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Abstract: Studying complex propagation phenomena is usually performed through cellular simulation models. 
Usually cellular models are specific cellular automata developed by non-computer specialists. We attempt 
to present here a mathematical specification of a new kind of CA. The latter allows to soundly specify 
cellular models using a discrete time base, avoiding basic CA limitations (infinite lattice, neighborhood and 
rules uniformity of the cells, closure of the system to external events, static structure, etc.). Object-oriented 
techniques and discrete event simulation are used to achieve this goal. The approach is validated through a 
fire spreading application. 

1 INTRODUCTION 

When modeling real systems, scientists cut off 
pieces of a biggest system: the world surrounding us. 
Global understanding of that world necessitates 
connecting all these pieces (or subsystems), 
referencing some of them in space. When the whole 
system is complex, the only way to study its 
dynamics is simulation. 

Propagation phenomena as fire, swelling, gas 
propagation, (…) are complex systems. Studying 
these phenomena generally leads to divide the 
propagation space in cells, thus defining a cellular 
system. 

Developed from the General Systems Theory 
(Mesarovic and Takahara, 1975), the Discrete Event 
Structure Specification (DEVS) formalism (Zeigler 
et al., 2000) offers a theoretical framework to map 
systems specifications into most classes of 
simulation models (differential equations, 
asynchronous cellular automata, etc.). For each 

model class, one DEVS sub-formalism will allow to 
faithfully specify one simulation model. As 
specification of complex systems often needs to 
grasp different kinds of simulation models, 
connections between the models can be performed 
using DEVS multi-formalism concepts.  

Another DEVS advantage relates to its ability in 
providing discrete event simulation techniques, thus 
enabling to concentrate the simulation on active 
components and resulting in performance 
improvements. 

Precise and sound definition of propagation 
needs to use models from physics as Partial 
Differential Equations (PDEs). These equations are 
then discretized leading to discrete time simulation 
models. These models are generally simulated from 
scientists by using specific Cellular Automata (CA). 
As defined in (Wolfram, 1994), standard CA consist 
of an infinite lattice of discrete identical sites, each 
site taking on a finite site of, for instance, integer 
values. The values of the sites evolve in discrete 
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time steps according to deterministic rules that 
specify the value of each site in terms of the values 
of neighboring sites. CA may thus be considered as 
discrete idealizations of PDEs. CA are models where 
space, time and states are discrete (Jen, 1990).  

However, definition of basic CA is too limited to 
specify complicated simulations (infinite lattice, 
neighborhood and rules uniformity of the cells, 
closure of the system to external events, discrete 
state of the cells, etc.). Scientists often need to 
modify CA’s structure for simulation purposes 
(Worsch, 1999). 

We extend here basic CA capabilities by using 
object-oriented techniques and discrete event 
simulation (Hill, 1996). A mathematical 
specification of the approach is defined using the 
Dynamic Structure Discrete Time System 
Specification (DSDTSS) formalism (Barros, 1997). 
This formalism allows dynamically changing the 
structure of discrete time systems during the 
simulation. These new CA are called the Dynamic 
Structure Cellular Automata (DSCA). 

DSCA have been introduced in (Barros and 
Mendes, 1997) as a formal approach allowing to 
dynamically change network structures of 
asynchronous CA. Using an asynchronous time 
base, cells were dynamically instantiated or 
destroyed during a fire spread simulation. 

The scope here is to extend basic CA capabilities 
using a discrete time base. If previous DSCA were 
dedicated to discrete event cellular system 
specification, we extend here the DSCA definition to 
discrete time cellular system specification.  

Table 1 sums up the advantages of the DSCA in 
relation to basic CA. In DSCA, each cell can contain 
different behaviors, neighborhoods and state 
variables. Rules and neighborhoods of the cells can 
dynamically change during the simulation. Each cell 
can receive external events. During the simulation, 
the computing of state changes is limited to active. 
Finally, a global transition function allows the 
specification of the DSCA global behaviors. 

Table 1: DSCA extensions 

 Basic CA DSCA 

Time discrete Discrete 
Space discrete Discrete 
State discrete Continuous 

Closure to 
external events 

- + 

Different 
variables per 

cell 
- + 

Rules 
uniformity* 

- + 

Neighborhood 
uniformity* 

- + 

Activity 
tracking* - + 

Global function - + 
     *at simulation time 
 
The DSCA definition is validated against a fire 

spreading application. Recent forest fires in Europe 
(Portugal, France and Corsica) and in the United 
States (California) unfortunately pinpoint the 
necessity of increasing research efforts in this 
domain. Fires are economical, ecological and human 
catastrophes. Especially as we know that present 
rising of wild land surfaces and climate warming 
will increase forest fires. 

Modeling such a huge and complex phenomenon 
obviously leads to simulation performance 
overloadings and design problems. 
Simulation model reusability has to face to the 
complicated aspects of both model implementations 
and model modifications. Despite a large number of 
cells, simulation has to respect real time deadlines to 
predict actual fire propagations. Hence, this kind of 
simulation application provides a powerful 
validation to our work. 

This study is organized as follows. First some 
formalisms background is provided. Then two 
sections present the DSCA modeling and simulation 
principles. After, simulation results of a fire 
spreading application are provided. Finally, we 
conclude and make some prospects. 

2 BACKGROUND 

A formalism is a mathematical description of a 
system allowing to guide a modeler in the 
specification task. The more a formalism fits to a 
system class, the more simple and accurate it will be.  

Efficiently modeling complex systems often 
implies the need to define subsystems using different 
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formalisms. Connections between the different 
formalisms can then be achieved through a multi-
formalism to perform the whole system 
specification. 

In this study, subsystems are specified using 
DEVS, DTSS (Discrete Time System Specification) 
and DSDTSS formalisms. Connections between the 
different models are achieved using a Multi-
formalism Network (MFN). A structure description 
of each model is provided hereafter. 
A DEVS atomic model is a structure:  
 

DEVS = (X, Y, Q, q0, δint, δext, λ, ta) 
 
where X is the input events set, Q is the set of state, 
q0 is the initial state, Y is the output events set, δint:  
Q  Q is the internal transition function, δext: Q×X 

 Q is the external transition function, λ : Q  Y 
the output function,  ta is the time advance function.  
 
DSDTSS basic models are DTSS atomic model: 
 

DTSS = (X, Y, Q, q0,δ, λ, h) 
 

where X, Y are the input and output sets, Q is the 
set of state, q0 is the initial state,  δ : Q×X  Q is 
the state transition function,  λ : Q  Y is the 
output function (considering a Moore machine) and 
h is a constant time advance. 
 At a periodic rate, this model checks its inputs 
and, based on its state information, produces an 
output and changes its internal state. 

 
The network of simple DTSS models is referred 

to as a Dynamic Structure Discrete Time Network 
(DSDTN) (Barros, 1997). We introduce here input 
and output sets to allow connections with the 
network. Formally, a DSDTN is a 4-tuple:  

DSDTN = (XDSDTN,YDSDTN,χ, Mχ) 
 

where XDSDTN  is the network input values set, YDSDTN  
is the network input values set, χ is the name of the 
DSDTN executive, Mχ is the model of the executive 

χ. 
  
 The model of the executive is a modified DTSS 
defined by the 8-tuple: 

Mχ = (Xχ,Qχ, q0,χ, Yχ, γ, Σ*, δχ, λχ ) 
 

where γ : Qχ  Σ* is the structure function, and Σ* is 
the set of network structures. The transition function 
δχ computes the executive state qχ. The network 
executive structure Σ, at the state qχ ∈ Qχ is given by 
Σ =  γ (qχ) = (D, {Mi}, {Ii}, {Zi,j}), for all i ∈ D, Mi = 

(Xi, Qi, q0,i, Yi, δi, λi  ), where D is the set of model 
references,  Ii is the set of influencers of model i, and 
Zi,j is the i to j translation function. 

 
Because the network coupling information is 

located in the state of the executive, transition 
functions can change this state and, in consequence, 
change the structure of the network. Changes in 
structure include changes in model interconnections, 
changes in system definition, and the addition or 
deletion of system models. 

Formally, a multiformalism network (Zeigler et 
al., 2000) is defined by the 7-tuple: 

MFN = (XMFN,YMFN, D, {Mi}, {Ii}, {Zi,j},select) 
 

where XMFN=Xdiscr×Xcont  is the network input values 
set, Xdiscr and Xcont  are discrete and continuous input 
sets, YMFN=Ydiscr×Ycont is the network input values 
set, Ydiscr and Ycont  are discrete and continuous output 
sets, D is the set of model references, 

 
For each i ∈ D, 

 Mi is are DEVS, DEVN, DTSN, DTSS, 
DESS, DEV&DESS or other MFN models. 
As DSDTSS proved to be closed under 
coupling, Mi can also be dynamic structure 
models or networks, 

Ii is the set of influencers of model i,  
Zi,j is the i to j translation function, 
select is the tie-breaking function. 

3 DSCA MODELLING 

Models composing a DSCA are specified here using 
the previous model definitions. As described in the 
modeling part of Figure 1, external events are 
simulated using a DEVS atomic model: the 
Generator. The latter can asynchronously generate 
data information to the DSCA during the simulation. 
The cell space is embedded in a DSDTN. Each cell 
is defined as a DTSS model. Using its transition 
function, the DSCA executive model (containing 
every cells) achieves changes in structure directly 
accessing to the attributes of cells. A mathematical 
description of each model is provided here after. 
 
We define the MFN by the structure: 

MFN = (XMFN,YMFN, D, {Mi}, {Ii}, {Zi,j}, select) 

 
where D={G,DSDTN}, MG = (XG, QG, q0,G, YG, δG, 
λG, τG), MDSDTN=DSDTN, IG={}, IDSDTN={G}, and  
ZDSDTN,MFN: YDSDTN YMFN, ZG,DSDTN: YG XDSDTN. 
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We define the DSDTN by the structure: 

DSDTN = (XDSDTN, YDSDTN, DSCA, MDSCA) 
 
where Σ = γ (q0,χ) = (D, {Mi}, {Ii}, {Zi,j}), where 
D={(i,j) / (i,j) ∈ }, M2ℑ DSCA = (XDSCA, QDSCA, 
q0,DSCA, YDSCA, δDSCA, λDSCA),  IDSCA={DSDTN}, 
Icell={celln,DSDTN}. Where Icell = {Ikl / k ∈ [0,m], l 
∈ [0,n]} is the neighbourhood set (or the set of 
influencers) of the cell as defined in (Wainer and 
Giambiasi, 2001). It is a list of pairs defining the 
relative position between the neighbours and the 
origin cell. Ikl = {(ip,jp) / ∀  p ∈ Icell, p ∈ [1,ηkl], ip,jp 

∈ Z ; |k- ip| ≥ 0  |l- j∧ p| ≥ 0 ∧  ηkl ∈ Icell }, and η ∈ 
Icell is the neighborhood size. 
Zcell,DSCA: Ycell YDSCA, ZDSCA,DSDTN: 
YDSCA YDSDTN, ZDSDTN,DSCA: XDSDTN XDSCA, 
ZDSCA,cell: XDSCA Xcell. 
 
For the implementation, ports are defined: 
 PyG=PxDSDTN=PxDSCA={data} 
 PyDSCA=PyDSDTN=PyMFN={state} 
 Pxcell=Pycell={(i,j)} 
 
We specify each cell as a special case of DTSS 
model: 

cell=(Xcell, Qcell, q0,cell, Ycell, δcell, λcell ) 
 
where Xcell  is an arbitrary set of input values, Ycell  is 
an arbitrary set of output values, q0,cell is the initial 
state of the cell and  
q ∈ Qcell is given by:  
 q=((i,j), state, N,  phase), 
 (i,j) ∈ , is the position of the cell, 2ℑ
 state is the state of the cell, 

N = {Nkl / k ∈ [0,m], l ∈ [0,n]}. N is a list of 
states Nkl of the neighboring cells of coordinates 
(k,l), 
phase = {passive, active} corresponds to the 
name of the corresponding dynamic behavior. 
For numerous adjacent active cells, the active 
phase can be decomposed in ‘testing’ and 
‘nonTesting’ phases. The use of these phase is 
detailed in section 5. 

δcell : Qcell×Xcell  Qcell
λcell : Qcell  Ycell

4 DSCA SIMULATION 

As depicted in Figure 2, implementation of discrete 
event models consists in dividing a transition 
function δd of a model according to event types evn 

issued from a set of possible event types Sd. The 
transition function then depends on the event types 
the model receives. 
 
  Model d 
 Sd = {ev1, ev2, … , evn} 
 δd (Sd) 
  case Sd
  ev1 : call event-routine1
  ev2 : call event-routine2… 
  evn : call event-routinen 

Figure 2: Discrete event model implementation  
(Zeigler et al., 2000) 

 
The DSCA receives data from the Generator. 

These data represent external influences of the 
DSCA. During the simulation, information is 
embedded in messages and transits through the data 
and state ports. Messages have fields [Message type, 
Time, Source processor, Destination port, Content], 
where Content is a vector of triplets [Event type, 
Value, Coordinate port]. When a DSCA receives a 
message on its data port, the corresponding 
Aggregated Network Simulator (AN Simulator) 
scans the Content vector and according to the 
Coordinate port, sends the [Event type, Value] pairs 
to the concerned cells. A vector of pairs [Event type, 
Value] can be sent to a cell port. Then, according to 
the Event type a cell receives, it will update the 
concerned attributes, executing the concerned 
transition function. 

The simulation tree hierarchy is described in the 
simulation part on the right side of Figure 1. Except 
for the Root and DTSS interface, all nodes of the tree 
are processors attached to models. The processors 
manage with message exchanges and execution of 
model functions. Each processor is automatically 
generated when the simulation starts. 

The Coordinator pilots the MFN model, the 
simulator SimG pilots the Generator, the DSDTN 
model and the DSDTN models are piloted by the 
Aggregated Network Simulator (AN Simulator). 
Algorithms of the DSCA simulators can be found in 
(Muzy et al., 2003). Algorithms of basic DEVS 
simulators and DTSS interfaces can be found in 
(Zeigler et al., 2000). 

The Root processor supervises the whole 
simulation loop. It updates the simulation time and 
activates messages at each time step. For the 
Coordinator, the DTSS interface makes the 
Aggregated Network simulator seen as a DEVS 
atomic simulator. This is done by storing all 
messages arriving at the same time step and then by 
calculating the new state and output of the DSCA 
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when receiving an internal transition message. The 
simulation tree thus respects the DEVS bus 
principle. That means that whatever DEVS model 
can be appended to the simulation tree. 

5 ACTIVITY TRACKING 

Using discrete event cellular models, activity 
tracking can be easily achieved (Nutaro et al., 2003). 
Active cells send significant events to be reactivated 
or to activate neighbors at next time step. However, 
pure discrete event models proved to be inefficient 

for discrete time system simulation (Muzy et al., 
2002). Interface configurations and message 
management produce simulation overheads, 
especially for numerous active components.  

For discrete time systems, we know that each 
component will be activated at each time step. 
Moreover, in CA, states of cells directly depend on 
the states of their neighbors. To optimize the 
simulation, messages between the cells have to be 
canceled and simulation time advance has to be 
discrete. However, a new algorithm has to be 
defined to track active cells. 
 

 

Coordinator

SimG 

DTSS-interface

Root 

AN Simulator

DSDTN 

MFN 

Generator 

data data 

states

DSCA 

Cell 

… 

states 

(0,0) 

(m,n) 

modelling simulation 
 

Figure 1: DSCA modeling and simulation 

 

To focus the simulation on active cells, we use 
the basic principles exposed in (Zeigler et al., 
2000) to predict whether a cell will possibly 
change state or will definitely be left unchanged in 
a next global state transition: “a cell will not 
change state if none of its neighboring cells 
changed state at the current state transition time”. 

Nevertheless, to obtain optimum performance 
the entire set of cells cannot be tested. Thereby, an 
algorithm, which consists in testing only the 
neighborhood of the active bordering cells of a 
propagation domain, has been defined for this type 
of phenomena.  

To be well designed, a simulation model should 
be structured so that all information relevant to a 
particular design can be found in the same place. 
This principle enhances models modularity and 
reusability making easier further modifications. 

Pure discrete event cells are all containing a 
micro algorithm, which allows to focus the whole 
simulation loop on active cells. We pinpointed 
above the inefficiency of such an implementation 
for discrete time simulation. An intuitive and 
efficient way to achieve activity tracking in 

discrete time simulation is to specify this particular 
design at one place. As depicted in Figure 3, the 
activity tracking algorithm is located in the global 
transition function of the DSCA, in charge of the 
structure evolution of the cell space.  

Cells are in ‘testing’ phases when located at the 
edge of the propagation domain, ‘nonTesting’ 
when not tested at each state transition and 
‘quiescent’ when inactive. 

A propagation example is sketched in Figure 4 
for cardinal and adjacent neighborhoods. In our 
algorithm, only the bordering cells test their 
neighborhood, this allows to reduce the number of 
testing cells.  

The result of the spreadTest(i,j,nextState) 
function of Figure 3, depends on the state of the 
tested cells. If this state fulfils a certain condition 
defined by the user, the cell becomes ‘nonTesting’ 
and new tested neighboring are added to the set of 
active cells. The transition function receives xχ 
messages from the Generator corresponding to 
external events. The xχ messages contain the 
coordinates of the cells influenced by the external 
event. If the coordinates are located in the domain 
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calculation, the state of the cell is changed by 
activating its transition function with the new 
value. Otherwise, new cells are added to the 
propagation domain. 

t t+h t+2h

?

?

?

?

??

??

?

?

?

quiescent

non testing

testing

active

//’Q’ is for the quiescent phase,  
//’T’ for the testing one and ‘N’ for 
//the nonTesting one 
 
Transition Function(xχ) 
 For each cell(i,j) Do      
  If(cellPhase(i,j)==’Q’) Then  
   removeCell(i,j) 
  Endif 
 
  If(cellPhase(i,j)==’T’) Then 
   If (cellNearToBorder(i,j)) Then 
    setSpreadStateCell(i,j,’N’) 
   Else 
    If(spreadTest(i,j,nextState))Then 
     setCellPhase(i,j,‘N’) 
     addQuiescentNeighboringCells(i,j) 
    EndIf 
   EndIf 
  EndIf 
 EndFor 
 
 If(xχ message is not empty) 
  If(cells in the propagation domain) Then 
    cell(i,j).transitionF(newState) 
 change the cell states //
  Else 
   addNewCells() 
 EndIf  
 EndIf 
 
EndTransitionFunction() 

 
Figure 3: Transition function of the DSCA 

 
For efficiency reasons, the simulation engine 

we developed has been implemented in C++ and 
dynamic allocation has been suppressed for some 
classes. Indeed, for significant numbers of object 
instantiation/deletion dynamic allocation is 
inefficient and we have designed a specialized 
static allocation (Stroustrup, 2000). A pre-
dimensioning via large static arrays can be easily 
achieved thanks to current modern computer 
memory capabilities. 

The state of the executive model is a matrix of 
cellular objects. References on active cells are 
stored in a vector container. A start-pointer and an 
end-pointer are delimiting the current calculation 
domain on the vector. Thus initial active cells that 
are completely burned during a simulation run can 
be dynamically ignored in the main loop. At each 
time step, by modifying the position of pointers, 
new tested cells can be added to the calculation 
domain and cells that return in a quiescent state are 
removed from the former. 

 

Figure 4: Calculation domain evolution 

6 FIRE SPREADING 
APPLICATION 

The simulation engine we use has been proved to 
achieve real-time simulation (Muzy et al., 2003). 
Moreover, we use a mathematical fire spread 
model already validated and presented in (Balbi et 
al., 1998). In this model, a Partial Differential 
Equation (PDE) represents the temperature of each 
cell. A CA is obtained after discretizing the PDE. 
Using the finite difference method leads to the 
following algebraic equation: 
 

    (1) k
ji

tt
v

k
ji

k
ji

k
ji

k
ji

k
ji dTeTTbTTaT ig

,
)(

0,1,1,,1,1
1

, )()( +++++= −−
+−+−

+ ασ

 
where Tij is the grid node temperature. The 

coefficients a, b, c and d depend on the time step 
and mesh size considered, t is the real time, tig the 
real ignition time (the time the cell is ignited) and 
σν,0 is the initial combustible mass. 

Figure 5 depicts a simplified temperature curve 
of a cell in the domain. We consider that above a 
threshold temperature Tig, the combustion occurs 
and below a temperature Tf , the combustion is 
finished. 

The end of the real curve is purposely neglected 
to save simulation time. Four states corresponding 
to the behavior of each cell behavior are defined 
from these assumptions. The four states are: 
‘unburned’, ‘heating’, ‘onFire’ and ‘burned’.  

 t  (Ta, tig)

 Tf  = 333 K
 Tig = 573 K 

 T (Kelvin) 

  heating   burned onFire   unburned  
 
Figure 5: Simplified temperature curve of a cell behavior 
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Figure 6 depicts a fire spreading in a Corsican 
valley, generated using the OpenGL graphics 
library. By looking at this picture we easily 
understand that simulation has to focus only on a 

small part of the whole land. Actually, areas of 
activity just correspond to the fire front, and to the 
cells in front of the latter (corresponding to cells in 
one of the following states: ‘heating’ or ‘onFire’ ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: 3D Visualization of fire spreading 
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Figure 7: Fire ignitions and propagation 
 

During a fire spreading, flying brands ignite 
new part of lands away from the fire. This is an 
important cause of fire spreading. However, 
tracking activity of flying brands is difficult. 
Firstly, because flying brands occur whenever 
during the simulation time. Secondly, because they 
occur far away from the calculation domain, thus 
new calculation allocations need to be created 
dynamically. 

Figure 7 represents a case of multi-ignitions 
during the simulation. Simulation starts with one 
ignition on the center of the propagation domain. 
Then, at time t=7s, a second ignition occurs on the 
top right corner of the propagation domain. 
Finally, at t=12s, two new ignitions occur on the 
right and left bottom of the propagation domain. 
The last picture shows the multiple fire fronts 
positions at t=70s. 

Figure 8 describes the DSCA state transitions in 
a fire spread simulation. First the simulation starts 
with the first ignition, which is simulated by an 
output external event of the Generator of Figure 1. 
Then the main simulation loop calculating the fire 
front position is activated. The latter consists in 
calculating the temperature of cells. After, 
according to the calculated temperatures, the 
calculation domain is updated. For each cell of the 
calculation domain, the temperature is calculated 
using equation (1), according to the state of the 
cells. The calculation domain is updated using the 
algorithm described in Figures 3 and 4. Phase 
transitions depend on the temperature of cells.  

At the initialization, only one calculation 
domain corresponding to the one described in 
Figure 4 is generated. Bordering cells of the 
calculation domain are in a ‘testing’ phase and 
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non-bordering cells in a ‘nonTesting’ one. 
Remaining cells are ‘quiescent’. If the temperature 
of a ‘testing’ cell fulfills a certain threshold 
temperature Tt, the testing cell will pass in the 
‘nonTesting’ phase and neighboring ‘testing’ cells 
will be added to the calculation domain. In the fire 

spread case, this threshold can be fixed slightly 
over the ambient temperature. 
 During the simulation, the Generator simulates 
the flying brands by sending external events. When 
the DSCA receives the events and updates the 
calculation domain. 
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Figure 8: Transition state diagram 

 
 The resulting activity tracking is showed in 
Figure 9. We can notice that active cells 
correspond to the fire front lines, not to the burned 
and non-heated areas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Activity tracking 

7 CONCLUSION 

Considering the previous discrete event DSCA 
(Barros and Mendes, 1997), new well-designed 

and complementary discrete time DSCA have been 
defined here. These two methodologies allow to 
faithfully guide modelers for modeling and 
simulating discrete event and discrete time cellular 
simulation models. 
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100 DSCA allow to simulate a large range of 
complicated cellular models. Complex phenomena 
can be simulated thanks to basic CA simplicity. 
We hope that even more complex phenomena will 
be able to be simulated thanks to DSCA. To be 
well understood and widely applied, DSCA 
definition has to be as clear and simple as possible. 
Clearness and simplification of DSCA 
specification will remain our objective. 

Another objective will be to improve DSCA 
specification using new experiments. To achieve 
this goal, complexity of fire spread remains an 
infinite challenge for DSCA simulation.  We plan 
now to extend the DSCA specification to the 
simulation of implicit-time models. 

Another important validation of our approach 
concerns network structure changes. Here again, a 
fire spread model taking into account wind effects 
(Simeoni et al., 2003) will allow us to validate 
DSCA network structure changes. This model 
actually needs to dynamically change the 
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neighborhood of burning cells according to the fire 
front shape. 

ACKNOWLEDGMENTS 

We would like to thank our research assistant 
Mathieu Joubert, for his technical support and for 
his C++ implementation of the 3D visualization 
tool using OpenGL. 

REFERENCES 

Balbi, J. H., P. A. Santoni, and J. L. Dupuy, 1998. 
Dynamic modelling of fire spread across a fuel bed. 
Int. J. Wildland Fire, p. 275-284. 

Barros, F. J., 1997. Modelling Formalisms for Dynamic 
Structure Systems. ACM Transactions on Modelling 
and Computer Simulation, v. 7, p. 501-515. 

Barros, F. J., and M. T. Mendes, 1997. Forest fire 
modelling and simulation in the DELTA 
environment. Simulation Practice and Theory, v. 5, 
p. 185-197. 

Hill, D. R. C., 1996. Object-oriented analysis and 
simulation, Addison-Wisley Longman, UK, 291 p. 

Jen, E., 1990. A periodicity in one-dimensional cellular 
automata. Physica, v. 45, p. 3-18. 

Mesarovic, M. D., and Y. Takahara, 1975. General 
Systems Theory: A mathematical foundation, 
Academic Press. New York. 

Muzy, A., E. Innocenti, F. Barros, A. Aïello, and J. F. 
Santucci, 2003. Efficient simulation of large-scale 
dynamic structure cell spaces. Summer Computer 
Simulation Conference, p. 378-383. 

Muzy, A., G. Wainer, E. Innocenti, A. Aiello, and J. F. 
Santucci, 2002. Comparing simulation methods for 
fire spreading across a fuel bed. AIS 2002 - 
Simulation and planning in high autonomy systems 
conference, p. 219-224. 

Nutaro, J., B. P. Zeigler, R. Jammalamadaka, and S. 
Akrekar, 2003. Discrete event solution of gaz 
dynamics winthin the DEVS framework: exploiting 
spatiotemporal heterogeneity. Intrnational 
conference for computational science. 

Simeoni, A., P. A. Santoni, M. Larini, and J. H. Balbi, 
2003. Reduction of a multiphase formulation to 
include a simplified flow 

in a semi-physical model of fire spread across a fuel bed. 
International Journal of Thermal Sciences, v. 42, p. 
95–105. 

Stroustrup, B., 2000. The C++ Programming Language, 
1029 p. 

Wainer, G., and N. Giambiasi, 2001. Application of the 
Cell-DEVS paradigm for cell spaces modeling and 
simulation. Simulation, v. 76, p. 22-39. 

Wolfram, S., 1994. Cellular automata and complexity: 
Collected papers, Addison-Wesly. 

Worsch, T., 1999. Simulation of cellular automata. 
Future Generation Computer Systems, v. 16, p. 157-
170. 

Zeigler, B. P., H. Praehofer, and T. G. Kim, 2000. 
Theory of modelling and simulation, Academic 
Press. 

DYNAMIC STRUCTURE CELLULAR AUTOMATA IN A FIRE SPREADING APPLICATION

151


