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Abstract: In this paper we present a Cognitive Mechanism called MDB (Multilevel Darwinist Brain) based on Darwinist 
theories and its initial application to autonomous learning by robotic systems. The mechanism has been designed 
to permit an agent to adapt to its environment and motivations in an autonomous way. The general structure of the 
MDB is particularized into a two level architecture: reasoning and interaction. This structure corresponds to a 
generic cognitive model where world, internal and satisfaction models are used to select strategies that fulfil the 
motivation of the agent. The main idea behind the proposal is that all of the components of the mechanism are 
obtained and modified through interaction with the environment in real time by means of on line Darwinist 
processes, allowing for a natural learning curve. The mechanism is able to provide solutions based on experience 
or original solutions to new situations. The knowledge used by the agent is acquired automatically and not 
imposed by the designer. Here we discuss the basic operation of the mechanism and demonstrate it through a real 
example in which a hexapod robot is taught to walk efficiently and to reach an objective in its surroundings. 

1 INTRODUCTION 

From a practical point of view, a Cognitive Mechanism 
permits an artificial agent to autonomously control its 
actuators using the sensorial information it has in order 
to achieve a given objective or complete a task. After 
revisiting the different tendencies found in the literature 
of the last twenty years, we have extracted four basic 
features that different authors propose as necessary for a 
viable complete cognitive mechanism: 

• The use of explicit models of the environment and 
of the agent itself in order to be able to carry out complex 
tasks requiring reasoning (deliberative capabilities). 

• The system should display reactive capabilities in 
order to provide quick response in real problems. 

• The minimization of the influence of the designer 
using techniques that permit an automatic design process 
(such as evolution). 

• The system should be adaptive in order to apply 
the Cognitive Mechanism in dynamic environments. 

Traditional deliberative systems were usually based 
on symbol manipulation (Newell and Simon, 1976), and 
classified as Symbolic Artificial Intelligence. Some 
examples of Cognitive Mechanisms using this approach 

could be (Bratman, Israel and Pollack, 1988) and (Agre 
and Chapman, 1987). There are several studies, for 
example (Chapman, 1987), concluding that the 
complexity of a symbol based system necessary to solve 
a high level reasoning problem make this approach 
practical only for domain limited tasks. Furthermore, in 
classical deliberative systems the intervention of the 
designer is crucial, and the resulting mechanisms present 
a low level of adaptability. 

Most reactive solutions have been mainly variations 
of the general concepts proposed in the Subsumption 
Architecture (Brooks, 1986) designed by Brooks, where 
simple behavior modules compete for the control of the 
agent. These systems are characterized by a quick 
response in real tasks due to their simplicity, but they 
present limitations when applied to high level reasoning 
problems because of the lack of reflexive elements. In 
addition, the participation the designer is high because 
the simple modules must be designed “by hand”. As 
relevant examples of these systems we could cite 
(Kaelbling, 1987) and (Maes, 1991). 

In order to make the design process easier and to 
minimize the tweaking by the designer, some authors 
have applied different techniques that permit obtaining 
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the cognitive architectures (or some parts of them) 
automatically. For instance, evolutionary algorithms 
have been applied in different systems providing 
adequate solutions in an autonomous way (Floreano and 
Mondada, 1996). 

In addition to these four features (deliberative, 
reactive, automatic design and adaptive) we impose as 
the main requirement to the mechanism that the 
acquisition of knowledge be automatic, this is, the 
designers should not impose their knowledge on the 
system. A Cognitive Mechanism, in our opinion, is a 
framework that allows the system to acquire knowledge 
from its environment and itself and provides a way of 
using it in the generation of actions that lead the agent to 
fulfil its motivations and not the knowledge itself 
whether in the form of a function relating perceptions 
and actions or any other format.  

In the quest for a way to fulfil all the aforementioned 
requirements, especially the last one, we have resorted to 
bio-psychological theories within the field of cognitive 
science that relate the brain and its operation through a 
Darwinist process. These theories are:  

• The Theory of Evolutionary Learning Circuits 
(TELC) (Conrad, 1974, 1976). 

• The Theory of Selective Stabilization of Synapses 
(TSSS) (Changeux et al., 1973) (Changeux & Danchin, 
1976). 

• The Theory of Selective Stabilization of Pre-
Representations (TSSP) (Changeux et al., 1984). 

• The Theory of Neuronal Group Selection (TNGS) 
or “Neural Darwinism” (Edelman, 1987).  

Each theory has its own features, which can be 
studied in the references, but they all lead to the same 
concept of cognitive structure based on the fact that the 
brain adapts its neural connections in real time through 
evolutionary or selectionist processes. This idea of 
Darwinism in the acquisition of knowledge is the basis 
for the development of the practical Cognitive 
Mechanism we propose here. In the following sections 
we will explain how this idea can be implemented in a 
working structure starting from the formal definition of a 

cognitive model and how it leads to the successful 
interaction of real robotic agents with their world during 
their lifetime 

2 COGNITIVE MODEL 

One classical way of formalizing the operation of a 
general cognitive model from a utilitarian point of view 
starts from the premise that to carry out any task, a 
motivation (defined as the need or desire that makes an 
agent act) must exist that guides the behaviour as a 
function of its degree of satisfaction. The tools the agent 
can use to modify the level of satisfaction of its 
motivation are perceptions through sensors and actions 
through actuators, thus we consider that the external 
perception e(t) of an agent is made up of the sensorial 
information it is capable of acquiring through its sensors 
from the environment in which it operates. The external 
perception depends on the last action performed by the 
agent A(t) and on the sensorial perception it had of the 
external world in the previous time instant e(t-1) through 
a function W corresponding to the environment or to a 
mathematical model of it: 

          
e(t) = W [e(t-1), A(t)] 

 
The internal perception i(t) of an agent is made up of 

the sensorial information provided by its internal sensors 
(for example, a hunger sensor). The internal perception 
can be written in terms of the last action performed by 
the agent A(t) and on the sensorial perception it had from 
the internal sensors in the previous time instant i(t-1) 
through a function I corresponding to the internal 
environment itself or to a mathematical model of it: 

 
i(t) = I [i(t-1), A(t)] 

 
We define the global perception G(t) of the agent as a 

function that is made up of the external perception e(t) 

Figure 1: Functional diagram representing a general cognitive model 
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and the internal perception i(t). 
The satisfaction s(t) represents the degree of 

fulfilment of the motivation and depends on the global 
perception through a function S. Thus, generalizing: 

 
s(t) = S [G(t)] = S [e(t), i(t)]= 

= S [W [e(t-1), A(t)], I [i(t-1), A(t)]] 
 
The Cognitive Mechanism must lead to the 

satisfaction of the motivation, which, without any loss of 
generality, may be expressed as the maximization of the 
satisfaction. Thus: 

 
max{s(t}) =  

max {S [W [e(t-1), A(t)], I [i(t-1), A(t)]]} 
 
To resolve this maximization problem, the only 

parameter the agent can modify is the action it performs, 
as the external and internal perceptions cannot be 
manipulated (unless we change the environment or the 
agent in order to facilitate the behaviour which is a topic 
that is beyond the scope of this paper). That is, the 
cognitive mechanism must explore the possible action 
space in order to maximize the resulting satisfaction.  

In a Cognitive Mechanism, the exploration of 
actions must be carried out internally so W, I and S are 
mathematical functions that must be somehow obtained. 
These functions correspond to what are traditionally 
called: 

• World model (W): function that relates the external 
perception before and after applying an action. 

• Internal model (I): function that relates the internal 
perception before and after applying an action. 

• Satisfaction model (S): function that provides de 
predicted satisfaction from the predicted external and 
internal perceptions provided by the world and internal 
models. 

In Figure 1 we display a functional diagram 
representing the cognitive model, and we can see that 
there are two processes that must take place in a real non 
preconditioned operating mechanism: models W, I and S 
must be obtained as the agent interacts with the world, 
and for every interaction of the world, the best possible 
action must be selected through some sort of 
optimization using the models available at that time. 

When trying to implement this cognitive model 
computationally, in addition to these basic elements 
(perceptions, actions, motivations and models) we need 
to include a new one: the action-perception pair. It is just 
a collection of values from the interaction with the 
environment after applying an action, that is, data from 
the real world, and could be represented as follows: 

As we can see, an action-perception pair is made up 
of the sensorial data and the satisfaction related to the 
application of an action and it is used as a pattern to 
obtain the models in real time. 

3 CONSTRUCTING THE MDB 

As we have mentioned in the previous section, the 
actions that must be applied in the environment are 
selected internally by the agent and the internal operation 
is made up of three main elements: a memory that stores 
the action-perception pairs, a stage to improve the 
models according to the real information available and 
finally a stage to select the action to be applied. 

Using this scheme we have constructed a new 
Cognitive Mechanism called MDB (Multilevel 
Darwinist Brain). The main difference of the MDB with 
respect to other model based cognitive mechanisms is 
the way the models are obtained and the actions planned 
from them. Its functional structure is shown in Figure 2. 
The final objective of the mechanism is to provide the 
action the agent must apply in the environment to fulfil 
its motivation. The main operation can be summarized 
by considering that the selected action (represented by 

the Current strategy block) is applied to the Environment 
through the actuators (Actuation block) obtaining new 
Sensing values. These acting and sensing values provide 
a new action-perception pair that is stored in the Action-
Perception Memory. Then, the Model Search/evolution 

 Sensorial 
Data 
(t) 

Action 
Applied  

(t) 

Sensorial 
Data 
(t+1) 

Satisfaction 
(t+1) 

Figure 2: Block diagram of the MDB including 
evolutionary learning elements. 
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processes start (for world, internal and satisfaction 
models) trying to find functions that generalize the real 
samples (action-perception pairs) stored in the Action-
Perception Pair Memory. The best models in a given 
instant of time are taken as Current World Model and 
Current Satisfaction Model and are used in the process of 
Optimizing the Action. After this process finishes, the 
best action obtained is applied again to the Environment 
through the actuators obtaining new Sensing values. 

These five steps constitute the basic operation cycle 
of the MDB, and we will call it an iteration of the 
mechanism. As more iterations take place, the MDB 
acquires more information from the real environment 
(new action-perception pairs) so the models obtained 
become more accurate and, consequently, the action 
chosen using these models is more appropriate. 

There are two main processes that must be solved in 
MDB: the search for the best world and satisfaction 
models predicting the contents of the action-perception 
pair memory and the optimization of the action trying to 
maximize the satisfaction using the previously obtained 
models. In the way these processes are carried out lies 
the main difference of the MDB with respect to other 
cognitive mechanisms. 

3.1 On line creation of Models 

In this context, a model is just a non linear function 
defined in an n-dimensional space that approximates and 
tries to predict real characteristics. Taking this into 
account, possible mathematical representations for the 
models are polynomial functions, simple rules, fuzzy 
logic rules, neural networks, etc. Whatever the 
representation, techniques for obtaining these functions 
must be found considering that we have samples (action-
perception pairs) of the function to model, these samples 
are known in real time and we want to obtain the most 
general model possible, not a model for a given set of 
samples present in a particular instant. 

Taking these three points into account, the model 
search process in the MDB is not an optimization 
process but a learning process. As commented in (Yao, 
96), learning is different from optimization because we 
seek the best generalization, which is different from 
minimizing an error function. Consequently, the search 
techniques must allow for gradual application as the 
information is known progressively and in real time. In 
addition, they must support a learning process through 
input/output pairs (action/consequence samples) using an 
error function. 

To satisfy these requirements we have selected 
Artificial Neural Networks as the mathematical 
representation for the models and Evolutionary 
Algorithms as the most appropriate search technique. 
This combination presents all the required features for 

the automatic acquisition of knowledge (the models) 
based on the Darwinist theories.  

After applying an action in the environment and 
obtaining new sensing values, the search for the models 
are now evolutionary processes, one for the world 
models and another for the satisfaction models. The use 
of evolutionary techniques permits a gradual learning 
process by controlling the number of generations of 
evolution for a given content of the action-perception 
pair memory. This way, if evolutions last just for a few 
generations (usually from 2 to 4) per iteration, we are 
achieving a gradual learning of all the individuals. In 
order to obtain a general model, the populations of the 
evolutionary algorithms are maintained between 
iterations (new entries in the action-perception memory) 
of the MDB. Furthermore, the evolutionary algorithms 
permit a learning process through input/output pairs 
using as fitness function an error function between the 
predicted values provided by the models and the 
expected values for each action-perception pair.  

Strongly related to this process is the management of 
the action-perception pair memory, because the quality 
of the learning process depends on the data stored in this 
memory and the way it changes. The data that must be 
managed (samples of the real world) and stored in this 
memory is acquired in real time as the system interacts 
with the environment. From this point forward, this 
memory will be called Short Term Memory (STM). It is 
not practical or even useful, if we want an adaptive 
system, to store in the STM all the samples acquired in 
agent’s lifetime. We need to develop a replacement 
strategy for this memory that permits storing the most 
relevant samples for the best possible modelling.  

3.2 Managing the STM  

The replacement process in the Short Term Memory 
depends on the way we compare the elements stored, in 
this case, samples of a function. Whenever we have a 
new sample we must decide if it is stored replacing one 
that was previously stored in the STM. To compare 
samples we must label them taking into account that we 
hope to store the most relevant information to model. We 
have designed a replacement strategy that labels the 
samples using four basic features: 

1. The point in time a sample is stored (T): this 
parameter favours the elimination of the oldest samples, 
maximizing the learning of the most current information 
acquired.  

2. The distance between samples (D): measured as 
the Euclidean distance between the action-perception 
pair vectors, this parameter favours the storage of 
samples from all over the feature space in order to 
achieve a general modelling. A min-max strategy is 
used, this is, each sample is assigned a label D 
corresponding to the minimum of the distances (di) to the 
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remaining samples. The samples that maximize the D for 
the STM are stored.  

3. The complexity of a sample to be learned (C): this 
parameter favours the storage of the hardest samples to 
be learned. To calculate it, we use the error provided by 
the current model (m) when predicting a sample j (X1 
,…, Xn, Y1,…,Yk), that corresponds to a previously 
stored model with n inputs and k outputs. 

4. The relevance of a sample (R): this parameter 
favours the storage of the most particular and relevant 
samples, those that escape from generality, that is, those 
that, even though they may be learnt by the models very 
well, initially presented large errors. It is a fundamental 
term when working with real environments where 
functions are not smooth. To calculate it, we use the 
error provided by the current model when predicting a 
new sample n (X1 ,…, Xn, Y1,…,Yk). Consequently, it is 
an initial error value and it doesn’t change while the 
sample is in the STM: 

Thus, each sample is stored in the STM has a label 
(L) that is calculated every iteration as a linear 
combination of these four basic terms: 

 
 

where the constants Ki control the relevance of each 
term. This way, the main feature of the replacement 
strategy presented is its dynamism and depending on the 
value of the constants Ki we can generate different 
storage policies. For example, if we prefer to store the 
newest samples without generalization considerations, 
we can use Kt = 1 and Kd  = Kc = Kr = 0 which is a FIFO 
replacement strategy. This modification of the 
parameters can be carried out automatically by the MDB 
as a function of perception or strategy. 

3.3 Action Search  

An action is a command to the actuators of the agent and 
its representation depends on the particular agent. The 
search for the best action in the MDB is not a learning 
process because we are looking for the best possible 
action for a given set of conditions. That is, we must 
obtain the action whose predicted consequences given by 
the world and internal models result in the best predicted 
satisfaction. Consequently, for the actions, we must solve 
a simple optimization problem in which any 
optimization technique is valid. In our case, and for 
homogeneity, we have used evolution. 

It is important to note that the MDB always has 
current world, internal and satisfaction models and a 
current strategy available for the agent to make use of. 
This implies that in its interaction with the world it does 
not require waiting for the mechanism in order to act. 
This provides the capability of real time interaction. 
Obviously, the quality of these models and actions will 
depend on how many action perception pairs the agent 

has gone through in its life and how much “thinking” 
time it has had to transform these data into information 
in the form of useful models.   

We have not imposed any restriction on the type of 
evolutionary technique that can be applied: genetic 
algorithms, evolution strategies, genetic programming or 
macroevolutionary algorithms are suitable for the 
process of learning the models. 

In the next section, we present two simple 
application examples to show the basic operation of the 
MDB and its capabilities for the automatic acquisition of 
knowledge that permits an agent to learn autonomously 
from its interaction with the environment. To do this, we 
have applied the MDB in a real hexapod robot trying to 
perform a simple task. 

4 MDB IN A REAL ROBOT 

The left image of Figure 3 displays the Hermes II 
hexapod robot used in this example. It is a robust robot 
provided with six legs with two degrees of freedom and 
six infrared sensors, each one placed on the top of each 
leg, two whiskers, inclinometers and six force sensors. 
The MDB mechanism was applied to a simulated model 
(right image in Figure 3) of the Hermes II robot created 
using the DADS 3-D mechanical simulator and then 
transferred to the real robot 

4.1 Learning to walk  

In the first part of the example, we want the Hermes II 
robot to learn to walk. We can describe the motion of 
each leg through 3 parameters (for the swing and lift 
motion): the initial phase, which establishes the starting 
point of the leg motion, the frequency, which increases 
or decreases the speed of the movement and the sweep 
amplitude. In this case, all of the parameters are fixed 
except the initial phase of the swing motion for each leg. 
The different combinations of phases lead to different 
gaits, some useful, some useless and some even 
completely impractical. We want the mechanism to 

RKCKDKTK=L rcdt ⋅+⋅+⋅+⋅

Figure 3: The left image shows the Hermes II 
robot and the right one shows the model used in 
simulation.
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allow the robot to develop an efficient gait so that it can 
fulfil its motivations. 

The robot starts from point (0,0) in each iteration and 
an object (a block) is placed one meter away from it. The 
mechanism selects the gait that must be applied and the 
robot uses it during a fixed time (13 seconds in 
simulation, 24 seconds in the real robot). Through its 
infrared sensors using a time integration virtual sensor 
presented in (Bellas et al., 2000), the robot always has an 
indication (in general noisy) of the distance to the block. 
These values are used as the input sensed values to the 
world model. 

The motivation of this behaviour for the agent is to 
maximize the detection in the two front infrared sensors  
(which corresponds to a minimization of the distance) 
because we want it to reach the block frontally and using 
a stable gait.  

This way, we have a world model with 7 inputs, the 
distance to the block provided by the virtual sensor and 
the 6 input phases applied to the legs. The output from 
the world model is the predicted distance to the block.  

We have implemented the world models using 
artificial neural networks (multilayer perceptrons). The 

networks consisted of two 4 neuron hidden layers. In 
Figure 4 we show the evolution of the mean squared 
error between the distance predicted by the world model 
and the real one. As we can see, the error becomes very 
small about iteration 180 but it oscillates. This is because 
a world model that is evolved for a given set of contents 
in the short-term memory, could be less adequate for 
another set. In this example, the short-term memory 
contains 40 action-perception pairs and it works as a 
FIFO memory, so the replacement strategy is purely 
temporal in this first case. 

For the evolution of the world models we have used 
a simple genetic algorithm with 700 individuals, 57 
genes (corresponding to the weights and bias of the 7-4-
4-1 neural network), 60% crossover and 2% mutation. 
The satisfaction is directly the predicted distance to the 
block. Thus the Hermes robot must select a gait in order 
to minimize this distance. In this example, we will not 
use an explicit satisfaction model. 

For the optimization of the actions, we have also 
used a genetic algorithm with 120 individuals, 6 genes 
(direct encoding of the input phases), 60% crossover and 
6% mutation. 

In order to test how good a gait is, we define the 
efficiency of a gait as the normalized distance in the 
direction of the objective covered by the robot in a fixed 
simulation time, weighted by the distance that its 
trajectory is separated from a straight line. That is, we 
consider that a gait is better if the robot goes straight to 
the block without any lateral deviation. We must point 
out that this measure is never used in the cognitive 
mechanism; it is just a way of presenting results in 
papers.  

In Figure 5 we display the behavior of this efficiency 
throughout the robot’s life. It can be observed that the 
curve tends to 1 as expected. Initially, the gaits are poor 
and the robot moves in irregular trajectories. This is 
reflected in the efficiency graph by the large variations in 
the efficiency from one instant to the next. Sometimes, 
by chance it reaches the block, others it ends up very far 
away from it. Note that whatever the result of the action, 
it does produce a real action perception pair, which is 
useful data in order to improve the models. As the 
interaction progresses, the robot learns to reach the block 
without any deviation in a consistent manner, and the 
efficiency tends to one. 

In the three graphs of Figure 6, we represent the 
temporal occurrence of the end of the swing motion for 
each leg. The top graph corresponds to iteration 6 and we 
can see that the swings are completely out of phase. The 
resulting gait is not appropriate for walking in a straight 
line and the robot turns, leading to a low efficiency 
value. The middle graph corresponds to iteration 87 
where the resulting gait is more efficient than before 
according to the level of error for that iteration (see 
Figure 4). Finally, the bottom figure shows the 
combination of phases corresponding to iteration 300. As 
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Figure 4: Evolution of the mean squared error between 
the output of the world model (distance to the object) and 
the real distance. 
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Figure 5: Efficiency of the gaits applied by the robot. As 
time progresses it tends to one, this is, the robot moves 
straight to the block without any lateral deviation. 
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we can see, the initial phases are equal in groups of three 
and the resulting gait is quite good. In fact, this 
combination of phases leads to a very common and 
efficient gait called tripod gait, where three legs move in 
phase and the other three legs in counter-phase resulting 
in a very fast and stable straight line motion.  

We must point out that this gait was developed by 
the robot itself, we just built the world for the robot to 
learn and provided a motivation to reach an objective as 
efficiently as possible. 

4.2 Learning to turn  

At this point, the Hermes II robot has learnt to walk, and 
now we want it to learn to turn using the combination of 
initial phases obtained (tripod gait). The main objective 
of this second part of the example is to use an explicit 
satisfaction model. 

We place an object (a block) in a semicircunference 
in front of the robot at a random distance between 50 and 
100 cm, and the mechanism must select the best 
combination of amplitudes in the swing motion in order 
to reach it. The rest of the parameters in the gait are 
fixed. If the robot reaches the block (distance of less than 
20 cm) or if it loses it (distance larger than 100 cm) we 
move it to a new position in the semicircunference. This 

way, we develop a teaching method as we would do 
with children: we present an objective and we reward the 
good actions. 

The world model has three inputs, the distance and 
angle of the robot with respect to the block (provided by 
the virtual sensor applied before) and the amplitude of 
turn. The outputs are the predicted distance and angle. 
These two magnitudes are the inputs to the satisfaction 
model, which has just one output, the predicted 
satisfaction. The motivation of the behavior is again the 
maximization of the infrared sensing in the two front 
sensors. Consequently, the robot must reach the block 
(minimizing distance) with low deviation (minimizing 
angle). 

The models are represented by multilayer 
perceptrons with two 4 neuron hidden layers for the 
world models and two 3 neuron hidden layers for the 
satisfaction models. The population in the genetic 
algorithms was 600 individuals for the world models and 
300 for the satisfaction models. In Figure 7 we have 
represented the number of iterations between two 
consecutive captures of the object. We can see clearly 
how in the first stages of the behavior, there exists a big 
delay from one capture to the next because the models 
are poor and, as a consequence, the selected actions are 
not successful. But the tendency changes about iteration 
200 and the number of iterations between two 
consecutive captures decreases to one. 

In the top image of Figure 8 we display the path 
followed by the real robot with the strategies applied in 
iterations 53, 54, 55 and 56. As indicated in Figure 7, 
these iterations correspond to the first stages of the 
mechanism where the number of iterations required to 
reach the object is large. In fact, the block remains in the 
same position during the application of these four 
strategies and the robot never turns towards it.  

In the bottom image of Figure 8 we display the path 
followed in iterations 421, 422, 423, 424. The robot 
reaches the block in iterations 422, 423 and 424 and we 
move it. The strategies are now very successful. 
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Figure 6: End of the swing motion for each leg in time.
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5 CONCLUSIONS 

We have presented a Cognitive Mechanism for robots 
(the Multilevel Darwinist Brain) that applies Darwinist 
concepts like evolutionary learning to the autonomous 
acquisition of knowledge by agents. 

A classical utilitarian cognitive model including 
motivations to guide the behaviors is particularized to 
this Darwinist approach. There are evolutionary 
optimization processes that must be continuously solved 
in the MDB to internally decide the appropriate actions 
and evolutionary search processes to obtain the models 
where the actions are tested, following a deliberative 
approach.   

The mechanism was tested using a hexapod robot 
which was trying to learn to walk and to reach an 
objective. The results obtained are very promising, as the 
robot was able to autonomously generate a tripod gait 
and modulate the amplitudes of the legs in order to turn 
to reach an objective through continuous interaction with 
the environment using its own sensors and a very simple 
motivation. This is very important because the 
mechanism permits the robot to find the best solution 
according to the limitations of its environment and its 
sensorial and actuation apparatus allowing it to adapt and 
survive in this particular world. One of the main features 
of this type of mechanisms is that if the world changes, 
the robot will adapt smoothly. 
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