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Abstract:  This paper presents a combined approach to fault diagnosis in discrete-time dynamic systems. The approach 
integrates classical and soft computing techniques. The typical methods based on signal models, and process 
models for residual generation are considered: parity equations, observers and parameter estimation. The 
role of integration of classical and intelligent techniques is enhanced. The performance of the proposed 
approach is analysed with application to a typical nonlinear feed-water system – the three-tank benchmark. 
The three typical fault scenarios (actuator and component faults) defined in the benchmark problem are 
tackle in this work. 

1 INTRODUCTION 

Modern supervision and control systems are 
becoming more and more sophisticated. The issues 
of reliability, operating safety, availability, cost 
efficiency, and environment protection are of great 
importance. For safety-critical systems, the 
consequences of faults can be extremely serious in 
terms of human fatalities, environment impact or 
economic loss. There is a growing need for on-line 
supervision and fault diagnosis (FDI) to increase the 
reliability of such safety-critical systems (Chen and 
Patton, 1999). For systems that are not safety-
critical, on-line FDI techniques can be use to 
improve reliability, plant efficiency, availability, and 
maintainability. 
 

Since the beginning of the 1970’s, research in 
fault diagnosis has been gaining increasing 
consideration world-wide in both theoretical and 
application areas (Chen and Patton, 1999; Frank, et. 
al., 1999; Gertler, 1998; Isermann, 1997; Patton, et. 
al., 2000). This development was (and still is) 
mainly stimulated by the trend of automation 
towards more complexity and the growing demand 
for higher security and availability of supervision 
and control systems. The great progress of computer 
technology made feasible the use of powerful 
techniques of modern and intelligent control theory 

applied to the FDI problems, like mathematical 
modelling, state estimation and parameter 
identification. 
 

The main purpose of fault diagnosis is the 
determination of kind, size, location and time 
occurrence of a fault (Isermann, 1997). Many 
approaches to FDI in the time as well in the 
frequency domain have been proposed (Chen and 
Patton, 1999; Frank, et. al., 1999; Gertler, 1998; 
Isermann, 1997; Patton, et. al., 2000). From the 
multiple model-based methods in the literature, the 
three main groups are parity equations, observers, 
and parameter estimation. Fault detection based on 
signal processing and on signal models is also 
possible (Isermann, 1997). 

A “fault” is an unexpected change of a system 
function, although it may not represent physical 
failure or breakdown (Chen and Patton, 1999). 
Another definition is (Isermann, 1997): a “fault” is a 
non-permitted deviation of a characteristic property 
that leads to the inability to fulfil the intended 
purpose. 
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Figure 1: The three-tank benchmark. 

 
Modern fault diagnosis systems are model-based, 

instead of the traditional approach based on 
“hardware (or physical/parallel) redundancy. Two 
kinds of models can be used to perform the FDI task 
(Chen and Patton, 1999; Frank, et. al., 1999; Gertler, 
1998; Isermann, 1997; Patton, et. al., 2000): 
quantitative (analytical) models, or qualitative 
models (knowledge-based models: fuzzy models, 
neural networks, etc). Model-based fault diagnosis is 
define as the determination of faults of a system 
from the comparison of available system 
measurements with a priori information represented 
by the system’s mathematical model, through 
generation of residual signals and their analysis. A 
residual is a fault indicator or an accentuating signal 
that reflects the faulty situation of the monitored 
system (Chen and Patton, 1999). 
 

Some process plants are complex systems, like 
nuclear reactors, chemical plants, aircrafts, power 
plants, feed-water plants, etc. For that cases, an 
efficient FDI approach must combine (integrate) 
different FDI methods: parity equations, observers, 
and parameter estimation. These methods can be 
implemented using classical or intelligent soft 
computing techniques. The three-tank benchmark 
used in our work (Figure 1), developed during the 
COSY (control of complex systems) programme of 
the European Science Foundation, is a typical hybrid 
complex system (Heiming and Lunze, 1999). The 
main reasons are: a) each water tank is a nonlinear 
system; b) is a hybrid system in the sense that has 
continuous and discrete sensors; c) has eight 
different operating modes; d) the models build to 
represent the system behaviour usually have a 
significant uncertainty associated. 
 

The main contribution of this paper is the 
integrated approach proposed to deal with nonlinear 
FDI problems in hybrid nonlinear dynamic systems, 
where nonlinear neural observers play an important 
role. Section 2 describes, briefly, the three-tank 
benchmark. Section 3 details the proposed combined 
approach for FDI, and the application to the 
benchmark. The simulation results are in section 4. 
The final section presents the conclusions and the 
future work. 

2 THE THREE-TANK 
BENCHMARK 

The benchmark problem concerns the three coupled-
tanks depicted in Figure 1 (Heiming and Lunze, 
1999). The aim is to provide a continuous water 
flow  to a consumer by maintaining a desired 
level in the central tank . Pipes, which can be 
controlled by several valves, connect the water 
tanks. All valves can only be completely opened or 
completely closed. Water can be let into the left and 
right tank using two identical pumps (P1 and P2). 
Measurements available from the process are the 
continuous water levels  in each tank, and two 
discrete levels  from two proximity switches 
attached to the central tank ( ). For the middle tank 

, the qualitative values are: low = [0..9] cm, 
medium = [9..11] cm, and high = [11..60] cm. 

NQ

3T

ih

dh

3T

3T

 

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

164



PROCESS

FEATURE
GENERATION

PROCESS
MODEL

CHANGE
DETECTION

ACTUA-
TORS

SEN-
SORS

Faults

Analytical Symptoms

Features
Normal

behaviour

d

u y

∆s

s

Model based
fault detection

 
Figure 2: General model-based scheme for fault detection. 

 
In the fault-free situation, only the left tank  

and the middle tank  are used. A continuous PI-
controller or other type of controller can be used to 
control the level around 0.5 m at tank . A 
switching (on-off) controller opens and closes valve 

 thus maintaining the level around 0.1 m at 
tank ; the water level in this middle supply-tank 
has therefore to be maintained at a 
level . All other valves are closed, and 
the right tank  is empty. The three standard fault 
scenarios considered are in this work: a) fault F1, 
valve V1 is closed and blocked; b) fault F2, valve 
V1 is open and blocked; c) fault F3, valve V1L is 
open (simulating a leak in tank T1). 
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The 3-tank benchmark was developed mainly for 

FDI and for controller reconfiguration tasks. The 
main problem is to find a new control strategy if a 
fault in the technical plant has occurred. In this 
work, only the fault diagnosis problem is considered. 
The fault-tolerant control problem will be analysed 
in a future work. 

3 THE COMBINED FAULT 
DIAGNOSIS APPROACH 

3.1 The General Model-Based 
Scheme for FDI 

A general scheme of process-model-based fault 
detection is depicted in Figure 2 (Isermann, 1997). 
Based on measured input signals u  and output 

signals , the detection methods generate features y

s  (residuals r , parameter estimates  or state 

estimates ). By comparison with the normal 
features, changes of features are detected, leading to 
analytical symptoms 

∧
θ

∧
x

s∆ . 
 
After fault detection, the fault isolation task must 

be performed and consists in symptom evaluation 
and decision-making, in order to decide the location 
of the fault – a sensor fault, an actuator fault or a 
component fault, and the time of occurrence.  

3.2 The Combined FDI Approach 

The combined approach proposed in this paper, to 
solve fault diagnosis (FDI) problems in nonlinear 
dynamic systems, is based on a combination of 
different FDI approaches detailed in the next sub-
sections. 

The neural observer proposed plays an important 
role in the combined approach, since it’s able to 
works simultaneously as a state and outputs 
observer. 

 
First one must define the type of faults (additive 

or multiplicative, and their location - on the sensors, 
on the actuators or on the process components) that 
are to be detected, and then use these elements as a 
guideline to build the process models and signal 
models for FDI. 
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Figure 3: Structure of a nonlinear observer. 

 
3.3 FDI based on Signal Processing 

and Signal Models  

In practice, the most frequently used diagnosis 
method is to monitor the value (or trend) of a 
particular signal, and taking action when the signal 
reached a given threshold (Chen and Patton, 1999). 
This method of limit checking, whilst simple to 
implement, has at least two main drawbacks: a) the 
possibility of false alarms in the event of noise, and 
the change of operating point; b) a single fault could 
cause many signals to exceed their limits and appear 
as multiple faults. 

In our work, the nominal qualitative level in tank 
T3, controlled by a switching (on-off) controller, 
must be medium. The discrete sensors (in 
conjunction to other residuals) can be used to detect 
the occurrence of a fault (F1, or F2) on the system. 
A signal  was defined based on the discrete 
sensors information: 

)(3 kdh
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More advanced methods based on signal models, 

like the determination of autocorrelation functions, 
the Fast Fourier Transform (FFT), etc, can also be 
used to perform fault diagnosis (Isermann, 1997).  

3.4 FDI via Parity Equations 

In the early development of fault diagnosis, the 
parity equation approach was applied to static or 
parallel redundancy schemes, which may be 
obtained directly from measurements or from 
analytical relations. There are typically two cases for 

arranging hardware redundancy, one is the use of 
sensors having identical or similar functions to 
measure the same variable, another is the use of 
dissimilar sensors to measure different variables but 
with their outputs being relative to each other. The 
basic idea of the parity equation method is to 
provide a proper check of the parity (consistency) of 
the measurements of the monitored system (Chen 
and Patton, 1999; Gertler, 1998). 

This type of approach is not used in this work, 
but it can be used to diagnose, for example, additive 
faults on sensors. 

3.5 FDI based on Observers 

The basic idea behind the observer or filter-based 
classical approaches is to estimate the outputs of the 
system from the measurements by using either 
Luenberger observer(s) in a deterministic setting, or 
Kalman filter(s) in a stochastic setting (Friedland, 
1996; Chen and Patton, 1999). For a nonlinear 
system, the structure of the observer is not nearly 
obvious as it is for a linear system (Friedland, 1996). 
Let’s assume a nonlinear stochastic dynamic model 
for a nonlinear plant: 
 

⎩
⎨
⎧

=
=+

))(),(),(()(
))(),(),(()1(

kRkukxgky
kQkukxfkx

m

m  
 

(2) 

 
where  is the state,  is the input 

vector,  is the system output vector, and 
 and  are nonlinear functions. The 

matrices  and  are the process and 
measurement noises. Assuming known the noise 
characteristics, an Extended Kalman Filter (EKF) 
can be used as a nonlinear observer; in practice the 

nRkx ∈)( rRku ∈)(
mRky ∈)(

(...)mf (...)mg
)(kQ )(kR
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spectral densities matrices  and  are 
hardly ever known to be better than an order of 
magnitude. For a deterministic system, assuming 

 and , a general nonlinear 
observer in discrete-time is depicted in Figure 3, and 
can be expressed by: 

)(kQ )(kR

0)( =kQ 0)( =kR

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=

−=−=

Κ+=+

∧

∧∧

∧∧

)()()(

))(),(()()()()(

)())(),(()1(

kxkxke

kukygkykykykr

krkukxfkx

m

nm

 

 
 
 

(3) 

 

In (3),  is the observed state, 

 is the input vector,  is the 
system output vector, and  and  are 
nonlinear functions. The residual is expressed by 

, and  is the estimation error. By proper 
choice of the nonlinear function , the error 
equation can be made asymptotically stable.  
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In our work, observers based on neural networks 

were used to estimate the system outputs (Palma, et. 
al., 2003; Palma, et. al., 2004). The nonlinear neural 
observer used in this work obeys the model (3), and 
has a recurrent dynamic structure. For our case, the 
state variables are the measured output variables of 
the system (the levels at the two coupled tanks  

and ): . In that case the FDI 

residual  is equal to the residual of the neural 

observer, . For the state 
variable , the neural observer is 
expressed by: 
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In a similar way, for tank T3, the residual 

 is equal to the residual of the neural 

observer, . For the state 
variable , the neural observer is 
expressed by: 
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(5) 

 
In equations (4) and (5),   

represents a multi-layer perceptron feed-forward 
neural network (MLP-FF-NN) with weight matrix 

(Hagan, 1995; Palma, et. al., 2003). The structure 

(...)},,{ cbaNN

W
}1,4,2{ === cba  defines the number of neurons in 

each layer, respectively, the input layer, the hidden 
layer, and the output layer. The train of the MLP-FF-
NN neural network was done off-line in a set-point 
range varying between 0.35 and     0.5 m, using the 
Levenberg-Marquardt backpropagation optimization 
algorithm. The continuous levels in each tank are 

, and .  The flow from pump )(1 kh )(3 kh 1P  is 
, and the switch control signal  acts on 

the switching controller. The nonlinear function 
 is a design parameter that adjusts the 

observer dynamics and guarantees the stability. In 
the experiments, this nonlinear gain functions were 
defined as 

)(1 kq )(1 kV

)(1 kKn

)()( krKkK iini = , for constants 
2.01 =K  and 5.03 =K . These values were tested in 

simulations, in order to obtain a stable and slow 
dynamics. 

3.6 FDI via Parameter Estimation 

Model-based FDI can also be achieved by the use of 
system identification techniques. In most practical 
cases, the process parameters are not known at all, or 
are not known exactly enough. Then they can be 
determined with parameter estimation methods by 
measuring input and output signals if the basic 
structure of the model is known (Isermann, 1997). 
This approach is based on the assumption that the 
faults are reflected in the physical system parameters 
such as resistance, capacitance, viscosity, friction, 
etc. The basic idea of the detection method is that 
the parameters of the actual process are repeatedly 
estimated on-line using well known parameter 
estimation methods (RLS, Kalman filter, etc), and 
the results are compared with the parameters of the 
reference model obtained under the faulty-free 
condition. Any substantial discrepancy is due to a 
fault. This approach normally uses the input-output 
mathematical model of a system in the following 
form (Chen and Patton, 1999): 

))(,()( kuPfky =  (6) 
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where, P  is the model coefficient vector which is 
directly related to physical parameters of the system. 
The function  can be linear or nonlinear. To 
generate residuals using this approach, an on-line 
parameter identification algorithm should be used. 
The residual can be defined in either of the 
following ways (Chen and Patton, 1999): 

(.,.)f
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In this work, an adaptive residual generator 
based on an ARX model was used. A Kalman filter 
was used as a parameter estimator for identification 
of the parameters of the ARX model (Soderstrom 
and Stoica, 1989). It was assumed that the dynamics 
of the tank  is modelled, in steady-state, by an 
autoregressive 

1T
)2,1,2( ==== dnknbnaARX  

model, assuming  is a white Gaussian noise 
(Soderstrom and Stoica, 1989): 
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A residual was constructed based on (7), for the 

static gain of the model (9), as defined by (Palma, et. 
al., 2004):  
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3.7 Thresholds and Symptoms Values 

The thresholds ( – high, and – low) for 
each residual were computed according to a 

rThrH rThrL

rσ3  
(standard deviation) limit around the mean value 

rµ ; these statistical values were computed in a 
nominal region (Palma, et. al., 2003; Palma, et. al., 
2004). 

Each residual signal was converted to the range 
{-1;0;+1}. The value “+1” means that the residual 
exceeds the upper threshold ( ), “-1” 
means that , and “0” means the 
residual is bounded ( ). 

rx ThrHkr >)(

rx ThrLkr <)(

rxr ThrHkrThrL << )(

3.8 The Fault Diagnosis Structure 

Based on the 4 symptoms referred, the following 
fault isolation structure was build according to 
simulation tests: 
 

Table 1: Fault isolation structure. 

  Faults 
 F1 F2 F3 

rg1(k) +1 -1 -1 
r1oe(k) 0 0 -1 
r3oe(k) +1 0 0 

Sy
m

pt
om

s 

h3d(k) -1 (low) +1 (high) 0 (med) 

3.9 The Adaptive Polynomial Linear 
Quadratic (LQ) Controller 

Liquid level systems, like the one used in this work, 
are typical nonlinear systems. To control the level at 
tank  an optimal linear quadratic (LQ) controller, 
based on a polynomial approach, was designed and 
implemented (Lewis, 1996). For the ARX(2,1,2) 
model (9), the obtained control law is defined by 
(11). 

1T

The control action  is computed each time 
instant based on the on-line identified parameters of 
the ARX model:  

)(ku

).()(),(),( 0221 kbkbkaka =
 
The Kalman filter was used as a parameter 

estimator. The reference signal is denoted . 
The scalar  is a design parameter used to tune the 
closed-loop performance. 
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Figure 4: Signals for fault F1. 

 
4 SIMULATION RESULTS 

4.1 Operating Conditions 

The simulations were done in a Matlab/Simulink® 
programming environment. The Simulink model of 
the three-tank benchmark runs in continuous-time in 
a computer, and the supervision Matlab software 
runs on discrete-time on another computer; the link 
between the two PC’s is done by serial port 
communication. 

A sampling time of  was used. All the 
values were normalized to the range [0;1]. 

sTs 1=

4.2 Simulation Results 

In Figure 4, are presented the signals obtained for an 
experiment in which is detected and isolated the 
fault F1. From top to bottom, the signals in this 
figure are: a1) the set-point for tank T1, the level h1, 
and the output predicted; a2) the flow q1; a3) the 
set-point for tank T3, the level h3, and the output 
predicted; a4) the residual rg1; a5) the residual r1oe, 
from the neural observer; a6) the residual r3oe, from 
the neural observer; a7) the qualitative level h3d; a8) 
the fault isolation signal. 
The following table shows the detection delay for 
each fault, and the results are acceptable since the 
system has a slow dynamics. 

 

Table 2: Detection delay 

Fault Detection delay [s] 
F1 31 
F2 32 
F3 14 

 
The robustness of the FDI approach against set-

point variations was also tested, for a range between 
{0.35;0.5}m, and a good performance (without false 
alarms) was obtained. 

 
The experiments done with the faults F2 and F3 

are shown in Figure 5, and Figure 6. In these figures, 
the same signals described in Figure 4 can be 
observed. The two faults, F2 and F3, were also well 
detected and isolated.  

 
As can be observed in all simulations, the 

residuals and the signal h3d used for fault isolation 
(Table 1) reveals a good performance for FDI. 
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Figure 5: Signals for fault F2. 

 
 

 
Figure 6: Signals for fault F3. 
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5 CONCLUSIONS 

The paper proposes a combined approach to fault 
diagnosis (FDI) in dynamics systems. This approach 
integrates several FDI classical and intelligent (soft 
computing) methods. 

 
All the available information must be use to 

perform FDI. An integration of process models and 
signals models improves the reliability of the FDI 
approach. A robust FDI system, able to be 
implemented in a practical problem, should combine 
both quantitative (numerical) and qualitative 
(symbolic) information. The soft computing 
techniques for FDI, like nonlinear neural observers, 
are particularly important and efficient as shown in 
this work. One great advantage of this type of 
approach is that a precise mathematical model is not 
required. 

 
The proposed combined approach has been 

applied to a simulation model of the three-tank 
benchmark (a typical feed-water system), and the 
results shown good performance, and robustness 
against set-point variation. 

 
The future work will concern to fault-tolerant 

control approaches via controller reconfiguration 
strategies, and the stability analysis of nonlinear 
neural observers. 
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