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Abstract: Adaptive behaviour through machine learning is challenging in many real-world applications such as 
robotics. This is because learning has to be rapid enough to be performed in real time and to avoid damage 
to the robot. Models using linear function approximation are interesting in such tasks because they offer 
rapid learning and have small memory and processing requirements. Adalines are a simple model for 
gradient descent learning with linear function approximation. However, the performance of gradient descent 
learning even with a linear model greatly depends on identifying a good value for the learning rate to use. In 
this paper it is shown that the learning rate should be scaled as a function of the current input values. A 
scaled learning rate makes it possible to avoid weight oscillations without slowing down learning. The 
advantages of using the scaled learning rate are illustrated using a robot that learns to navigate towards a 
light source. This light-seeking robot performs a Reinforcement Learning task, where the robot collects 
training samples by exploring the environment, i.e. taking actions and learning from their result by a trial-
and-error procedure.     

1 INTRODUCTION 

The use of machine learning in real-world control 
applications is challenging. Real-world tasks, such 
as those using real robots, involve noise coming 
from sensors, non-deterministic actions and 
uncontrollable changes in the environment. In 
robotics, experiments are also longer than simulated 
ones, so learning must be relatively rapid and 
possible to perform without causing damage to the 
robot. Only information that is available from robot 
sensors can be used for learning. This means that the 
learning methods have to be able to handle partially 
missing information and sensor noise, which may be 
difficult to take into account in simulated 
environments.  

Artificial neural networks (ANN) are a well-
known technique for machine learning in noisy 
environments. In real robotics applications, 
however, ANN learning may become too slow to be 
practical, especially if the robot has to explore the 
environment and collect training samples by itself. 
Learning by autonomous exploration of the 
environment by a learning agent is often performed 
using reinforcement learning (RL) methods.  

Due to these requirements, one-layer linear 
function approximation ANNs (often called Adalines 
(Widrow & Hoff, 1960)) are an interesting 
alternative. Their training is much faster than for 
non-linear ANNs and their convergence properties 
are also better. Finally, they have small memory- 
and computing power requirements.  

However, when Adaline inputs come from 
sensors that give values of different magnitude, it 
becomes difficult to determine what learning rate to 
use in order to avoid weight oscillation. 
Furthermore, as shown in the experiments section of 
this paper, using a fixed learning rate may be 
problematic also because the optimal learning rate 
changes depending on the state of the agent and the 
environment. This is why the use of a scaled 
learning rate is proposed, where the learning rate 
value is modified according to Adaline input values. 
The scaled learning rate makes learning steps of 
similar magnitude independently of the input values. 
It is also significantly easier to determine a suitable 
value for the scaled learning rate than it is for a fixed 
learning rate.  

After this introduction, Section 2 gives 
background information about gradient descent 
learning and RL. Section 3 defines the scaled 
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learning rate, followed by experimental results in 
Section 4. Related work is treated in Section  5, 
followed by conclusions.  

2 GRADIENT DESCENT 
REINFORCEMENT LEARNING 

In gradient descent learning, the free parameters of a 
model are gradually modified so that the difference 
between the output given by a model and the 
corresponding “correct” or target value becomes as 
small as possible for all training samples available. 
In such supervised learning, each training sample 
consists of input values and the corresponding target 
values. Real-world training samples typically 
involve noise, which means that it is not possible to 
obtain a model that would give the exact target value 
for all training samples. The goal of learning is 
rather to minimize a statistical error measure, e.g. 
the Root Mean Square Error (RMSE) 
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where M is the number of training examples, tk
j 

is the target value for output j and training sample k 
and ak

j is the model output for output j and training 
sample k. In RL tasks, each output aj typically 
corresponds to one possible action.  

RL differs from supervised learning at least in 
the following ways: 
• The agent has to collect the training samples by 

exploring the environment, which forces it to 
keep a balance between exploring the 
environment for new training samples and 
exploiting what it has learned from the existing 
ones (the exploration/exploitation trade-off). In 
supervised learning, all training samples are 
usually pre-collected into a training set, so 
learning can be performed off-line.  

• Target values are only available for the used 
actions. In supervised learning, target values are 
typically provided for all actions. 

• The target value is not always available directly; 
it may be available only after the agent has 
performed several actions. Then we speak about 
a delayed reward learning task.  

RL methods usually model the environment as a 
Markov Decision Process (MDP), where every state 
of the environment needs to be uniquely identifiable. 
This is why the model used for RL learning is often 
a simple “lookup-table”, where each environment 
state corresponds to one row (or column) in the table 
and the columns (or rows) correspond to possible 

actions. The values of the table express how “good” 
each action is in the given state.  

Lookup-tables are not suitable for tasks 
involving sensorial noise or other reasons for the 
agent not being able to uniquely identify the current 
state of the environment (such tasks are called 
hidden state tasks). This is one of the reasons for 
using state generalization techniques instead of 
lookup-tables. Generalisation in RL is based on the 
assumption that an action that is good in some state 
is probably good also in “similar” states. Various 
classification techniques have been used for 
identifying similar states. Some kind of ANN is 
typically used for the generalisation. ANNs can 
handle any state descriptions, not only discrete ones. 
Therefore they are well adapted for problems 
involving continuous-valued state variables and 
noise, which is usually the case in robotics 
applications. 

2.1 Gradient descent learning with 
Adalines 

The simplest ANN is the linear Adaline (Widrow & 
Hoff, 1960), where neurons calculate their output 
value as a weighted sum of their input values  
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where wi,j is the weight of neuron j associated 
with the neuron’s input i, aj(s) is the output value of 
neuron j, si is the value of input i and N is the 
number of inputs. They are trained using the 
Widrow-Hoff training rule (Widrow & Hoff, 1960) 
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where α is a learning rate. The Widrow-Hoff 
learning rule is obtained by inserting equation (2) 
into the RMSE expression and taking the partial 
derivative against si. It can easily be shown that 
there is only one optimal solution for the error as a 
function of the Adaline weights. Therefore gradient 
descent is guaranteed to converge if the learning rate 
is selected sufficiently small.  

When the back propagation rule for gradient 
descent in multi-layer ANNs was developed 
(Rumelhart et al., 1988), it became possible to learn 
non-linear function approximations and 
classifications. Unfortunately, learning non-linear 
functions by gradient descent tends to be slow and to 
converge to locally optimal solutions.  

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

4



 
 

2.2 Reinforcement learning 

RL methods often assume that the environment can 
be modelled as a MDP. A (finite) MDP is a tuple 
M=(S,A,T,R), where: S is a finite set of states; A = 
{a1, …, ak} is a set of k ≥ 2 actions; T = [Psa(·) | s ∈ 
S, a ∈ A} are the next-state transition probabilities, 
with Psa(s’) giving the probability of transitioning to 
state s’ upon taking action a in state s; and R 
specifies the reward values given in different states s 
∈ S. RL methods are based on the notion of value 
functions. Value functions are either state-values 
(i.e. value of a state) or action-values (i.e. value of 
taking an action in a given state). The value of a 
state s ∈ S can be defined formally as 
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where Vπ(s) is the state value that corresponds to 
the expected return when starting in s and following 
policy π thereafter. The factor rt+k+1 is the reward 
obtained when arriving into states st+1, st+2 etc. γk is a 
discounting factor that determines to what degree 
future rewards affect the value of state s.  

Action value functions are usually denoted 
Q(s,a), where a ∈ A. In control applications, the goal 
of RL is to learn an action-value function that allows 
the agent to use a policy that is as close to optimal as 
possible. However, since the action-values are 
initially unknown, the agent first has to explore the 
environment in order to learn it. 

2.2.1 Exploring the environment for 
training samples 

Although convergence is guaranteed for Widrow-
Hoff learning in Adalines, in RL tasks convergence 
of gradient descent cannot always be guaranteed 
even for Adalines (Boyan & Moore, 1995). This is 
because the agent itself has to explore the 
environment and collect training samples by 
exploring the environment. If the action selection 
policy π does not make the agent collect relevant 
and representative training samples, then learning 
may fail to converge to a good solution. Therefore, 
the action selection policy must provide sufficient 
exploration of the environment to ensure that “good” 
training samples are collected. At the same time, the 
goal of training is to improve the performance of the 
agent, i.e. the action selection policy so that the 
learned model can be exploited.  

Balancing the exploration/exploitation trade-off 
is one of the most difficult problems in RL for 
control (Thrun, 1992). A random search policy 
achieves maximal exploration, while a greedy policy 

gives maximal exploitation by always taking the 
action that has the highest action value. A commonly 
used method for balancing exploration and 
exploitation is to use ε-greedy exploration1, where 
the greedy action is selected with probability (1-ε) 
and an arbitrary action is selected with probability ε 
using a uniform probability distribution. This 
method is an undirected exploration method in the 
sense that it does not use any task-specific 
information. Another undirected exploration method 
selects actions according to Boltzmann-distributed 
probabilities 
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where T (called temperature) adjusts the 
randomness of action selection. The main difference 
between this method and ε-greedy exploration is that 
non-greedy actions are selected with a probability 
that is proportional to their current value estimate, 
while ε-greedy exploration selects non-greedy 
actions randomly.  

Directed exploration uses task-specific 
knowledge for guiding exploration. Many such 
methods guide the exploration so that the entire state 
space would be explored in order to learn the value 
function as well as possible. In real-world tasks 
exhaustive exploration may be impossible or 
dangerous. However, a technique called optimistic 
initial values offers a possibility of encouraging 
exploration of previously un-encountered states 
mainly in the beginning of exploration. It can be 
implemented by using initial value function 
estimates that are bigger than the expected ones. 
This gives the effect that unused actions have bigger 
action value estimates than used ones, so unused 
actions tend to be selected rather than already used 
actions. When all actions have been used a sufficient 
number of times, the true value function overrides 
the initial value function estimates. In this paper, ε-
greedy exploration is used for exploration. The 
effect of using optimistic initial values on learning is 
also studied. 

2.2.2 Delayed reward 

When reward is not immediate for every state 
transition, rewards somehow need to be propagated 
“backwards” through the state history. Temporal 
Difference (TD) methods (Sutton, 1988) are 
currently the most used RL methods for handling 
delayed reward. TD methods update the value of a 
state not only based on immediate reward, but also 
                                                           

1 Thrun (1992) calls this semi-uniform 
distributed exploration 
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based on the discounted value of the next state of the 
agent. Therefore TD methods update the value 
function on every state transition, not only after 
transitions that result in direct reward. When reward 
has been “temporally back propagated” a sufficient 
number of times, these discounted reward values can 
be used as target values for gradient descent learning 
(Barto, Sutton & Watkins, 1990). Such gradient 
descent learning allows using almost any ANN as 
the model for RL, but unfortunately the MDP 
assumption underlying TD methods often gives 
convergence problems.  

Delayed reward tasks are out of the scope of this 
paper, which is the reason why such tasks are not 
analysed more deeply here. Good overviews on 
delayed reward are (Kaelbling, Littman & Moore, 
1996) and (Sutton & Barto, 1998). The main goal of 
this paper is to show how scaling the Adaline 
learning rate improves learning, which is illustrated 
using an immediate reward RL task.  

3 SCALED LEARNING RATE 

In methods based on gradient descent, the learning 
rate has a great influence on the learning speed and 
on if learning succeeds at all. In this section it is 
shown why the learning rate should be scaled as a 
function of the input values of Adaline-type ANNs. 
Scaling the learning rate of other ANNs is also 
discussed.  

3.1 Adaline learning rate 

If we combine equations (2) and (3), we obtain the 
following expression for the new output value after 
updating Adaline weights using the Widrow-Hoff 
learning rule:  
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where anew
j(s) is the new output value for output j 

after the weight update when the input values s are 
presented again. If the learning rate is set to α = 1, 

then anew
j(s) would be exactly equal to tj if the 

expression  
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is multiplied by  
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Then, by continuing from equation (6): 
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when setting α = 1. Multiplying (7) by (8) scales 
the weight modification in such a way that the new 
output value will approach the target value with the 
ratio given by the learning rate, independently of the 
input values s. In the rest of the paper, the term 
scaled learning rate (slr) will be used for denoting a 
learning rate that is multiplied by expression (8).  

If the value of the (un-scaled) learning rate is 
greater than the value given by expression (8), then 
weights are modified so that the new output value 
will be on the “opposite side” of the target value in 
the gradient direction. Such overshooting easily 
leads to uncontrolled weight modifications, where 
weight values tend to oscillate towards infinity. This 
kind of weight oscillations usually makes learning 
fail completely.  

The squared sum of input values in expression 
(8) cannot be allowed to be zero. This can only 
happen if all input values si are zero. However, the 
bias term used in most Adaline implementations 
avoids this. A bias term is a supplementary input 
with constant value one, by which expression (2) can 
represent any linear function, no matter what is the 
input space dimensionality. Most multi-layer ANNs 
implicitly also avoid situations where all Adaline 
input values would be zero at the same time. This is 
studied more in detail in the following section.  

3.2 Non-linear, multi-layer ANNs 

In ANNs, neurons are usually organized into layers, 
where the output values of neurons in a layer are 
independent of each other and can therefore be 
calculated simultaneously. Figure 1 shows a feed-
forward ANN with one input and one output (there 
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may be an arbitrary number of both). ANN input 
values are distributed as input values to the hidden 
neurons of the hidden layer. Hidden neurons usually 
have a non-linear output function with values limited 
to the range [0, 1]. Some non-linear output functions 
have values limited to the range [-1, 1].  

t o 

s  
Figure 1: Three-layer feed-forward ANN with sigmoid 

outputs in hidden layer and linear output layer.  

A commonly used output function for hidden 
neurons is the sigmoid function 
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where o is the output value and A is the weighted 
sum of the inputs (2). The output neurons of the 
output layer may be linear or non-linear. If they are 
linear, they are usually Adalines.  

Learning in multi-layer ANNs can be performed 
in many ways. For ANNs like the one in Figure 1, a 
gradient descent method called back-propagation is 
the most used one (Rumelhart et al., 1988). For such 
learning, two questions arise: 
• Is it possible to use a scaled learning rate also 

for non-linear neurons? 
• If the output layer (or some other layer) is an 

Adaline, is it then useful to use the scaled 
learning rate? 

The answer to the first question is probably “no”. 
The reason for this is that functions like the sigmoid 
function (10) do not allow arbitrary output values. 
Therefore, if the target value is outside the range of 
possible output values, then it is not possible to find 
weights that would modify the output value so that it 
would become exactly equal to the target value. 
Instead, the learning rate of non-linear neurons is 
usually dynamically adapted depending on an 
estimation of the steepness of the gradient over 
several training steps (Haykin, 1999). 

The answer to the second question is ”maybe”. If 
Adaline inputs are limited to the range [0, 1], then 
the squared sum in (8) remains limited. Still, in the 
beginning of training, hidden neuron outputs are 
generally very small. Then a scaled learning rate 

might accelerate output layer learning, while 
slowing down when hidden neurons become more 
activated. This could be an interesting direction of 
future research to investigate.  

4 EXPERIMENTAL RESULTS 

Experiments were performed using a robot built with 
the Lego Mindstorms Robotics Invention System 
(RIS). The RIS offers a cheap, standard and simple 
platform for performing real-world tests. In addition 
to Lego building blocks, it includes two electrical 
motors; two touch sensors and one light sensor. The 
main block contains a small computer (RCX) with 
connectors for motors and sensors. Among others, 
the Java programming language can be used for 
programming the RCX.  

 
Figure 2: Lego Mindstorms robot. Light sensor is at the 
top in the front, directed forwards. One touch sensor is 

installed at the front and another at the rear.  

The robot had one motor on each side; touch sensors 
in the front and in the back and a light sensor 
directed straight forward mounted in the front 
(Figure 2). Robots usually have more than one light 
sensor, which were simulated by turning the robot 
around and getting light readings from three 
different directions. One light reading was from the 
direction straight forward and the two others about 
15 degrees left/right, obtained by letting one motor 
go forward and the other motor backward for 250 
milliseconds and then inversing the operation. The 
light sensor reading from the forward direction after 
performing an action is directly used as the reward 
value, thus avoiding hand tuning of the reward 
function.   

Five actions are used, which consist in doing one 
of the following motor commands for 450 
milliseconds: 1) both motors forward, 2/3) one 
forward, other stopped, 4/5) one forward, other 
backward. Going straight forward means advancing 
about 5 cm, actions 2/3 going forward about 2 cm 
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and turning about 15 degrees and actions 4/5 turning 
about 40 degrees without advancing.  

The robot starts about 110 centimetres from the 
lamp, initially directed straight towards it. Reaching 
a light value of 80 out of 100 signifies that the goal 
is reached, which means one to fifteen centimetres 
from the lamp depending on the approach direction 
and sensor noise. In order to reach the goal light 
value, the robot has to be very precisely directed 
straight towards the lamp. The lamp is on the floor 
level and gives a directed light in a half-sphere in 
front of it. If the robot hits an obstacle or drives 
behind the lamp, then it is manually put back to the 
start position and direction. The test room is an 
office room with noise due to floor reflections, walls 
and shelves with different colours etc. The robot 
itself is also a source of noise due to imprecise 
motor movements, battery charge etc. However, the 
light sensor is clearly the biggest source of noise as 
shown in Figure 3, where light sensor samples are 
indicated for two different levels of luminosity. 
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Figure 3: 150 light samples for two different light 
conditions, taken with 500 millisecond intervals. Average 
values are 22.5 and 60.0. Raw values are shown to the left, 

value distribution to the right.  

Table 1: Hand-coded weights. One row per action, one 
column per state variable (light sensor reading). 

Action Left Middle Right 
Forward 0.1 0.8 0.1 
Left/forward 0.6 0.3 0.1 
Right/forward 0.1 0.3 0.6 
Left 0.6 0.2 0.2 
Right 0.2 0.2 0.6 
 

When using an ANN there is one output per action, 
where the output value corresponds to the action-
value estimate of the corresponding action. With 
five actions and three state variables, a 5x3 weight 
matrix can represent the weights (no bias input used 
here). A “hand-coded agent” with pre-defined 
weights (Table 1) was used in order to prove that an 
Adaline linear function approximator can solve the 

control task and as a reference for judging how good 
the performance is for learning agents. These 
weights were determined based on the principle that 
if the light value is greatest in the middle, then make 
the forward-going action have the biggest output 
value. In the same way, if the light value is greater to 
the left, then favour some left-turning action and 
vice versa for the right side. The hand-coded agent 
reached the goal after a 30-episode average of about 
17 steps.  

Learning agents used the same Adaline 
architecture as the hand-coded agent. Weights are 
modified by the Widrow-Hoff training rule (3). All 
agents used ε-greedy exploration with ε = 0.2, which 
seemed to be the best value after experimentation. 
Tests were performed both with weights initialised 
to small random values in the range [0, 0.1) and with 
weights having optimistic initial values in the range 
[0, 1). Such weights are optimistic because their 
expected sum per action neuron is 1.5, while weight 
values after training should converge to values 
whose sum is close to one. This is because state 
variable values and reward values are all light sensor 
readings, so the estimated reward value should be 
close to at least one of the state variable values. If 
the RL is successful, then the estimated reward 
should even be a little bit bigger since the goal by 
definition of RL is to make the agent move towards 
states giving higher reward.  

An un-scaled learning rate value of 0.0001 was 
used after a lot of experimentation. This value is a 
compromise. Far from the lamp, light sensor values 
are about 10, so expression (8) gives the value 1/(102 
+ 102 + 102) = 0,00333…. Close to the lamp, light 
sensor values approach 80, so the corresponding 
value would be 0.00005. According to expression 
(8), the un-scaled learning rate value 0.0001 
corresponds to light sensor values around 58, which 
is already close to the lamp. Therefore, excessive 
weight modifications probably occur close to the 
lamp, but then the number of steps remaining to 
reach the goal is usually so small that weights do not 
have the time to oscillate.  
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Figure 4: Comparison between static (lr) and scaled (slr) 

learning rate. Averages for 10 runs. 

Figure 4 compares the performance of an agent 
using the un-scaled learning rate 0.0001 and an 
agent using slr = 0.8. With this scaled learning rate, 
the first episode is slightly faster. Convergence is 
also much smoother with the scaled learning rate 
than with the un-scaled learning rate. The statistics 
shown in Table 2 further emphasize the advantage of 
using a scaled learning rate. The total number of 
steps is slightly smaller, but the average length of 
the last five episodes is clearly lower for the agents 
using the scaled learning rate. This is most probably 
because the un-scaled learning rate sometimes 
causes excessive weight modifications that prevent 
the agent from converging to optimal weights.  

The number of manual resets is a further 
indication of excessive weight modifications. One 
bad light sensor reading may be sufficient to make 
the robot get stuck into using the same action for 
several steps. If that action happens to be going 
straight forward, then the robot usually hits a wall 
after a few steps. Reducing the value of the un-
scaled learning rate could reduce this phenomenon, 
but it would also make learning slower. 

Table 2: Statistics for agents using different learning rates. 
Averages for 10 runs. 

Agent Total  Aver. 5 last Man. resets
lr=0.0001 378 29.5 30 
slr=0.2 458 28.6 18 
slr=0.5 355 27.7 10 
slr=0.8 359 27.1 10 

 
Figure 5 compares the performance of agents using 
different values for the scaled learning rate. All 
graphs are smooth and converge nearly as rapidly. 
This result shows that the scaled learning rate is 
tolerant to different values. The meaning of the 
scaled learning rate is also easy to understand (i.e. 
“percentage of modification of output value towards 
target value”), so determining a good value for the 
scaled learning rate is easier than for the un-scaled 
learning rate.  
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Figure 5: Results for different values of scaled learning 

rate. Averages for 10 runs. 

Figure 6 and Table 3 compare the performance of 
agents whose weights are initialised with random 
values from the range [0, 0.1) and agents whose 
weights are initialised with optimistic initial values, 
i.e. random values from the range [0, 1). Using 
optimistic initial values clearly gives faster initial 
exploration. The number of manual resets with 
optimistic initial values is also lower for agents 
using slr = 0.5 and slr = 0.8, but instead it is higher 
for lr = 0.0001 and slr = 0.2.  

Finally, when setting ε = 0 after 10 episodes, i.e. 
always taking the greedy action, the trained agents 
had identical performance as the hand-coded agent. 
However, one should remember that learning agents 
could also adapt to changes in the environment or 
differences in sensor sensibility, for instance. 
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Figure 6: Results for different initial weights. Averages for 

20 runs. 

Table 3: Statistics for different initial weights. Averages 
for 20 runs. 

Initial weights Total Aver. 5 last Man. resets
[0, 0.1) 411 29.1 33 
[0, 1) 364 27.3 35 
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5 RELATED WORK 

The amount of literature on gradient descent 
learning is abundant. One of the most recent and 
exhaustive sources on the subject is (Haykin, 1999). 
Adjusting the Adaline learning rate has been studied 
previously at least by Luo (1991), who shows that 
the Adaline learning rate should be reduced during 
learning in order to avoid “cyclically jumping 
around” the optimal solution. References in (Luo, 
1991) also offer a good overview of research 
concerning the gradient descent learning rate. 
However, to the author’s knowledge, the concept of 
scaled learning rate introduced in this paper is new.  

RL has been used in many robotic tasks, but 
most of them have been performed in simulated 
environments. Only few results have been reported 
on the use of RL on real robots. The experimental 
setting used here resembles behavior learning 
performed by Lin (1991) and Mahadevan & Connell 
(1992). Behavioral tasks treated by them include 
wall following, going through a door, docking into a 
charger (guided by light sensors), finding boxes, 
pushing boxes and getting un-wedged from stalled 
states. Some of these behaviors are more challenging 
than the light-seeking behavior used in this paper, 
but the simple linear Adaline model used here for 
state generalization greatly simplifies the learning 
task compared to previous work. An example of 
non-RL work on light-seeking robots is Lebeltel et 
al. (2004).   

6 CONCLUSIONS  

One of the most important advantages of the scaled 
learning rate presented in this paper is that it is easy 
to understand the signification of the values used for 
it. Evidence is also shown that the scaled learning 
rate improves learning because it makes the network 
output values approach the corresponding target 
values with a similar amount independently of the 
input values. Experimental results with a real-world 
light-seeking robot illustrate the improvement in 
learning results by using the scaled learning rate.  

It seems rather surprising that a scaled learning 
rate has not been used yet, according to the author’s 
best knowledge. One explanation might be that in 
supervised learning tasks, the training samples are 
usually available beforehand, which makes it 
possible to normalize them into suitable values. In 
real-world RL tasks, with constraints on learning 
time and the availability of training samples, this 
may not be possible. Using multi-layer non-linear 
ANNs also might reduce the utility of scaling the 
learning rate, as explained in section 3.2.  

In addition to the scaled learning rate, the RL 
exploration/exploitation trade-off is also addressed 
in the paper. The exploration policy used determines 
the quality of collected training samples and 
therefore greatly affects learning speed and the 
quality of learned solutions. Empirical results are 
shown mainly on the advantages of using optimistic 
initial values for the network weights when possible.  

Future work includes improving exploration 
policies and handling delayed reward. Obtaining 
further results on the use of the scaled learning rate 
for other than RL tasks would also be useful.   
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