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Abstract: In the area of Heterarchical Manufacturing Systems modelling and control, a relatively new paradigm is that 
of Multi-Agent Systems. Many efforts have been made to define the autonomous agents concurrently 
operating in the system and the relations between them. But few results in the current literature define a 
formal and unambiguous way to model a Multi-Agent System, which can be used for the real-time 
simulation and control of flexible manufacturing environments. To this aim, this paper extends and develops 
some results previously obtained by the same authors, to define a discrete event system model of the main 
distributed agents controlling a manufacturing system. The main mechanism of interaction between three 
classes of agents is presented. 

1 INTRODUCTION 

Nowadays, the study of appropriate tools for 
modelling and designing Multi-Agent Systems 
(MAS) technologies is a key-issue involving all their 
application areas, including telecommunication and 
computer networks, communities of intelligent 
robots, web-based agents for information retrieval, 
to mention a few. Moreover, considerable research 
efforts have been devoted to the definition of 
standards and to the development of platforms for 
unambiguous agent specification, especially in the 
context of software engineering. 

Focusing on the specific context of industrial 
manufacturing, this paper proposes an approach 
based on the Discrete EVent System (DEVS) 
specification (Zeigler et al., 2000) to obtain a 
complete and unambiguous characterization of a 
multi-agent control system. By using the DEVS 
formalism, we describe agents as atomic dynamic 
systems, subject to external inputs from (and 
generating outputs to) other agents. Furthermore, we 
directly obtain the model of the entire network of 
agents by specifying the relationships between the 
atomic agents. The DEVS technique is fully 

compatible with the heterarchical design principles, 
and leads to MAS where all information and control 
functions are distributed across autonomous entities. 
In particular, the DEVS formalism is an interesting 
alternative to other recently proposed tools for MAS 
specification, e.g. the UML (Huhns and Stephens, 
2001), Petri Nets (Lin and Norrie, 2001). The 
success of this formalism is due to its suitability for 
developing useful models both for discrete event 
simulation, and for implementation of the software 
controllers on plant’s operating system. Namely, the 
DEVS formalism can effectively model many recent 
MAS architectures, such as part-driven heterarchical 
manufacturing systems (Duffie and Prabhu, 1996, 
Prabhu and Duffie, 1999) and schemes inspired by 
the Contract Net protocol (Smith, 1980, Parunak, 
1994, Sousa and Ramos, 1999). 

As in most MAS for manufacturing control 
(Heragu, 2002, Shen and Norrie, 1999), in our 
model all the agents use decision algorithms 
emulating micro-economic environments. Each 
agent uses a fictitious currency to buy services from 
other seller agents which, on their turn, use pricing 
strategies. Sellers and buyers have to reach an 
equilibrium between conflicting objectives, i.e. to 
maximize profit and to minimize costs, respectively. 
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Recently, there have been efforts to develop 
analytical models of negotiation processes using, for 
instance, Petri nets (Hsieh, 2004), underlining the 
need of a systematical analysis and validation 
method for distributed networks of autonomous 
control entities. Many other researches have focused 
on the experimental validation of MAS on 
distributed simulation platforms (Shattenberg and 
Uhrmacher, 2001, Logan and Theodoropoulos, 
2001), which allow to perform detailed 
investigations on the interaction schemes. Sharing 
the same motivations with the mentioned researches, 
our work focuses on the development of DEVS 
models of MAS, which combines the rigor of a tool 
suitable for performing the theoretical analysis of 
structural properties of the MAS, with its efficiency 
in directly translating the model in a detailed 
simulation environment, and its flexibility in testing 
both the individual and collective dynamics of the 
autonomous entities. Namely, our main goal is to 
find a multi-agent design platform that allows users 
to assess the relative effectiveness of agents’ 
decision and interaction strategies, with special 
interest to adaptive learning mechanisms that allow 
agents to improve their performance during their 
operation (Maione and Naso, 2003a). 

In this paper, we develop a detailed model of the 
interactions between the main agents in a 
manufacturing system. This contribution extends 
previous researches by the authors, in which, for 
sake of simplicity, the interactions with transport 
units were not considered in detail, and illustrates 
the basic mechanisms of the modelling procedure. 
The paper also outlines other main directions of the 
research in progress. Section 2 introduces the basic 
components of the proposed MAS, and specifies 
their roles and relations. Section 3 specifies how to 
model agents as atomic DEVS. Section 4 focuses on 
the main interactions between agents, describing the 
negotiation for a manufacturing process on a part. 
Sections 5 and 6 give some experimental results, 
overview the advantages of the approach, and 
enlighten the issues open for further research. 

2 THE MULTI-AGENT SYSTEMS 
CONTROL APPROACH 

We consider each Part Agent (PA) as a control unit 
connected to the corresponding physical part (piece) 
flowing through the system. In accordance with the 
related literature (Duffie and Prabhu, 1996, Heragu, 
2002, Prabhu and Duffie, 1999), we associate each 
part into a batch of identical items in process with a 
PA that identifies in real-time (i.e. shortly before a 
part is ready for a new process) the most suitable 

workstation for the imminent operation on that part 
and, consequently, the most suitable vehicle to 
transfer it to the station. The selection is based on 
real-time updated information directly received from 
the alternative stations and transport vehicles, 
through an exchange of messages with other agents. 
Namely, a Workstation Agent (WA) is a software 
entity controlling a workstation or a cell of machines 
performing the same operations, and a Transport 
Agent (TA) is associated with the transport system 
or with a single or group of transport units. 

At each operation step, by interacting with WAs 
and TAs, a PA chooses the machine servicing the 
associated part and the transport device moving the 
piece from its current position (the output buffer of 
the occupied machine) to the chosen workstation. 

In this framework, one can consider also specific 
agents designed to execute other tasks necessary for 
the global operation of the manufacturing plant 
(Maione and Naso, 2003b). In particular, one can 
associate an Order Agent (OA) with each different 
order issued by the management level. The OA 
retains information on quantity and type of products 
to be processed. Similarly, one can define a Loading 
Agent (LA) to manage the loading/unloading station 
where the raw/completed parts enter/exit the system. 

The global control of the manufacturing floor 
emerges from the concurrent actions of the various 
agents in the system. The careful analysis of their 
interactions is fundamental to understand how to 
obtain the desired global behaviour. For instance, the 
OA interacts with PAs to control the release of the 
quantity and type of raw parts necessary to realize 
that order. The PAs interact with the LA to negotiate 
the loading/unloading of raw/completed parts. Here, 
we concentrate on the interactions between a PA and 
WAs and TAs when a part is ready for a new 
process and its PA has to decide the resources 
(workstation and transport device) necessary to fulfil 
the operations, among a set of available alternatives. 

The high-level agents’ decisions are executed by 
low-level plant controllers that are not modelled 
here. One can also view the network of interacting 
agents as a distributed controller supervising and 
synchronizing the underlying physical hardware. 

3 THE DISCRETE-EVENT 
MODELLING FRAMEWORK 

The agents operating in our MAS model interact one 
with another by exchanging event messages. Outputs 
from an agent become inputs for other agents. The 
agent state is updated by external input events 
(inputs) and internal events. Each event in the life of 
an agent is considered an instantaneous or “atomic” 
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action without duration. Time-consuming actions are 
represented by a pair of events, the first denoting its 
start and the second denoting its finish. 

So, unambiguous models for the agents in the 
system are identified by all the classified events 
which affect the dynamics of each type of agent. The 
internal events are generated by the internal 
dynamics of the agent, and the exogenous events are 
inputs which are not determined by the agent. 
Finally, the external output events (or outputs) 
represent the reaction of the agents. Then, it is 
important to define the sequential state of each 
agent. Namely, events change the state. An agent 
stays in a state until either it receives an input, or an 
amount of time determined by a time advance 
function elapses. In the latter case, an internal event 
occurs to change state according to a specified 
internal transition function. Otherwise, if an agent 
receives an input, an external transition function 
specifies the state transition according to the current 
total state of the agent, defined by the sequential 
state, the time elapsed since the last transition and 
some additional information. Finally, agents 
generate outputs according to an output function. 
Delays and faults in the communication process are 
also considered in our model. Although the effects 
of these phenomena are often neglected in technical 
literature, we evaluate their effects both on overall 
production performance and on the efficiency of the 
MAS, expressed by ad-hoc performance measures. 
This allows us to track, monitor and optimize the 
interaction among agents. 

To conclude, each agent may be modeled as an 
atomic DEVS as follows: 
 A = < X, Y, S, δint, δext, λ, ta > (1) 
where X is the set of inputs, Y is the set of outputs, S 
is the set of sequential states, δint: S→S is the 
internal transition function, δext: Q×X→S is the 
external transition function, λ: S→Y is the output 
function, ta: S→ℜ0

+ is the time advance function 
(ℜ0

+ set of positive real numbers with 0 included), 
Q = {(s,e,DL) | s∈S,0≤e≤ta(s)} is the total state set. 

The sequential state s contains the main 
information on the status, specifying the condition 
of an agent between two successive events. Other 
data strictly depend on the type of the agent. E.g., 
for a PA, one can consider the current residual 
sequence of operation steps necessary to complete 
the procedure, the set of available machines for the 
negotiated operation, and prospected time in current 
state before the next internal event. For a WA, s 
includes the queues of the requests received from 
PAs for availability, information and confirmation of 
negotiated operations (see below), and the time 
before the next internal event. For a TA, s may 
contain similar queues of requests received from 
PAs, and the time before the next internal event. 

The total state q depends on s, the time e elapsed 
since the last transition and the decision law DL 
used by the agent to select and rank the offers 
received from other agents and to decide its action. 

Usually, to build the models, one observes that 
each agent may require or offer a service to other 
agents. A precise mechanism usually defines the 
negotiation protocols working according to a cycle 
“announce-offer-reward-confirm”: an agent starts a 
bid by requiring availability for a service to one or 
more agents, requests the available agents 
information representing an offer for the negotiated 
service, collects the replies from the queried agents, 
selects the best offer, sends a rewarding message, 
waits for a confirmation and finally acquires the 
service from the rewarded agent. 

In this paper, we focus on the interactions of a 
PA with WAs and TAs when contracting for an 
operation in the procedure to be accomplished for a 
part in process. We describe the main part of the PA 
DEVS model, by concentrating on the mechanism 
ruling the status-transitions of a PA, which are 
triggered by inputs or internal events, and the 
outputs generated for each status. We don’t go into 
the details of the DL used by each agent. To this 
aim, we exploit the models already defined and 
developed in precedent papers (Maione and Naso, 
2003a,b) for PAs, WAs and TAs, but we expand and 
better clarify them to put them together. 

4 THE INTERACTIONS OF A PA 
WITH WAS AND TAS 

To accomplish the manufacturing tasks, each PA 
interacts with WAs to choose the workstation for the 
next operation and with TAs to select the vehicle 
moving the part from the station currently occupied 
to the next one. We assume that the PA firstly 
communicates exclusively with WAs, then with TAs 
only. 

For t<tP0 let the PA associated with a generic 
part, say P, be in a quiescent status (QUIESC) and 
let it begin its activity at tP0 (event XP0). Then P 
spends the interval [tP0, tP1] to send outputs YP01, 
YP02,…, YP0w at instants t01>tP0, t02,…, t0w=tP1. These 
messages request the availability to all the WAs of 
the alternative stations (w in number) that can serve 
the part. The sequence of requests cannot be 
interrupted by any internal or external occurrence. 
For sake of simplicity, instead of modelling a 
sequence of w status-values, we refer to REQWAV 
for the whole duration of the activity and assume 
that P makes transition at tP1 (event IP1). 

In [tP1, tP2] P waits for answers (WAIWAV). 
Namely, the request P transmits to each WA may 
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queue up with similar ones sent by other PAs. Next 
transition occurs at tP2 when either P receives all the 
answers from the queried WAs (XP1), or a specified 
time-out of WAIWAV expires before P receives all 
the answers. In case it receives no reply within the 
timeout (IP2), P returns to REQWAV and repeats the 
request procedure. In case of time-out expiration and 
some replies received (IP3), P considers only the 
received answers to proceed. The repeated lack of 
valid replies may occur for system congestion, for 
machine failures or communication faults, or for 
other unpredictable circumstances. In all cases 
permanent waits or deadlocks may occur. To avoid 
further congestion and improve system fault-
tolerance, we use time-outs and let P repeat the 
cycle REQWAV-WAIWAV only a finite number of 
times, after which P is unloaded from the system. 

If all or some replies are received before the 
time-out expiration, P starts requesting service to the 
m≤w available WAs at tP2. In [tP2, tP3] P requests 
information to these WAs by sending them YP11, 
YP12, …, YP1m at instants t11>tP2, t12,…, t1m=tP3. If the 
sequence of requests cannot be interrupted, we refer 
to REQWSE for the whole activity. We assume that 
at tP3 P makes transition (IP4). 

Then, P spends [tP3, tP4] waiting for offers from 
the available WAs (WAIWOF), as the request P 
transmits to each WA may queue up with those sent 
by other PAs. Next transition occurs at tP4 when 
either P receives all the answers from the queried 
WAs (XP2) or a time-out of WAIWOF expires. In 
case it receives no reply within the timeout (IP5), P 
returns to REQWSE and repeats the procedure. In 
case of time-out expiration and some replies are 
received (IP6), P considers only the received offers to 
select the next server. Again, to avoid congestion, P 
repeats the cycle REQWSE-WAIWOF a finite 
number of times, then it is discharged. 

Once received the offers from WAs, P utilizes 
[tP4, tP5] to take a decision for selecting the 
workstation (TAKWDE). At tP5 the decision 
algorithm ends (IP7), after selecting a WA and 
building a queue to rank all the offers of other WAs. 

Subsequently, P reserves the chosen machine by 
transmitting a booking message (YP2) to the 
corresponding WA. So P takes [tP5, tP6] for 
communicating the choice to the WA (COMCHW). 
At tP6 the communication ends (IP8). Now, the WA 
has to send a rejection if there is a conflict with 
another PA or a booking confirmation (XP5). Hence, 
P uses [tP6, tP7] to wait for a confirmation from the 
selected WA (WAIWCO). The confirmation is 
necessary because during the decision interval the 
condition of the plant can be modified by actions of 
other PAs, and the selected server can be no longer 
available. If P receives a rejection (XP3), or does not 
receive any reply within a time-out (IP9), it returns to 

COMCHW, sends a new request of confirmation to 
the second WA in the decision rank. If P has no 
other alternative destinations and the rejection (XP4) 
or the time-out (IP10) occurs, it returns to REQWAV 
and repeats the negotiation. Also WAIWCO, 
WAIWAV and WAIWOF cannot lead to deadlocks, 
thanks to the time-out. 

At tP7, after receiving a confirmation from the 
selected WA, P starts the negotiation with TAs for a 
device to carry the part from the current position to 
the input buffer of the selected workstation, where 
the last negotiated operation is to be made. Then P 
opens the bid and spends [tP7, tP8] to send YP31, YP32, 
…, YP3v at instants t31>tP7, t32,…, t3v=tP8 to all the v 
possible TAs to request their availability 
(REQTAV). In [tP8, tP9] after the end of transmission 
(IP11), P waits for availability-answers (WAITAV) 
until a time-out expires: if no reply is received, P 
gets back to REQTAV (IP12) to repeat the request. 
Otherwise, if all replies are received before the time-
out expiration (XP6) or u≤v replies are received and 
the time-out expires (IP13), at tP9 P starts requesting 
service to the u available TAs (REQTSE). 

Then P uses [tP9, tP10] to send outputs YP41, YP42, 
…, YP4u at instants t41>tP9, t42,…, t4u=tP10 to all the 
available TAs and, after the transmission is 
completed (IP14), P waits for offers from TAs 
(WAITOF) in [tP10, tP11] until a time-out expires. If 
no offer is received (IP15), the PA repeats the request. 
If only some offers arrive and the time-out expires 
(IP16) or all offers arrive before the time-out (XP7), P 
can take a transport-decision (TAKTDE) for 
selecting the best offering TA in [tP11, tP12]. After 
selection (IP17), in [tP12, tP13] P communicates its 
choice by sending YP5 to this TA (COMCHT). After 
this communication (IP18), P waits for a rejection or 
a confirmation from the selected TA (WAITCO) 
until a time-out expires. If no reply is received in the 
waiting period [tP13, tP14] and a time-out expires (IP19) 
or a rejection is received (XP8), in case other offers 
from TAs are available P gets back to COMCHT 
and selects a new TA; in case no other TA is 
available and there is a time-out expiration (IP20) or a 
rejection (XP9), the availability request is repeated 
and P gets back to REQTAV. 

If a confirmation is received (XP10), P makes a 
transition to issue a transport command (TRANSP). 
It takes the interval [tP14, tP15] to issue the command 
YP6 to load the part on the vehicle associated with 
the selected TA and to start the transport process. 
When, at time tP15, the command is complete (IP21), 
P gets back to QUIESC. In case of the last 
operation, YP6 also signals the completion of the 
working procedure to a controller, which influences 
and adapts the DL the PA uses for ranking the offers 
(Maione and Naso, 2003a). In this case, P leaves the 
system. 
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In general, from tP15 to the beginning of the next 
operation (if any), P stops making decisions, 
receiving and sending messages and remains 
quiescent. The associated part is loaded on the 
transport vehicle and transferred to the next 
workstation where it is downloaded in the input 
buffer. Here, it waits in queue until receiving 
service, after a proper set-up. After the operation, the 
part reaches the output buffer and is ready for the 
next destination. All the above processes are driven 
by low-level controllers and do not involve agent 
activities. So, only when the processes are over, P is 
again ready to start a new negotiation phase. If for 
t>tP15 faults occur to the selected machine or vehicle, 
P remains in QUIESC and there is no need to restart 
negotiations with WAs or TAs. In fact, the plant 
controllers manage the repair process: when the 
normal operating conditions are restored, the part is 
transported to the selected machine. 

Note that, after the negotiation cycle is complete, 
when the chosen and confirmed WA (or TA) signals 
to the PA the end of the operation (or transport) 

process, the PA can take into account its new 
availability. If, at this time, the PA is requesting or 
waiting for availability or information from other 
WAs (or TAs), or is taking a decision for operation 
(transport) on other parts, the received messages 
from the past-selected WA (or TA) wait in a queue 
until the PA gets to REQWSE (or REQTSE). In this 
case, the PA will send an output YP1m+1 (or YP4u+1) 
also to this new available WA (TA). 

Figure 1 depicts all this complex interaction 
dynamics. Circles represent the PA status-values, 
arrows represent the events, and the outputs, directly 
associated with status-values, are encapsulated into 
the circles. As the figure shows, the PA may receive 
confirmation from a WA (or a TA) after several 
successive couples COMCHW-WAIWCO (or 
COMCHT-WAITCO). Also, time-outs can bring the 
PA back to REQWAV (from WAIWAV when no 
answer is received from WAs or from WAIWCO 
after a WA-rejection) or to REQTAV (from 
WAITAV when no answer is received from TAs or 
from WAITCO after a TA-rejection). 
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Figure 1: dynamics of a PA when negotiating with WAs and TAs. 
 
 

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

88



 

On one hand, one could simplify the model by 
merging REQWAV, WAIWAV, REQWSE and 
WAIWOF, i.e. by considering the PA sending 
requests for availability and information all together. 
So, each WA would offer availability and the 
information necessary to the PA decision at the same 
time. Only two status-values would be necessary, 
the first for the request, the second for the wait. The 
same reduction is possible for REQTAV, WAITAV, 
REQTSE and WAITOF. 

On the other hand, the more detailed model of 
the PA activities, which considers two different 
time-outs for the two different waiting conditions 
previously defined, can be more effective in 
reducing the PA waiting times and in avoiding 
deadlocks. In fact, the effect of delays and losses of 
messages due to workstation or transport 
unavailability (faults, malfunctions, overloaded 
workstations, etc.) and to communication faults are 
reduced. Also, the cyclic repetition of requests and 
waits and the consequent delays in the decision 
processes are limited. As a consequence, the risk of 
discharging PAs from the system is reduced. 

To better enlighten the negotiation mechanism, 
we summarize in Tables I-III the status-values, 
inputs, internal events and outputs. 

 
Table I: status-values for a Part Agent 

Status Agent’s Activity Description 
QUIESC Agent inactive 
REQWAV Request availability to all possible WAs 
WAIWAV Wait for availability signal from WAs 
REQWSE Request service to available WAs 
WAIWOF Wait for offers from available WAs 
TAKWDE Take decision for the best WA offer 
COMCHW Communicate choice to selected WA 
WAIWCO Wait confirm./reject. from selected WA 
REQTAV Request availability to all possible TAs 
WAITAV Wait for availability signal from TAs 
REQTSE Request service to available TAs 
WAITOF Wait for offers from available TAs 
TAKTDE Take decision for the best TA offer 
COMCHT Communicate choice to selected TA 
WAITCO Wait confirm./reject. from selected TA 
TRANSP Command selected TA to move the part 

 

Figure 1 shows that the negotiation mechanism 
maintains a well defined structure with other agents 
participating to a negotiation process. 

In a similar way, a DEVS model can be defined 
for other interactions between classes of agents 
(Maione and Naso, 2003b). The common structure 
of the negotiation mechanism is advantageous for 
building up complex models in a modular way. 

The DEVS model of the agents’ interactions is 
particularly suitable for developing a complete 
simulation platform for the analysis of the dynamics 
of the complex MAS controlling a manufacturing 
plant. In particular, our model allows the simulation 
of both the plant processes and their macroscopic 
hardware components (machines, AGVs, parts, etc.), 
and the details of the control activities performed by 
agents (inputs, outputs, states, time-outs). So, we can 
evaluate the classical indices of a manufacturing 
system performance (throughput, number of 
completed items, lateness, etc.), but also the effects 
of agents and their decision policies and the MAS 
efficiency (number of negotiation cycles, number of 
requests). Also, we can measure the agents’ behavior 
in steady-state operating conditions and their 
adaptation to abrupt disturbances (shortages of 
materials, workload changes, hardware faults, etc.). 

In this sense, we made all these measures when 
agents were using different decision policies, to see 
how they dynamically react to disturbances (Maione 
and Naso, 2003a,c). We compared other MAS that 
use conventional decision heuristics (based on the 
delivery time of parts to machines, the distance to 
the next workstation, the required set-up time) with 
our MAS, both with and without adaptation. We let 
agents use a set of decision rules for a limited 
amount of time (the agent life-cycle) and then we 
replace the rules by using the most successful ones. 
The replacement at the end of life-cycle was guided 
by a mechanism emulating the ‘survival of the 
fittest’ natural selection process and propagating the 
fittest rules to the next population of agents. The 
fitness of each decision rule was the average lateness 
of the parts controlled (Maione and Naso, 2003a). 

 

Table II: inputs received and outputs sent by a PA when negotiating with WAs and TAs 
Inputs Time Description  Outputs Description 

XP0 tP0 Start negotiation for a new operation  YP01 YP02 … YP0w Requests of availability 
XP1 tP2 Last reply for WA availability received  YP11 YP12 … YP1m Requests of service to available WAs 
XP2 tP4 Last reply for WA offer received  YP2 Choice communication to the selected WA 
XP3 tP7 Rejection & alternative WAs in the PA rank  YP31 YP32 … YP3v Requests of availability TAs 
XP4 tP7 Rejection & no alternative WA in the PA rank  YP41 YP42 … YP4u Requests of service to available TAs 
XP5 tP7 Confirmation from a WA  YP5 Choice communication to the selected TA 
XP6 tP9 Last reply for TA availability  YP6 Transport command 
XP7 tP11 Last reply for TA offer    
XP8 tP14 Rejection & alternative TAs in the PA rank    
XP9 tP14 Rejection & no alternative TA in the PA rank    
XP10 tP14 Confirmation from a TA    

USING A DISCRETE-EVENT SYSTEM FORMALISM FOR THE MULTI-AGENT CONTROL OF
MANUFACTURING SYSTEMS

89



 

Table III: internal events of a PA when negotiating with WAs and TAs 
Internal Event Time Description 

IP1 tP1 End of WA availability request process 
IP2 tP2 Time-out and no availability signal received from WAs 
IP3 tP2 Time-out and some (m) availability signals received from WAs 
IP4 tP3 End of WA service request process 
IP5 tP4 Time-out and no offer received from the m available WAs 
IP6 tP4 Time-out and some offers (o<m) received from the available WAs 
IP7 tP5 End of workstation-decision process 
IP8 tP6 End of choice communication to the selected WA 
IP9 tP7 Time-out and no confirmation received from the selected WA when other ranked WA offers are available 
IP10 tP7 Time-out and no confirmation received from the selected WA when no other ranked WA offers are available
IP11 tP8 End of TA availability request process 
IP12 tP9 Time-out and no availability signal received from TAs 
IP13 tP9 Time-out and some (u) availability signals received from TAs 
IP14 tP10 End of TA service request process 
IP15 tP11 Time-out and no offer received from the u available TAs 
IP16 tP11 Time-out and some offers (o<u) received from the available TAs 
IP17 tP12 End of transport-decision process 
IP18 tP13 End of choice communication to the selected TA 
IP19 tP14 Time-out and no confirmation received from the selected TA when other ranked TA offers are available 
IP20 tP14 Time-out and no confirmation received from the selected TA when no other ranked TA offers are available 
IP21 tP15 End of transport command 

 
5 SOME EXPERIMENTAL 
RESULTS AND FUTURE PLANS 

The DEVS model is particularly suitable for 
developing a simulation platform for the analysis of 
the complex dynamics of distributed multi-agent 
control systems. Differently from traditional discrete 
event models of manufacturing plants, mainly 
devoted to simulate the macroscopic components, 
our model considers also the detailed dynamics of 
the software agents (exchanged event messages, 
internal events and outputs). In this way, we may 
study also the effects of hardware faults, congestion 

of the communication network, message losses or 
similar circumstances. 

For instance, it is possible to compare various 
decision policies used by the various agents to 
negotiate operations in a detailed simulation model, 
as done in (Maione and Naso, 2003a). 

The simulation model also allows us to perform 
comparative analysis in dynamic conditions, and 
define reactive policies that minimize the effects of 
disturbances, e.g. a workstation fault. For example 
Figure 2 compares four different agents’ decision 
policies by throughput: minimizing the distance 
between consecutive workstations (A), minimizing 
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Figure 2: comparison of performance in dynamic conditions (workstation fault at t = 1 0^5 s). 
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the wait for set-up of the workstation (B), 
minimizing the wait in queue at the workstation (C), 
and using a learning strategy (D). It can be noted 
how the reactive policy (D), designed with the aid of 
the DEVS model, outperforms the common (static) 
decision rules using MAS. 

Future research aims at applying the proposed 
approach to other complex distributed control and 
optimization problems, such as those involved in 
large-scale logistic or supply chains. 

6 CONCLUDING REMARKS 

In this paper, we used the DEVS formalism to 
specify the model of the main agents operating in a 
MAS controlling part-driven heterarchical 
manufacturing systems. In this context, we detailed 
the interactions guiding the negotiations related to a 
generic step in a working procedure associated with 
a part process. The model respects heterarchical 
principles and can be used in a simulation platform 
which allows us to analyze both the classical 
performance indices of a manufacturing system and 
the effectiveness of the MAS, using decision 
policies which implement adaptation strategies. 

The proposed method leaves many interesting 
issues open for further research. The next step 
toward the experimentation of the multi-agent 
control system on an automated manufacturing 
plant, is to test the DEVS model on a distributed 
network of computers, each hosting one or more of 
the agents in the heterarchical network. This aims at 
investigating and properly addressing the critical 
issues related to distributed autonomous controllers 
that cannot be examined when simulating the whole 
set of agents on a centralized platform. 
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