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Abstract: ISIAC (as Industrial System Identification for Advanced Control) is a new software package geared to meet
the requirements of system identification for model predictive control and the needs of practicing advanced
process control (APC) engineers. It has been designed to naturally lead the user through the different steps of
system identification, from experiment planning to ready-to-use models. Each phase can be performed with
minimal user intervention and maximum speed, yet the user has every freedom to experiment with the many
options available. The underlying estimation approaches, based on high-order ARX estimation followed by
model reduction, and on subspace methods, have been selected for their capacity to treat the large dimensional
problems commonly found in system identification for process control, and to produce fast and robust results.
Models describing parts of a larger system can be combined into a composite model describing the whole
system. This gives the user the flexibility to handle complex model predictive control configurations, such as
schemes involving intermediate process variables.

1 INTRODUCTION

It is generally acknowledged that finding a dynamic
process model for control purposes is the most cum-
bersome and time-consuming step in model predic-
tive control (MPC) commissioning. This is mainly
due to special requirements of process industries that
make for difficult experimental conditions, but also
to the relatively high level of expertise needed to ob-
tain empirical models through the techniques of sys-
tem identification. The vast majority of MPC vendors
(and a few independent companies) have recognized
the need for efficient system identification and model
building tools and started providing software and fa-
cilities to ease this task.

In these pages, we present ISIAC (as Industrial
System Identification for Advanced Control), a prod-
uct of the Institut Français du Pétrole (IFP). This new
software package is geared to meet the requirements
of system identification for model predictive control
and the needs of practicing advanced process control
(APC) engineers.

In section 2, we discuss the peculiarities of system
identification for process control. Then we explain
how these peculiarities have been taken into account

in ISIAC design (section 3). Section 4 illustrates the
user workflow in ISIAC. Finally, section 5 presents
an example taken from an industrial MPC applica-
tion, carried out by Axens, process licensor ans ser-
vice provider for the refining and petrochemical sec-
tors.

2 SYSTEM IDENTIFICATION
AND MODEL PREDICTIVE
CONTROL

With several thousands applications reported in the
literature, model predictive control (Richalet et al.,
1978; Cutler and Ramaker, 1980) technology has
been widely and successfully adopted in the process
industries, and more particularly, in the petrochemical
sector (see (Qin and Badgwell, 2003) for an overview
of modern MPC techniques).

The basic ingredients of any MPC algorithm are:
• a dynamic model, which is used to make an open-

loop prediction of process behavior over a chosen
future interval (the control model);

• an optimal control problem, which is solved at each
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control step, via constrained optimization, to min-
imize the difference between the predicted process
response and the desired trajectory;

• a receding horizon approach (only the first step of
the optimal control sequence is applied).
Most commonly, control models employed by in-

dustrial MPC algorithms are linear time-invariant
(LTI) models, or, in same cases, combinations of LTI
models and static nonlinearities. The vast majority
of reported industrial applications have been obtained
utilizing finite impulse response (FIR) or finite step
response (FSR) models. Modern MPC packages are
more likely to use state-space, transfer function ma-
trix, or autoregressive with exogenous input (ARX)
models. Linear models of dynamic process behav-
ior can be obtained from a linearized first-principles
model, or more commonly, from experimental mod-
eling, applying system identification (Ljung, 1999)
techniques to obtain black-box models from input-
output data gathered from the process. Those mod-
els can be subsequently converted to the specific form
required by the MPC algorithm.

Several researchers have pointed out that process
identification is the most challenging and demanding
part of a MPC project ((Richalet, 1993; Ogunnaike,
1996)). Although system identification techniques
are basically domain independent, process industries
have special features and requirements that compli-
cate their use: slow dominant plant dynamics, large
scale units with many, strongly interacting, manipu-
lated inputs and controlled outputs, unmeasured dis-
turbances, stringent operating constraints. This makes
for difficult experimental conditions, long test dura-
tions and barely informative data. But even the sub-
sequent step of performing system identification us-
ing one of the available software packages may prove
lengthy and laborious, especially when the relatively
high level of expertise needed is not at hand.

Designing such software for efficiency and man-
ageability requires taking into account the peculiari-
ties of system identification for process control.
• System identification is a complex process involv-

ing several steps (see Fig. 1). The user should be
guided through it with a correct balance between
structure and suppleness.

• When identifying an industrial process, a signifi-
cant number of data records must be dealt with.
Data may contain thousands of samples of tens
(or hundreds) measured variables. Several differ-
ent multivariable models can be identified for the
whole process, or for parts of it. It is important to
allow the user to handle multiple models and data
sets of any size, to seamlessly visualize, evaluate,
compare and combine them, to arrange and keep
track of the work done during an identification ses-
sion.

Figure 1: Steps of the system identification process
(adapted from (Ljung, 1999))

• Estimation and validation methods at the heart of
the identification process must be chosen care-
fully. When dealing with multi-input multi-
output (MIMO) models, model structure choice
and parametrization may prove challenging even
for experienced users. Moreover, large data and
model sizes, utterly common in the context of sys-
tem identification for process control, may eas-
ily lead to numerical difficulties and unacceptable
computation times. Methodologies giving system-
atic answers to these problems exist (Juricek et al.,
1998; Zhu, 1998) and have been incorporated into
some commercial packages (Larimore, 2000; Zhu,
2000).

• MPC algorithms usually need more information to
define their internal control structure, than a plain
linear model. As a minimum, the user has to sort
model inputs into manipulated variables (MV) and
disturbance variables (DV), and to choose which
model outputs are to be kept as controlled vari-
ables (CV). With modern MPC packages, control
configuration may become really complex, includ-
ing observers and unmeasured disturbance models,
which can be used, among other things, to take into
account the presence of intermediate variables (i.
e., measured output variables that influence con-
trolled variables) for control calculation. Without
a suitable control model building tool, supplying
the additional pieces of information turns out to be
a laborious task, even for mildly complex control
configurations.
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3 ISIAC

ISIAC is primarily meant to support the model-based
predictive multivariable controller MVAC, a part of
the APC suite developed by IFP and its affiliate RSI.

MVAC has first been validated on a challenging
pilot process unit licensed by IFP (Couenne et al.,
2001), and is currently under application in several
refineries world-wide. Its main features are:
• state-space formulation;
• observer to take into account unmeasured distur-

bances, intermediate variables, integrating behav-
ior;

• ranked soft and hard constraints;
• advanced specification of trajectories (funnels, set-

ranges);
• static optimization of process variables.

Though ISIAC is intended to be the natural com-
panion tool to MVAC, it is actually flexible enough
to be used as a full-fledged system identification and
model building tool or to support other APC pack-
ages.

3.1 Approaches to model estimation

The model estimation approaches selected for inclu-
sion in ISIAC combine accuracy and feasibility, both
in term of computational requirements and of user
choices. We have decided to favor non-iterative meth-
ods over prediction error methods (Ljung, 1999),
to avoid problems originating from a demanding
minimization routine and a complicated underlying
parametrization.

3.1.1 Two-stage method

The benefits of high-order ARX estimation in indus-
trial situations have been advocated by several re-
searchers ((Zhu, 2001; Rivera and Jun, 2000)). In-
deed, using a model order high enough, and with
sufficiently informative data, ARX estimation yields
models that can approximate any linear system arbi-
trarily well (Ljung, 1999). Ljung’s asymptotic black-
box theory also provides (asymptotic) expressions for
the transfer function covariance which can be used for
model validation purposes.

A model reduction step is necessary to use these
models as process control models, since they usually
are over-parameterized (i.e., an unbiased model with
much lower order can be found) and have high vari-
ance (which is roughly proportional to model order).
Different schemes have been proposed ((Hsia, 1977;
Wahlberg, 1989; Zhu, 1998; Rivera and Jun, 2000;
Tjärnström and Ljung, 2003)) to perform model re-
duction. For a class of reduction schemes (Tjärnström

and Ljung, 2003), it has been demonstrated that the
reduction step actually implies variance reduction,
and a resulting variance which is nearly optimal (that
is, close to the Cramer-Rao bound).

In ISIAC, truly multi-input multi-output (MIMO)
ARX estimation is possible, using the structure

A(q)y(t) = B(q)u(t) + e(t)

where y(t) is the p-dimensional vector of outputs
at time t, u(t) is the m-dimensional vector of in-
puts at time t, e(t) is a p-dimensional white noise
vector, A(q) and B(q) polynomial matrices respec-
tively of dimensions p × p and p × m. For faster
results, in the two-stage method, the least-square es-
timation problem is decomposed into p multi-input
single-output (MISO) problems. The Akaike infor-
mation criterion (AIC) (Ljung, 1999) is used to find
a “high enough” order in the first step, and the re-
sulting model is tested for unbiasedness (whiteness
of the residuals and of the inputs-residuals cross-
correlation). To find a reduced order model, we adopt
a frequency-weighted balanced truncation (FWBT)
technique (Varga, 1991). The calculated asymptotic
variance is used to set the weights and to automat-
ically choose the order of the reduced model, fol-
lowing an approach inspired by (Wahlberg, 1989).
The obtained model is already in the state-space form
needed by the MPC algorithm.

As a result, we get an estimation method which
is totally automated, and provides accurate results in
most practical situations, with both open-loop and
closed-loop data. Yet, this method might not work
correctly when dealing with short data sets and (very)
ill-conditioned systems.

3.1.2 Automated subspace estimation

The term subspace identification methods (SIM)
refers to a class of algorithms whose main charac-
teristic is the approximation of subspaces generated
by the rows or columns of some block matrices of
the input/output data (see (Bauer, 2003) for a recent
overview). The underlying model structure is a state-
space representation with white noise (innovations)
entering the state equation through a Kalman filter
and the output equation directly

x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t)

Simplifying (more than) a bit a fairly complex theory,
input and output data are used to build an extended
state-space system, where both data and model infor-
mation are represented as matrices, and not just vec-
tor and matrices. Kalman filter state sequences are
then identified and used to estimate system matrices
A, C, and, if a disturbance model is needed, K (B and
D can be subsequently estimated in several different

ICINCO 2004 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL

88



ways). This can be assimilated (Ljung, 2003) to the
estimation of a high-order ARX model, which is then
reduced using weighted Hankel-norm model reduc-
tion. The three most well-known algorithms, CVA,
N4SID and MOESP, can be studied under an uni-
fied framework (Van Overschee and DeMoor, 1996),
where each algorithm stems from a different choice
of weightings in the model reduction part. Subspace
identification methods can handle the large dimen-
sional problems commonly found in system identifi-
cation for process control, producing (very) fast and
robust results. However, it must be pointed out that
their estimates are generally less accurate than those
from prediction error methods and that standard SIM
algorithms are biased under closed-loop conditions.

Even though a lower accuracy is to be expected, it
is important to have a viable alternative to the two-
step method. This is why, we have implemented in
ISIAC two estimation procedures based on subspace
algorithms taken from control and systems library
SLICOT (Benner et al., 1999):

• a combined method, where MOESP is used to es-
timate A and C and N4SID is used to estimate B
and D;

• a simulation method, where MOESP is used to es-
timate A and C and linear regression is used to es-
timate B and D.

The second method is usually more accurate (though
a little slower) and is presented as the default choice.
High-level design parameters for these two method-
ologies are the final model order n, and the prediction
horizon r used in the model reduction step. ISIAC
can select both parameters automatically: the latter
using a modified AIC criterion based on a high-order
ARX estimation, the former using a combined crite-
rion taking into account the relative importance of sin-
gular values and errors on simulated outputs (output
errors).

3.2 General structure and layout

Fig. 2 shows ISIAC graphical user interface (GUI).
The tree on the left (the session tree) highlights the
relationships between the different elements the user
deals with during a typical system identification ses-
sion.

• A System object representing the whole process the
user is working on. It includes a list of process
Variables and a list of Subsystems, which can be
used to store partial measurements and dynamic
models relating groups of input and output vari-
ables.

• Data objects in two flavors: Raw Data and IO
Data. The former are defined from raw process

data records and do not carry any structure infor-
mation. They are mainly used for preliminary ap-
praisal and processing of available data sets. IO
data are defined by selecting subsets of fields of raw
data objects, and can be used for system identifica-
tion. Notice that data objects in ISIAC may include
measurements coming from different experiments
(multi-batch data).

• Models include all the dynamic models estimated
or defined during a session. ISIAC handles
discrete-time state-space, transfer function (ma-
trix), FIR, ARX and general polynomial models.
State-space and transfer function models are also
available in continuous time. Simple process mod-
els, such as first-order plus time delay (FOPTD)
models in gain-time constant-delay form, are han-
dled as specializations of transfer function models.

Figure 2: ISIAC GUI

This structure provide a powerful and flexible sup-
port to the user:
• no restriction is put on the number of models and

data objects, nor on their sizes;
• system identification of the whole process can be

decomposed in smaller problems whose results can
be later recombined;

• it is straightforward to keep track of all the work
done during an identification session.
Three special windows are dedicated to definition

and basic handling of system, data and model objects.
The Input Design Window is intended to help the user
to design appropriate test signals for system identifi-
cation. More advanced operations on data and mod-
els are available in the Data Processing Window and
in the Model Processing Window. The most impor-
tant window is certainly the Data To Models Window,
where model estimation and validation take place.
Last, the ISIAC To MVAC Window hosts the graphi-
cal control model builder.
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ISIAC GUI implements a multi-document inter-
face (MDI) approach: it is possible to have several
windows opened at once in the child window area.
Furthermore, thanks to drag-and-drop operations and
pop-up menus, the same action (say, plotting a model
time response) is accessible from different locations.
This means that, although ISIAC layout clearly under-
lines the different steps of the identification process,
the user is never stuck into a fixed workflow.

4 WORKING WITH ISIAC

4.1 Experiment design

Whenever the APC engineer has the freedom to
choose other input moves than classical step-testing
(not often, unfortunately), ISIAC offers support to
generate test signals which are more likely to yield
informative data. The Input Design Window lets the
user design signals such as pseudo-random binary sig-
nals (PRBS), using few high level parameters.

4.2 Working with data

As mentioned before, ISIAC data objects provide a
structure to handle measurements of process vari-
ables. Input files containing raw measurements do
not need to carry any special information (other than
including delimited columns of values), and can be
imported without any external spreadsheet macro,
since data object formatting is done interactively into
ISIAC Data Window. Data visualization tools, which
include stacked plots, single-axis plots and various
statistical plots, have been designed with particular
care.

The more advanced functions of the Data Process-
ing Window are those commonly found in industrial
system identification packages: normalization, de-
trending, de-noising, re-sampling, filtering, nonlinear
transformations, data slicing, data merging. Notice
that a set of these data processing operations is incor-
porated in the automated model identification proce-
dure (see section 4.4).

4.3 Working with models

Most commonly, dynamic process models in ISIAC
are estimated from data or obtained combining or
processing existing (estimated) models. Models can
be also directly defined by the user (in FOPTD
form, for instance) or imported from other packages.
ISIAC Model Window also provides transformations
between different LTI representations and time do-
main conversions, as well as several analysis and vi-
sualization tools. Model response plots, both in time

domain and in frequency domain, are extremely flex-
ible. An unlimited number of models (not necessarily
sharing the same inputs or outputs) can be compared
on the same chart, and an unlimited number of chart-
ing windows can be opened at once.

Advanced model processing (in the Model Pro-
cessing Window) includes model reduction and model
building tools. Time domain techniques (step re-
sponse fitting of simple process models, see Fig. 3) or
frequency weighted model reduction techniques are
available. Model building can be performed through
simple connections (cascade, parallel) or through a
full-fledged graphical model builder which closely re-
sembles the one described in section 4.5.

Figure 3: Step response fitting

4.4 Estimating and validating
models

Model estimation must be preceded by some amount
of data processing, namely offset removal, normal-
ization and detrending (that is, removal of drifts and
low frequency disturbances). In ISIAC, these basic
but essential transformation are automatically applied
(unless the user does not want to), in a transparent
manner, before model estimation. Actually the Data
Processing Window, is only necessary when more ad-
vanced data processing is needed. Moreover, prior in-
formation about certain characteristics of the system
(integrating behavior, input-output delay) can be also
incorporated to help the estimation algorithms.

As explained in section 3.1, the default estima-
tion method in ISIAC is the two-stage method. This
method, combined with the transparent basic data
processing, results in a “click&go” approach that is
greatly appreciated by industrial practitioners. The in-
dustrial example of Fig. 4 shows that with this method
the user can really make the most of the available data,
even when the inputs are not very informative. Alter-
natively, subspace estimation can be selected. It is
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also possible to estimate FIR models or general ARX
models.

Beside the comparison between measured outputs
and simulated outputs (as in Fig. 4), model validation
can be performed by checking the confidence bounds
and visualizing and comparing time and frequency re-
sponses.

Figure 4: Model validation through simulation (simulated
outputs in white)

4.5 Building the control model

One of the most interesting features of ISIAC is
the graphical control model builder, in the ISIAC To
MVAC Window (Fig. 5). With a few mouse clicks,
it is possible to build a complex control model from
a combination of sub-models, identified from differ-
ent data sets or extracted from existing models. The
user is only required to indicate the role of each input
and output in the control scheme. The model graph
can be then translated into a control model with the
appropriate format, or into a plant model for off-line
simulations. The resulting plant model can be also
transferred back to ISIAC workspace and applied to
the existing data sets to verify its correctness.

Figure 5: The graphical control model builder

The model builder proves particularly helpful when

intermediate process variables are to be included. In
figure 5, which depicts part of the control configura-
tion for a unit involving cascaded reactors, the vari-
able denoted S HDT 1 is one of those variables.

5 AN INDUSTRIAL
APPLICATION: MODEL
PREDICTIVE CONTROL OF A
MTBE UNIT

To prove the usefulness of ISIAC in an industrial con-
text, we examine some aspects of a model predictive
control project, carried out by IFP affiliate Axens on
a petrochemical process unit.

The process under consideration is an etherifica-
tion unit producing methyl-tert-butyl ether (MTBE),
from a reaction between isobutene (IB) and methanol
(MeOH).

Figure 6: The MTBE unit

The key control objectives are:
• maximize MTBE yield;
• increase IB recovery;
• reduce steam consumption;
• control MTBE purity.

The MVAC-based control system includes 7 MVs,
3 DVs, 6 CVs, with 5 intermediate variables. In the
following, we only consider a subset corresponding
to the control of MeOH percentage in MTBE (last
item of the objective list). Fig. 7 shows, from a sys-
tem viewpoint, how the controlled variable MEOH
IN MTBE is influenced by others process variables
of the control configuration:
• feed flow, MeOH flow and sensitive temperature of

the catalytic column as CVs;
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• IB and MeOH percentages in feed to first reactor as
DVs;

• the ratios of MeOH over IB, respectively entering
the first reactor and the catalytic column, as inter-
mediate variables.

Figure 7: Part of the MTBE control scheme

There are several avantages in introducing interme-
diate variables in the control configuration, instead of
considering only direct transfer functions between in-
put variables (MVs plus DVs) and the CV:

• intermediate variables can be bounded, for tighter
control;

• unavoidable uncertainties in cascaded models (up-
stream from intermediate variables) can be com-
pensated for;

• deviations from predicted behavior can be detected
long before they affect the CV.

Figure 8: Frequency response of an identified model for
subsystem SYS1

ISIAC has been used for data visualization and
analysis, as well as for identification of sub-models
later included in the overall control configuration. As
an example, we present some identification results re-
lating to subsystem SYS1 of Fig. 7. Fig. 8 shows
the frequency response of a high order ARX model
together with its error bounds. The estimates of the
first two transfer functions (MV1 → iPV1, MV2 →

iPV1) appear to be fairly accurate, since their error
bounds are comparatively quite small. The overall
quality of estimation is confirmed by the comparison
between measured and predicted output (figure 9).

Figure 9: Measured vs. predicted (white) output for subsys-
tem SYS1

As for control model building, Fig. 10 shows how
naturally the dedicated graphical tool translates block
diagrams like the one in Fig. 7. From this graphical
representation, it takes only one mouse-click to gen-
erate scripts for simulation purposes or for final MPC
implementation.

6 CONCLUSION

ISIAC proposes a modern, flexible and efficient
framework to perform system identification for ad-
vanced process control. Its main strengths are:

• a graphical user interface which emphasizes the
multi-step nature of the identification process,
without trapping the user into a fixed workflow;

• fast and robust estimation methods requiring mini-
mal user intervention;

• no restriction on the number or on the size of data
sets and models the user can work with;

• full support for the specification of complex model
predictive control schemes, by means of block dia-
gram combination of (linear) models.

Through an exemple taken from an industrial MPC
application, we have illustrated the advantages of us-
ing our software in a concrete situation.

Figure 10: Building the partial MTBE control scheme in
ISIAC
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