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Abstract: This paper presents a comparison between the use of particle swarm optimization and the use of genetic 
algorithms for tuning the parameters of a novel fuzzy classifier. In the previous work on the classifier, the 
large amount of time needed by genetic algorithms has been significantly diminished by using an optimized 
initial population. Even with this improvement, the time spent on tuning the parameters is still very large. 
The present comparison suggests that using particle swarm optimization may improve considerably the time 
needed for tuning the parameters. This way, the fuzzy classifier becomes suitable for real world application. 
The result is validated by application to a fault diagnosis benchmark. 

1 INTRODUCTION 

A fault diagnosis system is a monitoring system that 
is used to detect faults and diagnose their location 
and significance in a system (Chen and Patton, 
1999). The diagnosis system performs mainly the 
following tasks: fault detection – to indicate if a fault 
occurred or not in the system, and fault isolation – to 
determine the location of the fault. One of the main 
perspectives on fault diagnosis is to consider it a 
classification problem (Leonhardt and Ayoubi, 
1997). The symptoms are extracted on the basis of 
the measurements provided by the actuators and 
sensors in the monitored system. The actual 
diagnostic task is to map data points the symptoms 
space into the set of considered faults. 

The research literature offers three possible 
directions to develop fuzzy classifiers for fault 
diagnosis: mixtures of neural networks and fuzzy 
rules (Calado et. al., 2001; Palade et. al. 2002), sets 
of fuzzy rules that describe the relationships 
symptoms-faults using transparent linguistic terms 
(Frank, 1996; Koscielny et. al., 1999), and 
collections of fuzzy subsets that represent the normal 
state and each faulty state of the system (Boudaoud, 

2000). The fuzzy classifier addressed in this paper 
follows the third direction and it was proposed in 
(Bocaniala, 2003; Bocaniala and Sa da Costa, 2003). 
The main advantages of the classifier are the high 
accuracy with which it delimits the areas 
corresponding to different categories, and the fine 
precision of discrimination inside overlapping areas. 
In the previous work, the parameters of the classifier 
have been tuned using genetic algorithms. Even if 
the large amount of time needed by genetic 
algorithms has been significantly diminished by 
using an optimized initial population, the time spent 
on tuning the parameters is still too large. 

This paper presents a comparison between the 
use of particle swarm optimization (PSO) and the 
use of genetic algorithms for tuning the parameters 
of a novel fuzzy classifier. The present comparison 
suggests that using particle swarm optimization may 
improve considerably the time needed for tuning the 
parameters. This way, the fuzzy classifier becomes 
suitable for real world application. The result is 
validated by application to a fault diagnosis 
benchmark. 

However, there is no other fault diagnosis related 
benchmark that may have permitted a comparison 
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between the performances of the fuzzy classifier on 
different benchmarks. Though, a comparative study 
on the performance of the fuzzy classifier when 
applied on different data sets is given in (Bocaniala, 
2003). 

The paper is structured as follows. Section 2 
presents the main theoretical aspects of the fuzzy 
classifier. Section 3 briefly describes the PSO 
technique and the variant used in this paper. Next 
section, Section 4, introduces the case study, the 
DAMADICS benchmark (http://www.eng.hull.ac. 
uk/research/control/damadics1.htm). Section 5 
presents the comparison between the performance of 
the classifier when genetic algorithms and 
respectively PSO are used. Finally, some 
conclusions are drawn and further research 
directions are identified. 

2 THE FUZZY CLASSIFIER 

The fuzzy classifier addressed in this paper has been 
recently introduced by (Bocanialac, 2003; Bocaniala 
and Sa da Costa, 2003). The classifier relies on the 
use of a similarity measure between points in the 
space associated to the problem. The first subsection 
presents the way similarity measures are used to 
induce the fuzzy sets associated with each category. 
The second subsection describes the management of 
the available data in order to design and to test the 
classifier. 

2.1 Fuzzy sets induced by a measure 
of similarity 

The classifier performs its task using a measure of 
similarity between points in the space associated 
with the problem. The similarity of data points 
within the same category is larger than the similarity 
of data points belonging to different categories. The 
similarity between two points u and v, s(u,v), will be 
expressed using a complementary function, d(u,v), 
expressing dissimilarity. The dissimilarity measure 
is encoded via function hβ(δ(u,v)) that depends on 
one parameter, β, and that maps the distance 
between u and v, δ(u,v), into [0,1] interval (Eq. 1). 
The maximum value for d(u,v), which is equal to 
hβ(δ(u,v)), is 1. It follows that the functions s and d 
are complementary with regard to this value; thus, 
s(u,v)=1-d(u,v). 

The similarity measure between two data points 
can be extended to a similarity measure between a 
data point and a subset of data points. The similarity 
between a data point u and a subset is called the 
subset affinity measure. Let C={Ci}i=1,…,m be the 

partition of a set of data points according to the 
category they belong to. The subset affinity measure 
between a data point u and a category Ci is given by 
Eq. 2, where ni denotes the number of elements in 
Ci. 
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The effect of using the β parameter is that only 
those data points from Ci, whose distance to u is 
larger than β, contribute to the affinity value. The 
explanation is that only these points have a non-zero 
similarity with u. It follows that the affinity of a data 
point u with different categories in the partition is 
decided within the neighbourhood defined by β. 

The natural belongingness of a data point to a 
category varies between a maximum value and a 
minimum value (corresponding to no belongingness) 
and it can be approximated using the subset affinity 
measure. Therefore, each category Ci (which 
represents a classical set) is replaced by a fuzzy set 
because the belongingness to this type of sets varies 
inside [0,1] interval. The fuzzy sets are induced by 
the corresponding categories as denoted by Eq. 3. 
The term r(u,C) expresses the affinity of u to the 
whole set C, the n value represents the cardinal of C, 
and the ni value represents the cardinal of Ci. 
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Using only one similarity measure does not 
always provide satisfactory results (Bocaniala, 2003; 
Bocaniala and Sa da Costa, 2003). Thus, the 
advantages brought by two or more similarity 
measures may be combined in order to improve the 
performance of the classifier, i.e. a hybrid approach 
may be used (Bocaniala, Sa da Costa and Palade, 
2004). In this paper, it will be used a hybrid 
approach based on Euclidean distance and Pearson 
correlation (Weisstein, 1999). The β parameter will 
be applied only to the similarity measure induced by 
the Euclidean distance. Two subset affinity measures 
are used, based on the two similarity measures 
induced by the Euclidean distance and respectively 
Pearson correlation. Finally, the fuzzy membership 
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functions will be combinations of the two subset 
affinity measures. 

2.2 Classification based on induced 
fuzzy sets 

Let m be the number of the categories considered for 
the problem to be solved. First the set of all available 
data C is partitioned according to the category to 
which each data point belongs. The partition is 
formed by the subsets Ci, i=1,…,m. In order to 
design and test the classifier, each set Ci is split in 
three representative and distinct subsets, Ci

ref, Ci
param 

and Ci
test. On the basis of these subsets, three unions, 

REF, PARAM, and TEST, are defined (Eq. 4). They 
are called the reference patterns set, the parameters 
tuning set and respectively the test set. 
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A subset is considered representative for a given 
set if it covers that set in a satisfactory manner. The 
semantic for the expression satisfactory covering 
subset adopted in this paper is that such a set 
represents a subset of data that preserves (with a 
given order of magnitude) the distribution of the 
data associated to the problem. Selecting the 
elements that compose a satisfactory covering subset 
for a given data set can be costly. Therefore, it is 
more convenient to use a selection method that 
provides convenient approximations for satisfactory 
covering subsets. Such a method is proposed in 
(Bocaniala, 2003). 

In the following, the role of each one of the 
previous three unions is detailed. It is to be noticed 
that the union of subsets having the satisfactory 
covering property for a set represents also a 
satisfactory covering subset of that set. 

1.1.1 The REF set 

The subset affinity measures are defined for the 
representative subsets Ci

ref, i=1,…,m. Notice that the 
affinity measures differ from a representative subset 
to another as they depend on different βi parameters. 
The practice showed that using different parameters 
for different categories increases substantially the 
performance of the classifier. Using these affinity 
measures, Eq. 5 defines the induced fuzzy sets Fuzzi. 
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An object u presented at the input of the 
classifier is assigned to the category Cz whose 
corresponding degree of assignment µz(u) is the 
largest (Eq. 6). In case of ties, the assignment to a 
category cannot be decided and the object is 
rejected. 
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1.1.2 The PARAM set 

The shape of the membership functions µi, 
associated to the fuzzy sets Fuzzi, depends on the 
representative subset Ci

ref but also on the value of βi 
parameter, i=1,…,m (Eq. 5). The algorithm for 
tuning the parameters βi of the classifier represents a 
search process in a m-dimensional space for the 
parameters vector (β1, β2,..., βm) that meets, for each 
category, maximal correct classification criteria and 
minimal misclassification criteria. 

Previous work performs this search with the help 
of genetic algorithms that start from an optimized 
initial population (Bocaniala, 2003; Bocaniala and 
Sa da Costa, 2003). The fitness of an individual from 
the population is given by the degree with which the 
associated parameters accomplish the two mentioned 
criteria. In order to approximate the degree of 
accomplishment, the performance of the classifier 
when applied to PARAM set is used. Since the 
PARAM set represents a satisfactory covering set for 
the set of all available data, the performance of the 
classifier on this set represents an approximation of 
the performance of the classifier on the set of all 
possible data associated to the problem. 

1.1.3 The TEST set 

The performance of the classifier is measured 
according to its generalization capabilities when 
applied on the TEST set. The practice showed that 
the performance of the classifier may improve if the 
testing is performed after adding the data in the 
PARAM set to the REF set. 
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2 PARTICLE SWARM 
OPTIMIZATION 

The PSO methodology has been recently introduced 
in the fied of Evolutionary Computing by (Kennedy 
and Eberhart, 1995). The main idea is to use 
mechanisms found by studying the flight behaviour 
of bird flocks (Heppner and Grenander, 1990). The 
method may be used to solve optimization problems 
using the next analogy. If a roosting area is set, then 
the birds will form flocks and will fly towards this 
area, “landing” when they arrived there. The 
roosting area may be seen as an optimal or a near-
optimal solution in the search space. The birds may 
represent points in the search space that will move in 
time towards this solution. The search process is 
guided by an objective function and each point is 
able to evaluate the value of this function (the 
fitness) for its current location. The movements of 
the points during search will no longer resemble the 
move of the birds in a flock, but rather the 
movement of the particles in a swarm. There are two 
mechanisms that are employed during this 
exploration of the search space. First, each point in 
the swarm memorizes the best location (in terms of 
fitness) he ever passed through. Second, each point 
is aware of the best location that the whole swarm 
ever passed through, i.e. the global best location. 
The new location of a particle is computed as 
follows. Using the vector notation from Physics, the 
direction vector of each particle is updated using the 
vectors that point from the current location towards 
the two previously mentioned locations. The search 
process stops when all other points draw closer than 
a very small given distance to one point. This point 
is considered to be the solution of the optimization 
problem. 

The variant of PSO used in this paper starts from 
a set of points around origin in the parameters m-
dimensional space mentioned in Subsection 2.1.3. 
Fortunately, the probability to find points with large 
fitness around origin is very high (see Table 1). This 
means that it is very likely that the search process 
starts with particles found very close to optimal 
solutions. The exploration of the search space 
follows the rules discussed above. The stop 
condition is modified as follows. It was noticed that 
if the global best location does not modify for a 
relatively small number of iterations then this 
location is a optimal solution. On the basis of this 
observation, the search process will be stopped if the 
global best location does not change for 3 iterations. 
Using the analogy above, if the roosting is found 
then the global best location will not further modify 
and, therefore, there is no reason to wait until all the 
birds landed. 

3 CASE STUDY 

The DAMADICS benchmark flow control valve was 
chosen as the case study for this method. More 
information on DAMADICS benchmark is available 
via web, http://www.eng.hull.ac.uk/research/control 
/damadics1.htm. The valve was extensively modeled 
and a MATLAB/SIMULINK program was 
developed for simulation purposes (Sa da Costa and 
Louro, 2003). The data relative to the behavior of 
the system while undergoing a fault was generated 
using as inputs to the simulation real data, normal 
behavior and some faulty conditions, collected at the 
plant. This method provides more realistic 
conditions for generating the behavior of the system 
while undergoing a fault. It also makes the FDI task 
more difficult because the real inputs cause the 
system to feature the same noise conditions as those 
in the real plant. However the resulting FDI systems 
will deal better when applied to the real plant. 

The system is affected by a total of 19 faults. In 
this paper only the abrupt manifestation of the faults 
has been considered. A complete description of the 
faults and the way they affect the valve can be found 
in (Louro, 2003).There are several sensors included 
in the system that measure variables that influence 
the system, namely the upstream and downstream 
water pressures, the water temperature, the position 
of the rod, and the flow through the valve. These 
measurements are intended for controlling the 
process but they can also be used for diagnosis 
purposes, which means that the implementation of 
this sort of system will not imply additional 
hardware. Two of these sensors, the sensor that 
measures the rod position (x) and the sensor that 
measures the flow (F) provide variables that contain 
information relative to the faults. The difference dP 
between the upstream pressure (P1) sensor 
measurement and the downstream pressure (P2) 
sensor measurement is also considered (besides F 
and x) as it permits to differentiate F17 from the 
other faults. For the rest of the faults, the previous 
difference has always negligible values (close to 
zero). 

The effects of six out of the 19 faults on this set 
of sensor measurements are not distinguishable from 
the normal behaviour, {F4, F5, F8, F9, F12, F14}. 
So, in the following, these cases are not studied. 
They can be dealt with if further sensors are added 
to the system. Also, there can be distinguished three 
groups of faults, {F3, F6}, {F7, F10}, and {F11, 
F15, F16}, that share similar effects on the 
measurements. Due to the large overlapping, a fault 
member in one of the previous groups can be easily 
mistaken with faults in the same group. This 
problem is solved in recent studies by using a hybrid 
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similarity measure based on Euclidean distance and 
Pearson correlation in order to distinguish between 
elements in the previous three groups of faults. 

4 PARTICLE SWARM 
OPTIMIZATION VS GENETIC 
ALGORITHMS 

The 13 faults distinguishable by the normal state 
were simulated two times for 20 values of fault 
strength, uniformly distributed between 5% and 
100%, and different conditions for the reference 
signal. The strength of a fault represents the intensity 
with which the fault acts on the valve. Generally, for 
small to medium fault strengths, the effects of the 
faults on the valve are not distinguishable from the 
normal state. The previous settings approximate very 
well all possible faulty situations involving the 13 
faults. The data obtained during the first simulation 
have been used to design the classifier, i.e. 50% for 
the REF set, 50% for the PARAM set. The data 
obtained during the second simulation have been 
used as the TEST set. 

The objective function used in previous work 
(Bocaniala, 2003) with genetic algorithms is also 
used with PSO. This objective function computes 
the fitness of a set of parameters using the confusion 
matrix obtained when applying the classifier on the 
PARAM set. The fitness represents a weighted sum 
of all elements in this matrix. Each element on the 
main diagonal represents the percent of well-
classified data for that category and is weighted by 
m – the number of categories considered. An 
element not member of the main diagonal, found on 
row i and column j, i≠j, represents the percent of 
data from the i-th category misclassified as 
belonging to the j-th category. These elements are 
weighted by -1. Notice that the objective function 
encourages mainly the growth of percentage of the 
well-classified data while still penalising the 
misclassifications occurred. The maximum fitness is 
obtained when all data are correctly classified, i.e. 
the confusion matrix represents the identity matrix. 
In this case, the fitness value is m (the weight for 
elements on the main diagonal) x m (the length of 
the main diagonal). Given the fact that for our case 
study the value of m is 14 (one normal state and 13 
faulty states), the maximum fitness that may be 
reached is 196. 

As detailed in Subsection 2.2., the suitability of a 
set of parameters of the classifier is given by the 
performance of the classifier on the PARAM set. 
Thus, checking a set of parameters corresponds to 
one call of the classification procedure on the 

PARAM set. The comparison between the hill-
climbing technique and genetic algorithms has been 
performed by counting the number of calls of the 
classifier during the search process. The time spent 
for one call of the classifier is the same for both 
methodologies. The amount of time needed by one 
call of a classifier on a computer with Intel Pentium 
4 at 2.4 Ghz, 526 MB RAM is 3 seconds. This large 
amount of time may be explained by the large size 
of the REF and PARAM sets. 

The settings used for the genetic algorithm are 
next. Each population contains 20 individuals and 
only the first 20 successive generations are 
produced. The genetic algorithm always starts from 
an optimized initial population generated using the 
algorithm in (Bocaniala, 2003). For each new 
population, the best 3 individuals from the previous 
generation are kept and 2 new individuals are 
randomly generated. The settings used for the PSO 
method have been already discussed in Section 3. It 
is very important to notice that PSO does not use an 
optimized initial population. Though, it makes use of 
the fact that there is a high probability that the 
fitness of the initial particles is considerably large 
(see Section 3). 

 
Table 1 Comparison between classifier performance when 

using genetic algorithm (GA) and particle swarm 
optimization (PSO) for parameters tuning 

No. exp Initial   Final   No. calls 
(Method) fitness  fitness   classifier 

 
1 (GA) 138.83  147.98   340 
2 (GA) 140.40  149.54   340 
3 (GA) 144.97  151.26   340 
4 (GA) 140.83  149.82   340 
5 (GA) 139.98  151.08   340 
1 (PSO) 124.18  151.25   100 
2 (PSO) 121.62  150.03   220 
3 (PSO) 117.65  146.46   160 
4 (PSO) 127.47  151.38   140 
5 (PSO) 134.07  156.30   140 

 
 

Using the previous settings, five experiments 
have been performed for both methodologies. For 
each experiment, the next information is recorded: 
the maximum initial fitness (inside the initial 
optimized population and respectively inside the 
initial swarm), the maximum fitness reached, and the 
number of calls of the classifier. The results are 
shown in Table 1. Analysing the content of Table 1, 
two facts may be deducted. First, the initial 
maximum fitness for PSO is usually smaller than the 
one for the genetic algorithm, while the final 
maximum fitness for PSO is usually the same or 
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slightly larger than the one for the genetic algorithm. 
Second, the number of calls needed for PSO is from 
one third to two thirds less than the number of calls 
for the genetic algorithm. The conclusion is that 
using PSO methodology instead genetic algorithms 
provides better performance of the classifier but with 
a much lower cost in terms of number of calls of the 
classifier. 

5 CONCLUSIONS 

This paper presented a comparison between the use 
of particle swarm optimization and the use of 
genetic algorithms for tuning the parameters of a 
novel fuzzy classifier. The comparison suggests that 
using particle swarm optimization may improve 
considerably the time needed for tuning the 
parameters. The result is validated by application to 
a fault diagnosis benchmark that presents large 
overlapping between constituent categories, i.e. the 
normal state and the faulty states. The computational 
time needed by particle swarm optimisation is from 
one third to two thirds less than the time needed by 
genetic algorithms. Due to this improvement 
regarding the computational time the classifier 
becomes more suitable for application to fault 
diagnosis of real world systems. 
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