial disturbance at the 
revolute joint, was studied. To further evaluate the 
effectiveness of the hierarchical control system, a 
case of simultaneous 30° slew and 0.5 m deployment 
in 10 seconds was considered. Now the slew motion 
at the revolute joint and deployment at the prismatic 
joint are controlled using the nonlinear Feedback 
Linearization Tec

2( ) sin
2

s
s

τ πτ τ τ
τ π τ
⎧ ⎫∆ ∆ ⎛ ⎞= −⎨ ⎬⎜ ⎟∆ ∆⎝ ⎠

q
q ,                 (11) 

whe of coo
⎩ ⎭

re sq  is the specified set rdinates ( , lα ); 

s∆q  is its desired variation ( , lα∆ ∆ ); τ is the time; 
and ∆τ is the time required for the maneuver.   

NL NM NS ZR PS PM PL 

0 1 2 3 -3 -2 -1 

1 

Figure 4: Membership functions for the fuzzy 
tuning actions 

Membership 
Grade 

Tuning 
Action1 0 2 3 4 5 

1 
HIUN NDIM ACCP INSP OVSP 

Figure 3:  Membership functions for the fuzzy 
performance attributes 

Membership 
Grade 

Performance 
Attribute 

Figure 5: Configuration of the single-module manipulator with 
revolute and prismatic joints 
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As can be expected, the large scale motions at 
both revolute and prismatic joints would result in 
vibration at the revolute joint, and this would persist 
if damping is not present in the system. This 
suggests a need for active control to suppress the 
maneuver-induced vibration. To that end, two 
control approaches are considered: the LQR and 
Tuned Modal Control. They are applied after the 
FLT- regulated maneuver is completed. Figure 8 (a) 
shows the system response when controlled by the 
combined FLT/LQR procedure. The rigid degrees of 
freedom are regulated very well within the first 10 
seconds by the FLT. After that, the LQR is applied 
to suppress the maneuver-induced vibrations at the 
flexible revolute joint. It is apparent that the LQR is 
effective but its convergence speed is slow. Figure 8 
(b) shows the system response when the 
combination of the FLT and Tuned Modal Control is 
employed. To obtain faster convergence speed, 
tuning action is carried out based on the LQR 
feedback gain matrix. It can be seen from Figure 8 
(b) that, after a few tuning steps, much faster 
convergence speed is achieved. The vibrations at the 
flexible revolute joint are quickly eliminated right 
after completion of the maneuver, without any 
oscillations. Therefore, the developed knowledge-
based tuning system is quite effective in improving 
the controller performance in presence of 
maneuvers. It should be pointed out that, by 
changing weight matrix of the LQR, a faster 
response than that shown in Figure 8 (a) may be 
achievable. However it is still significant to evaluate 

the effectiveness of the ‘intelligent’ tuning system in 
improving the controller performance. 

4 CONCLUDING REMARKS 

In this paper, a knowledge-based hierarchical control 
system was developed for the vibration control of a 
manipulator system. For this purpose, first a fuzzy 
inference system (FIS) was established. The FIS was 
then combined with a crisp modal controller to 
construct a hierarchical control system.  

The effectiveness of the hierarchical control 
system was investigated through two simulation 
cases. In the first case, the system was experiencing 
vibration due to an initial disturbance at the revolute 
joint. The second case considered a system going 
through a simultaneous slew and deployment 
maneuver. The results showed that the knowledge-
based tuning system developed here was quite 
effective. It was found that the performance of a 
modal controller for a manipulator could be 
significantly improved through knowledge-based 
tuning.  On this basis one might conclude that 
additional tuning of the controller parameters could 
significantly improve the performance of a modal 
controller in general. 

  
 System Parameters 
 
 Slewing link: 
   = 1.0 m 1l
   = 2.0 kg 1m
 Deployable link: 
   = 1.0 m 2l
   = 2.0 kg 2m
 Payload: 
   = 3.0 kg pm
 Joint stiffness: 
  K = 80 Nm/rad 
 Rotor inertia: 
  J = 2 kg- 2m  

Specified Coordinates 
 
l = 1.5 m 
(i.e., length is held fixed.) 
 
Initial Conditions
 

(0) 0α = , ; (0) 2β = o

(0) (0) 0.α β= =&&  

α  

β  

ox

oy  

l 

Figure 6: Parameters for the ground-based simulation. 
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Figure 7: System response to an initial displacement at the revolute joint:  
(a) controlled by LQR; (b) controlled by hierarchical controller. 
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Figure 8:   System response while going through a maneuver: 
(a) controlled by the FLT/LQR;  
(b) controlled by the FLT/Tuned Modal Control. 
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