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Abstract: Localization is a fundamental problem for mobile robot autonomous navigation. EKF is an efficient tool for 
position estimation, but it suffers from linearization errors due to linear approximation of nonlinear system 
equations. In this paper we describe a position estimation method for mobile robot. Process and 
measurement equations are linear by appropriately constructing the state vector and system models. The 
position of mobile robot is estimated recursively based on optimal KF. It avoids linear approximation of 
nonlinear system equations and is free of linearization error. All these techniques have been implemented on 
our mobile robot ATRVII equipped with 2D laser rangefinder SICK. 

1 INTRODUCTION 

The mobile robot localization problem, especially 
for pose tracking, is one fundamental problem in 
mobile robotics. Dead reckoning technique is a 
solution to estimate the position of mobile robot. 
However, due to the uncertainties on odometer 
modeling errors and occasional slipping errors, it 
generally suffers from cumulative errors that 
increase without bounds (Borenstein et al. 1995). In 
order to overcome this disadvantage, probabilistic 
localization method (Olson 2000; Thrun 2000) is 
proposed by taking into account various 
uncertainties on system state and sensor 
measurement. In this way, the mobile robot 
localization problem can be described as state 
filtering or state estimation problem. 

The optimal minimum mean square error 
(MMSE) estimation is conditional expectation 
conditioned on all prior observations. If system 
equations are linear, the optimal state estimation 
solution is the Kalman filter (KF) algorithm 
(Kalman 1960). Unfortunately, system equations are 
generally nonlinear in mobile robotics. System state 
estimation requires a complete description of the 
conditional probability density with unbounded 
number of parameters. To estimate position of robot, 
various suboptimal solutions for nonlinear 
estimation problem have been proposed based on 
different approximation techniques. 

There are three types of approximation 
techniques. The first is to approximate probability 
distribution over state space. Grid-based Markov 
Localization (Fox et al. 1998) is a discrete 
approximation of probability density distribution 
over all possible position and Monte Carlo 
Localization (Fox et al. 1999) approximates the 
posterior probability distribution over the state space 
with a set of particles. The second is to approximate 
nonlinear system equation with linear function. 
Extended Kalman filter (EKF) (Kalman and Bucy 
1961) and various variants apply the optimal 
Kalman filter to deal with nonlinear estimation 
problems by replacing nonlinear equations with 
linear approximation. The third is to compute 
conditional expectation with efficient numerical 
approximation method. Gaussian filter (Ito et al. 
2000) and Gaussian sum filter (Alspach 1972) resort 
to numerical integration techniques to compute 
conditional mean and conditional covariance. 

The Kalman filter has brought revolutionary 
improvement in stochastic estimation problem since 
its introduction in 1960. The linear KF was 
developed to provide optimal state estimation of 
linear system with noisy measurement. The EKF 
works by approximating the nonlinear process and 
measurement equations about the current state 
estimation. Classical EKF is a first order 
approximation filter. It approximates nonlinear 
function with first order Taylor series expansion 
evaluated at current state estimation. However, EKF 
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has two drawbacks. One is that this approximation is 
not accurate if area around current estimation is very 
nonlinear. Another is Jacobian matrix computation. 
Some nonlinear functions may not be differentiable, 
even if it is differential, computing the derivatives 
may still be hard. 

In order to improve the performance of state 
estimation, various modified EKF methods are 
proposed. The second-order filter (Nam et al. 1999) 
is known to achieve better precision than the first-
order filter at the price of complex computation. 
Higher order filter (Kelly 1994) is proposed by 
taking into account higher order terms in the Taylor 
series expansion, but the more complex 
computations are involved. Iterated EKF (Bellaire et 
al. 1995) is designed to improve the precision of 
approximation by approximating measurement 
equation about the corrected posterior estimation 
instead of the predicted prior estimation. A range-
direction-cosine EKF (Mehra 1971) transforms 
nonlinear measurement equation into linear function 
by choosing a suitable coordinates system. A 
modified EKF (Wall et al. 1997) algorithm offers 
better performance by approximating nonlinear 
equations about state vector computed from 
deterministic equation rather than state vector 
estimated from stochastic equation. Interlaced EKF 
(Glielmo et al. 1999) partitions the state vector into 
several parts. Each filter works independently and 
considers the other parts of state vector as known 
parameters. A modified EKF (Chui et al. 1990) 
improves the filtering performance by modifying the 
centre of Taylor series approximation. The linear 
regression Kalman filter (Lefebvre et al. 2002) 
approximates the process and measurement 
functions by statistical linear regression of the 
function with some sampling points. A typical 
LRKF is unscented Kalman filter (UKF) (Julier et al. 
1995; Wan et al. 2000). It approximates nonlinear 
process and measurement function with sigma 
points. A NMSKF (Lefebvre et al. 2002) linearize 
process and measurement equations in a higher-
dimensional state space. It is applicable to state 
estimation for static system and for a limited class of 
dynamic systems. 

In this paper, we apply KF to estimate 
recursively the position of robot. The process and 
measurement equation are linear by constructing 
appropriately the system state and system models. 
With linear system equations, the position estimation 
of robot is optimal. 

An outline of this paper is as follows. In Section 
2 we describe the coordinate system. In Section 3 we 
describe the system state space and system models. 
Process equation and measurement equation are 
defined. In Section 4 an efficient filter algorithm 
with linear process equation and linear measurement 

equation is described. Experimental results are 
presented in Section 5. Finally we conclude in 
Section 6.  

2 COORDINATE SYSTEM 

There are four coordinate systems. The first is world 
coordinate system denoted with XWOWYW. The 
second is odometer coordinate system denoted with 
XOOOYO. The third is scanner coordinate system 
denoted with XSOSYS.  The fourth is the local 
coordinate system of mobile robot, denoted with 
XLOLYL.  Robot local coordinate system has the 
same orientation and origin as the odometer 
coordinate system. Scanner coordinate system has 
the same orientation as robot local coordinate 
system. They are shown in Fig.1. 

Robot local coordinate system, sensor coordinate 

system and odometer coordinate system are defined 
according to DIN70000. All angle are in the range of 
–180O…180O. They are shown in Fig. 2. 

In this paper, only world coordinate system and 
robot local coordinate system are considered. All 
values represented with scanner and odometer 

Figure 1: coordinate system. 

Figure 2: DIN70000 
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coordinate system are transformed into robot local 
coordinate system. 

3 STATE SPACE AND SYSTEM 
MODEL 

Mobile robot moves in an indoor environment. 
Robot is equipped with an odometer and a laser 
rangefinder. The data from the odometer is used to 
predict the position of robot. Laser rangefinder scans 
environment information and extracts natural 
landmark, corner, to correct the predicted position of 
robot. Data from sensor odometer and rangefinder 
are all with uncertainty. The Kalman filter has 
proven to be a valuable tool for mobile robot 
position estimation given that the initial state and 
covariance are known. The position of robot, [x, y, 
θ]T, is considered as system state. Process equation 
is based on odometer model and the world 
coordinate of landmark is considered as observation 
information. The position of robot is recursively 
estimated as it evolves through time. 

3.1 State space  

We assume that environment is a 2D plane and 
represent this 2D plane with a world coordinates 
system XWOWYW. Another is robot’s local 
coordinates system XLOLYL. The configuration of 
robot is represented with a three-dimensional state 
vector [x, y, θ]T. (x, y) represents the position of 
robot. θ represents the orientation or heading of the 
robot. It is defined in the counterclockwise. The 
value of θ is from –π to π. It is shown in Fig.1. 

The position prediction of robot is according to 
the motion model. The observation prediction is 
according to the observation model and the predicted 
position of robot is corrected according to updated 
rules. 

3.2 Motion model 

It is assumed that the robot moves along a circular 
arc at each step. The position transition is based on 
odometer information. Date from odometer is Uk = 
(Dk, γk) at step k. Dk is the distance traveled along 
the arc and γk is the change in motion direction. Rk = 
Dk /γk is the radius of arc. According to motion 
model shown in Fig.3, the deterministic process 
equation is: 

3.3 Observation model 

Laser rangefinder scans environmental information 
and extracts landmark. A landmark is a typical 
feature of environment. In this paper the corner is 
considered as natural landmark. A range scan is 
segmented and merged. The corner is extracted from 
current laser scan and is represented with (xL, yL) in 
local coordinates system. The corner is represented 
with (xW, yW) in world coordinates system. We use 
the position (xW, yW) of a corner as the observation 
value. The position (xL, yL) of corner is computed in 
local coordinates system. It is translated into world 
coordinates system as observation prediction based 
on current estimated position of robot. It is a two-
dimensional observation vector. According to 
observation model shown in Fig.4, the deterministic 
measurement equation is: 

4 LOCALIZATION WITH KF 

EKF approximates nonlinear system equations with 
first-order terms of Taylor series and induces 
linearization errors. If the initial position is assumed 
as Gaussian distribution, the result position is not 
Gaussian distribution after a nonlinear 
transformation. So, it is incomplete that only 
position expectation and position covariance are 
recursively estimated. It is not an optimal estimation 
solution for mobile robot localization with nonlinear 
system equations. ( ) ( )( )
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Figure 3: Motion model. 
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We apply optimal linear Kalman filter to deal 
with mobile robot localization by constructing 
appropriately system state vector and system 
models. In this way, the process equation and 
measurement equation are linear. So, we estimate 
the position of robot directly with a linear Kalman 
filter. This estimation solution is optimal in MMSE 
sense. State vector Xk, observation vector Zk and 
input vector Uk are defined as: 

We extend system state to four-dimensional 
vector [xk, yk, sk, ck]T. (xk, yk) is the position of 
robot. (sk, ck) is the sin and cosine of orientation θ of 
robot. System state is estimated recursively 
predicted and updated. The position (xk, yk, θk) of 
robot and its variance are computed from mean and 
variance of system state [xk, yk, sk, ck]T. Observation 
vector Z=[xW, yW]T is the position of corner in world 
coordinates system. By replacing sin(θk) and cos(θk) 
in system models with sk and ck, we get linear 
process equation and linear measurement equation. 
The process equation is: 

Where ωk is noise vector representing 
uncertainty on odometer modeling and slipping. Its 
mean is zero and variance is Q. 

The measurement equation is: 

Where υk is noise vector representing uncertainty 
on sensor measurement. Its mean is zero and 
variance is R.  

Matrix Fk only depends on the input vector and is 
uncorrelated with current position estimation. Matrix 
Hk only depends on the position of landmark and is 
uncorrelated with current position prediction. So, 
process and measurement equations are linear. The 
position of mobile robot is predicted and corrected 
according to following update rules: 

From step k to step k+1, system state mean and 
covariance are predicted and corrected recursively. 
The resulting position estimation of robot is an 
optimal estimation. If the initial position of robot is 
assumed as Gaussian distribution, the probability 
distribution of position after each step is still 
Gaussian. It is reasonable that only position mean 
and variance are recursively computed. 

5 EXPERIMENTAL RESULT 

In this section, we demonstrate the experimental 
result of proposed position estimation method. By 
extending the state space of robot to four-
dimensional state vector, the system process and 
measurement equations are linear. Localization 
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Figure 4: Observation model. 
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based on linear system model avoids linearization 
error due to linear approximation of nonlinear 
system equations. 

In this section, we demonstrate the experimental 
results of proposed position estimation method with 
our mobile robot ATRVII. Fig. 5 is robot equipped 
with laser range rangefinder. Robot moves around 
our lab, scans landmark features and estimate its 
position and heading.  

Fig. 6 shows the estimated position errors with 
one sigma confidence limit. Fig. 7 shows innovation 
sequence and variance. Experimental results show 
that the filter proposed here is consistent and 
convergent.  

With the same parameter, the position of robot is 
estimated with classical EKF. Fig. 8 shows 
difference of estimation results between KF and 
EKF. Experimental results show that the Linear 
filter gives more conservative estimation result than 
nonlinear filter. 

KF is an optimal state estimation for linear 
system. Position estimation based on EKF induces 
linearization error and brings additional uncertainty. 
linearization error due to linear approximation of 

nonlinear process equation affects mainly the long-
term position estimation. linearization error due to 
linear approximation of nonlinear measurement 
equation affects mainly the short-term position 
estimation. By constructing appropriately state 
vector and system models, we use optimal Kalman 
filter for mobile robot position estimation. It is free 
of linearization errors. 

6 CONCLUSION 

The extended Kalman filter has been widely used as 
a position estimation method for mobile robot 
localization and simultaneous localization and map 
building (SLAM) problem. However, The classical 
extended Kalman filter for this application suffers 
from a fundamental flaw. Linear approximation of 
nonlinear system equations with first-order Taylor 

Figure 6: Estimated position error with KF.

Figure 7: Innovation and innovation variance 
with KF. 

Figure 5:  Mobile robot. 

Figure 8: Position estimation with KF and EKF. 
solid line for KF and dashed line for EKF. 
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series induces linearization error. In this paper, a 
position estimation method with linear process and 
measurement equations is developed. Process and 
measurement equations are linear by appropriately 
constructing state vector and system models. With 
linear process and measurement function, we apply 
linear Kalman filter to estimate optimally the 
position of robot. It avoids linear approximation of 
nonlinear system equations and is free of 
linearization error. The filter is consistent and 
convergent. Comparing with EKF, it gives more 
conservative estimation result. 
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