
FROM PETRI NETS TO EXECUTABLE SYSTEMS: AN
ENVIRONMENT FOR CODE GENERATION AND ANALYSIS

João Paulo Barros1,2∗, Luı́s Gomes1, Rui Pais1,2, and Rui Dias1

1Universidade Nova de Lisboa / UNINOVA, Portugal
2Instituto Politécnico de Beja, Escola Superior de Tecnologia e Gestão, Portugal

Keywords: Petri nets, modularisation, code generation, executable models, verification, domain specific languages.

Abstract: There is an increased awareness regarding the importance of executable system’s specifications, in particular,
graphical specifications. Although most Petri nets variants are recognised as a versatile formalism, with an
intuitive graphical specifications and a precise semantics, most Petri nets tools limit themselves to graphical
editing and some type of simulation, system analysis, or both. This paper presents a new development envi-
ronment based on Petri nets. This environment enables the use of ad-hoc Petri net classes as domain specific
languages and allows the net models compositions and evolution through a set of orthogonal and generic mod-
ification operations. It also generates ANSI C code (easily extendable to other executable code) amenable to
be implemented in general-purpose hardware platforms, without sophisticated resources available. Addition-
ally, one major environment feature is the use of the same generated executable code, both for simulation and
for analysis purposes.

1 INTRODUCTION

Already in 1992, a paper by David Harel (Harel,
1992), proclaimed the advantages of model exe-
cutability (simulation) and code generation, as a way
to fight system complexity. And, especially since
OMG’s MDA initiative (OMG, 2003a), the impor-
tance of modelling environments allowing model ex-
ecution and code generation is widely acknowledged
(OMG, 2003b).

In spite of this increased awareness regarding the
importance of executable system specifications and,
in particular, graphical specifications, most Petri nets
tools limit themselves to graphical editing, some type
of simulation, system analysis, or both. Code genera-
tion is much more difficult to find. In the reference
Petri net tools database (Petri Nets Tool Database,
2004), from a total of 51 Petri nets tools, only 3
mention code generation: the SIPN-Editor, a pro-
gramming tool for PLC programmers, generates IL
programs; the CPN/Tools mentions code generation
but only for simulation purposes; the SYROCO tool
generates C++ code from a very high-level Petri net
based language supporting very significant extensions
to Petri nets, e.g., inheritance, and dynamic instantia-
tion. This paper presents a development environment

∗Work partially supported by a PRODEP III grant (Con-
curso 2/5.3/ PRODEP/2001, ref. 188.011/01).

for system development based on Petri nets. It can
be defined as an environment for system development
based on executable, and implementable, generic
Petri net models, with strong support for model struc-
turing and model modification. By generic Petri net
models we mean that the support for new Petri net
syntax or semantics can easily be added to the envi-
ronment.

The paper makes a brief presentation of the pro-
posed development environment, namely its architec-
ture, its behaviour, and its two main system tools: the
PnEditor and the PnGenerator. Finally, the paper
summarises the system’s innovations.

2 THE DEVELOPMENT
ENVIRONMENT

The development environment is based on two tools:
1. A graphical editor (named PnEditor) supporting

any Petri net model defined in the Petri net Markup
Language (PNML) (Jüngel et al., 2000; Billington
et al., 2003)2. It also supports hierarchical structur-
ing and a set of modification operations.
2As all our models will correspond to some Petri net

type, the used format is the PNML. The PNML is an emerg-
ing standard for a Petri net interchange format. It is based

464
Paulo Barros J., Gomes L., Pais R. and Dias R. (2004).
FROM PETRI NETS TO EXECUTABLE SYSTEMS: AN ENVIRONMENT FOR CODE GENERATION AND ANALYSIS.
In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics, pages 464-467
DOI: 10.5220/0001142104640467
Copyright c© SciTePress



2. A code generator tool (named PnGenerator) that is
able to generate ANSI C code (and is easily extend-
able to other languages) for net execution. The gen-
erated code is amenable to be executed in hardware
with limited resources. Besides, the same gener-
ated code can be used to simulation and verification
purposes.

A high-level view of the environment, explained
along this section, is presented in Fig. 1.

Typically, the user interacts with the PnEditor. The
editor allows the user to generate Petri net models
based on a previously read Petri net type definition
(PNTD). This is a XML file defining the Petri net type
to be used. More specifically, it defines the set of tex-
tual annotations than can be associated to each net el-
ement. The editor configures itself based on the read
PNTD: only the net elements defined in the PNTD are
made available in the graphical editing commands.

The editor is also able to generate a non-
hierarchical specification from a hierarchical model
being edited. We call this version, the flat model. This
means that we view the hierarchical model as a graph-
ical convenience. On one hand, this has the advan-
tages of a modular specification, namely readability,
modularity, and reusability. On the other hand, the
reduction to a flat model guarantees that the gener-
ated Petri net can easily remain closer to well-studied
Petri nets for which numerous verification possibili-
ties exist (e.g. elementary net systems (Rozenberg,
1987), free-choice nets (Desel and Esparza, 1995),
and Place/Transition nets (Desel and Reisig, 1998)).

The PnGenerator reads flat net specifications and
generates ANSI C code capable of executing the
model (the executable model). It can also generate
interface code that is linked to the executable code.
This allows the use of the same executable code also
for simulation and analysis tasks.

The simulation is, typically, carried out by the in-
teraction of the PnEditor and PnGenerator tools:

1. the PnEditor sends (by file) upon user request, an
initial flat Petri net;

2. the PnGenerator identifies the possible next steps
and returns that information to the PnEditor in the
form of several possible evolutions for the given flat
net.

3. the user chooses one of the possible execution steps

4. the PnEditor asks the PnGenerator to executes the
specified step

5. the PnGenerator returns the modified model ele-
ments to the PnEditor

6. the PnEditor updates the model

on XML and is part of the ongoing effort for a High-level
Petri net ISO standard (Petri nets Standard, 2004).

Additionally, given a flat model, the PnGenerator is
able to generate automatic simulations (without user
intervention) logging them in text files.

Finally, given a flat model, the PnGenerator is also
able to generate the respective state graph and to use
it for analysis purposes, namely, deadlock detection
and reachability analysis.

The environment architecture also makes evident a
clear independence between modelling and code gen-
eration tasks. The creation of graphical models and
the definition of Petri net types can, thus, easily evolve
independently from the code generation and simula-
tion tasks. This makes the environment more open as
it will allow both tools to be used outside of the initial
foreseen close cooperation: other tools can totally, or
partially, replace or complement, the existent ones.

2.1 The PnEditor

The PnEditor is a typical Petri net graphical editor
with three main additional characteristics: (1) the use
of the emergent standard for Petri net model inter-
change; (2) the support for model modification op-
erations; (3) the interaction with the PnGenerator for
simulation and verification tasks. Additionally, the
PnEditor is able to generate non-hierarchical (flat)
models from hierarchical ones.

The PnEditor relies on the Eclipse open source
project (Eclipse, 2004) mainly due to the availabil-
ity of a suitable framework, named Graphical Editing
Framework (GEF), for the development of graphical
editors (GEF, 2004).

The PnEditor also allows the specification of net
modifications through the use of textual expressions.
These textual expressions correspond to a simple al-
gebra around a set of operations on net instances,
places, and transitions. Net instances are elements of
net vectors. Given a net model N , a net vector of net
models N is a list of n instances of N nets, denoted
N [1 . . . n] where each net instance is denoted N [n].
All net components of a net instance N [i] have their
denotations suffixed by N [i]. For example, place p1

in a net instance S[2], becomes S[2].p1. This allows
a convenient way to refer to several distinct node in-
stances of a given net (Gomes et al., 2002; Gomes and
Barros, 2003; Barros and Gomes, 2004a).

The net instances and the respective places and
transitions, can be modified by a small set of oper-
ations defined elsewhere (Barros and Gomes, 2004a),
namely net addition and net subtraction. The net
modification operations can be applied at any time
some model modification is needed. Yet, net addition
can also be used in a structured way as the underly-
ing support for the hierarchical structuring of the net
model (Gomes and Barros, 2003) and for a particular
type of transition fusion, named synchronous group,
useful for object-oriented design (Barros and Gomes,

FROM PETRI NETS TO EXECUTABLE SYSTEMS: AN ENVIRONMENT FOR CODE GENERATION AND
ANALYSIS

465



Platform Specific Executor

Executable 
model

Input 
Interface

Output 
Interface

Hardware specific platform

flat net

(total)

flat net

(dynamic 
part)

PnEditor PnGenerator

user

Compiler

Generated Code

Simulator

Executable 
model

Simulation 
Interface

PNTD

flat net

flat net

flat net

flat net

...PNML Hierarchical 
net...

PC

Analyser

Executable 
model

Analysis 
Interface

Figure 1: The development environment architecture.

2004b). Net subtraction allows the undo of a previous
net addition operation.

2.2 The PnGenerator

Generically, we can view the PnGenerator tool as al-
lowing the developer to execute compiled Petri nets
models. This execution has three variants depending
on the use we want to give to the model execution.
Those variants correspond to the following function-
alities:
Code generation The Petri net model is read from

a text file (in PNML) format and executable code
(e.g. ANSI C) is generated. When compiled, this
code, is able to execute the Petri net.

Simulation This corresponds to the previously de-
scribed interaction between the PnEditor (the user)
and the PnGenerator.

Verification The verification uses the same code as
the simulation in order to produce the associated
state space. It is sufficient to generate additional
code stubs allowing the interface between the exe-
cutable code and the user.

Compared to the usual interpreted model execution,
the model compilation allows smaller footprints and
better performance for the executable code. This re-
sults from the significant optimisations that can be
done at compile time: for example, if the net class
allows priorities in transitions, but they are not used
in the model, then the generated code will not even
contain code testing their occurrence or value. And
the same is true for other similar cases.

Just like all model execution related knowledge,
the Petri net class semantics is hard-coded in the Pn-
Generator. Basically, for each new Petri net class to be
supported, one new class needs to be added to each of
three packages: (1) ”Specific Petri nets classes Read”,
to read the specific data in the PNML file; (2) ”Gener-
ate Specific Petri net Static Code” to specify the gen-
eration of code for the Petri net structure in the desired
output executable language (e.g. ANSI C); (3) ”Gen-
erate Specific Petri net Dynamic Code” to specify the
generation of code for the Petri net execution in the
desired output executable language. Note that distinct
dynamic behaviours can be specified for a given Petri
net class.

ICINCO 2004 - ROBOTICS AND AUTOMATION

466



3 CONCLUSIONS AND FUTURE
WORK

Here, we highlight the main characteristics which,
when taken together, make the presented environment
innovative:

Handling of multiple Petri nets formats The
PnEditor is able to configure itself accordingly to
a given Petri net type (defined accordingly to the
PNML emergent standard). In this way the editor
can be used to create models given in distinct Petri
nets based languages, with varying degrees of
platform independence. In summary, the PnEditor
is able to define and use multiple Petri nets as
domain specific languages.

Model structuring As the support is independent
from the respective net class, the PnEditor allows
hierarchical structuring of any Petri net model. Ad-
ditionally, a special type of transition fusion en-
ables the use of High-level Petri nets for Object-
oriented design.

Flexible model modifications The definition of a set
of textually specifiable model modification opera-
tions (represented by algebraic expressions) com-
plements the graphical nature of the Petri nets with
a compact notations for the specification of very
large models. This also allows higher levels of
modularisation.

Versatile Model Compilation The environment
supports the compilation of the designed models
and the use of the resulting executable code
not only for simulation purposes but also for
verification and final implementation in a suitable
hardware platform.

Generation of Platform Specific code The Pn-
Generator generates ANSI C code and the ad-hoc
code stubs allowing the execution of the models in
specific hardware or software platforms.

The environment was tested using elementary Petri
nets for a manufacturing system model and using
Place/Transition nets for a parking lot access con-
troller. Finally, code generation will be extended
to include hardware description languages, namely
VHDL.

REFERENCES

Barros, J. and Gomes, L. (2004a). Net model composition
and modification by net operations: a pragmatic ap-
proach. In Proceedings of the 2th IEEE International
Conference on Industrial Informatics (INDIN’04). (to
appear).

Barros, J. and Gomes, L. (2004b). On the use of coloured
Petri nets for object oriented design. In Michelis, G.,
D. and Diaz, M., editors, Lecture Notes in Computer
Science; , 25th International Conference on Applica-
tion and Theory of Petri Nets 2004. Springer. (to ap-
pear).

Billington, J., Christensen, S., van Hee, K., Kindler, E.,
Kummer, O., Petrucci, L., Post, R., Stehno, C., and
Weber, M. (2003). The Petri net markup language:
Concepts, technology, and tools. In van der Aalst, W.
and Best, E., editors, Proceeding of the 24th Interna-
tional Conference on Application and Theory of Petri
Nets, volume 2679 of LNCS, pages 483–505, Eind-
hoven, Holland. Springer-Verlag.

Desel, J. and Esparza, J. (1995). Free choice Petri nets.
Cambridge University Press.

Desel, J. and Reisig, W. (1998). Place/transition Petri nets.
Lecture Notes in Computer Science: Lectures on Petri
Nets I: Basic Models, 1491:122–173.

Eclipse (2004). Eclipse.org. http://www.eclipse.
org.

GEF (2004). Graphical editing framework. http://
www.eclipse.org/gef/.

Gomes, L. and Barros, J. (2003). On structuring mecha-
nisms for Petri nets based system design. In Proceed-
ings of the 2003 IEEE Conference on Emerging Tech-
nologies and Factory Automation (ETFA 2003), pages
431–438. IEEE Catalog Number: 03TH8696.

Gomes, L., Barros, J., and Costa, A. (2002). Petri net model
node structuring techniques for embedded system de-
sign. In Proceedings of the 5th Portuguese Conference
on Automatic Control (CONTROLO’2002), Aveiro,
Portugal. Associação Portuguesa de Controlo Auto-
matico (APCA).

Harel, D. (1992). Biting the silver bullet: Toward a brighter
future for system development. Computer, 25(1):8–
20.

Jüngel, M., Kindler, E., and Weber, M. (2000). The Petri
net markup language. In Phillipi, S., editor, Workshop
Algorithmen und Werkzeuge fr Petrinetze.

OMG (1997-2003a). OMG Model Driven Architecture.
http://www.omg.org/mda.

OMG (1997-2003b). Presentations and papers. http://
www.omg.org/mda/presentations.htm.

Petri nets Standard (2004). Petri nets standard.
http://www.daimi.au.dk/PetriNets/
standardisation/.

Petri Nets Tool Database (2004). Petri nets tool database.
http://www.daimi.au.dk/PetriNets/
tools/db.html.

Rozenberg, G. (1987). Behaviour of elementary net sys-
tems. In Advances in Petri nets 1986, part I on Petri
nets: central models and their properties, pages 60–
94. Springer-Verlag.

FROM PETRI NETS TO EXECUTABLE SYSTEMS: AN ENVIRONMENT FOR CODE GENERATION AND
ANALYSIS

467


