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Abstract: This paper reports experiments conducted to classify single channel Surface Electromyogram recorded from 
the forearm with the flexion and extension of the different fingers. Controlled experiments were conducted 
where single channel SEMF was recorded from the flexor digitorum superficialis muscle for various finger 
positions from the volunteers. A modified wavelet network called Thresholding Wavelet Networks that has 
been developed by the authors (D Kumar, 2003) has been applied for this classification. The purpose of this 
research was towards developing a reliable man machine interface that could have applications for 
rehabilitation, robotics and industry. The network is promising with accuracy better than 85%.  

1 INTRODUCTION 

With greatly improved computational power, and 
use of computers having exploded into every walk 
of life, there is a greater need for flexible, natural 
and reliable human computer interface. Hand 
movement gestures play a very important role in the 
interactions between people. But most of the 
interaction with computers is based static events 
such as a key press, and the information contained in 
the dynamic gesture is lost, greatly reducing the 
scope of machine interaction. There is thus need for 
simple and reliable methods for human hand action 
identification by machines. This paper reports a new 
technique for automatic recognition of human hand 
movements.  

Skeletal movement is caused by or prevented by 
muscle contraction. Muscle contraction is a result of 
electrical stimulation received from the nerves to 
individual muscle fibres. The resultant electrical 
activity can be recorded by electrodes kept in the 
close proximity of the muscles. Surface 
electromyography (SEMG) (J Cram, 1998) is the 
recording of the electrical activity of skeletal muscle 
from the skin surface. It is a result of the 
superposition of a large number of transients 
(muscle action potentials) that have temporal and 
spatial separation that is semi-random. 

SEMG signal is the electrical recording from the 
surface and represents the summation of the 
electrical activity from all the muscle fibres and thus 

the summation of all Motor Unit Action Potentials 
(MUAP) in the region of the electrodes. The origin 
of each of the MUAP is inherently random, non-
stationary, and the electrical characteristics of the 
surrounding tissues are non-linear. Distribution of 
the magnitude of SEMG can be approximated by a 
Gausian function (J Cram, 1998).  

SEMG is used for a number of applications 
including control of Human Computer Interface 
(HCI), prosthesis control (Hudgins, 1993, D Graupe, 
1975,F Chan, 2000), muscle diagnostic and 
biofeedback. Amplitude and spectral information of 
EMG have also been exploited to estimate muscle 
fatigue and force of muscle contraction and torque 
(K Englehart, 1999). These applications require 
automated analysis and classification of SEMG. The 
complexity of the signal makes this a challenging 
task. The authors have reported using combination 
of three channels SEMG from the forearm to 
identify the hand action. The difficulty of using 
multiple channels is the need for precise positioning 
of the electrodes by an expert. 

For automated classification of SEMG related to 
movement, it is essential to develop the system that 
can extract appropriate features of SEMG with 
respect to the movement and have a mechanism for 
relating these features to the movement generating 
the signal without the need for multiple channels. 
The earlier SEMG classification techniques were 
based on the statistical analysis of the signal 
properties (Hudgins, 1993). Auto Regressive (AR) 
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model (Graupe, 1975), of the SEMG signals 
representing limb positions and were able to classify 
a single channel recording with 85% success rate. 
The techniques relied on the fixed thresholding 
levels determined by manual inspection of the 
tendency of the signal’s parameters. But this system 
was highly dependent on the subject and recording 
and required high degree of manual intervention.  

Hudgins et al (Hudgins, 1993) reported the first 
major work of SEMG classification using Artificial 
Neural Networks (ANN).  The ANN was used to 
introduce the flexibility and self-learning ability to 
the classification technique. The accuracy of the 
classification technique was ranging from 80% to 
90%. However, the technique was only applied to 
the initial stage of the contraction. The technique is 
sensitive to the window size and the appropriate 
selection of the signal’s features (F Chan, 2000).  

Englehart (K Englehart, 1999,K Englehart, 
2001), the authors (D Kumar, 2003) and others have 
reported the results of classification of SEMG 
against resultant movement and muscle status using 
various signal features. Some of the features 
reported include time domain features, Short Time 
Fourier transform (STFT), Wavelet Transform (WT) 
and Wavelet Packet Transform (WPT). It has been 
reported that WT and WPT were superior in the 
classification SEMG against muscle status during 
steady-state contraction. It has also been reported 
that the technique was sensitive to the appropriate 
selection of signal features to be included in the 
classification and that the technique could be 
improved by including the adaptive feature selection 
process.  

The Thresholding Wavelet Network (TWN) has 
been developed by the authors (D Kumar, 2003) and 
has been applied in this paper for SEMG 
classification. This combines the WT, ANN and 
wavelet thresholding. The combination enables the 
network to extract time-scale features from the 
signal and adaptively select the appropriate features 
for the classification task. This paper reports the 
architecture of the network and the network’s 
performance in the classification of SEMG recorded 
for various finger movements. 

This paper is organised into six sections. Section 
2 reviews the basic concept of WT and wavelet 
networks while Section 3 details the architecture and 
learning process of the TWN. Section 4 presents the 
experimental method and results while Section 5 
discusses the results. Section 6 concludes the paper. 

 

2 THEORETICAL BACKGROUND 

A. Wavelet Networks 
 
Wavelet network (S Mallat, 1999) is a class of ANN 
(D Kumar, 2003, M Hagan, 1996) that includes WT 
in its algorithm. The combination provides a tool 
that can calculate wavelet coefficient in parallel 
mode and adaptively select the proper wavelet 
coefficients for the approximation or classification 
task. The wavelet networks are grouped in two 
different categories: 

 
Approximation Wavelet Networks (AWN): 

Wavelet networks are designed for the purpose of 
function approximation or representation and 
iteratively generate the wavelet coefficients as well 
the inverse wavelet transforms to approximate the 
signal. 

Classification Wavelet Networks (CWN): 
Wavelet networks that are designed for the purpose 
of function classification. These are based on 
computing and determining the wavelet coefficients 
to classify the signal.   

 
AWN optimises its parameters based on a cost 

function that is sensitive to energy content. The 
approximation is only useful in a classification task 
if the distinguishing factors are immersed in the 
high-energy region of the signal.  But the features 
that discriminate a class of SEMG signals from the 
other classes are not necessarily immersed in the 
high-energy region of the signal.  

 The basic principle of CWN is to iteratively 
locate wavelet coefficients (scale and translation) 

Figure 1: A Thresholding Wavelet Network constructed by six 
thresholding nodes (three for each scale). 
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that contrast the difference between signals of 
different classes, while enhancing the commonality 
between signals of the same class. But these 
networks are temporal dependent and sensitive to the 
time location of significant events in the input signal 
such as the singularity points. This limits its 
application in SEMG signals where the action 
potentials are semi-randomly located (J Cram, 
1998). 

3 THRESHOLDING WAVELET 
NETWORKS 

The authors have introduced a new type of wavelet 
network, the thresholding wavelet network (TWN) 
(D Kumar, 2003). This is suitable for classifying 
signals such as SEMG. The wavelet coefficients are 
thresholded with an upper and lower bound. TWN 
selects wavelet coefficients that identify a signal 
based on magnitude for the relevant scales making it 
is less sensitive to the time location of the 
coefficients while more sensitive to signal features 
(instantaneous frequency and singularity) 
represented by the magnitude of wavelet 
coefficients. An example of the network is shown in 
Figure 1.  

The TWN consist of four blocks of network 
layer: a wavelet layer, maxima layer, thresholding 
layer and neural networks layers (figure 1).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
The input signal x(n) is applied to the wavelet layer, 
the output is the magnitude of wavelet coefficients 
|Wf(s,σ)|. The wavelet maxima layer selects wavelet 
coefficients that are locally maxima.  

The input to the thresholding layer is the wavelet 
maxima at each scale of interest. The thresholding 
levels (θl,θh) for one scale are the same. The scale-
dependent thresholding levels allow the network to 
apply different thresholding levels to different 
scales. The output of wavelet thresholding node ϕ is 

the number of wavelet maxima with magnitude 
between θ l and θ h.  

 

The bias β determines the centre of g(x) while α 
determines the width of the function. The 
combination of α and β determines the upper and 
lower thresholds. Figure 2 illustrates the 
thresholding wavelet node.  

The network is a supervised learning algorithm 
based system. The parameters of this network (α, β 
and neural network weights and biases) are 
initialised with random values. During the iterative 
learning process, the values of these parameters are 
changed to reduce the classification error using input 
and target output examples. The cost function used 
is the sum-squared error (SSE), the difference 
between target output ϕT and the actual output ϕ. 

2
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In each thresholding node, the learning is the process 
to locate the lower and upper threshold levels (θ l 
and θ h) of each node. Determining the optimum 
value of the threshold parameters ensures number of 
wavelet coefficients with magnitude θ l<|Wf(s,σ)|<θ 
h can best categorise the class of input signals. 

The change of the parameters for each iteration 
is determined using the gradient descent algorithm 
(equations 9 and 10), and the learning rate 
coefficient ρ.  
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The learning process is repeated until the sum-
squared-error SSE falls below a predefined 
maximum error ET. At this stage the network is 
considered as able to classify the training pattern 
with an error less than ET.  

4 EXPERIMENTS 

The aim of this study was to determine the possible 
use of single channel SEMG from the forearm to 
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Figure 2: The Wavelet thresholding node. 
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identify the various movements of the fingers. 
Towards this aim, the TWN has been employed to 
identify the hand gestures by classifying the SEMG 
signal based on the difference in shape and 
amplification of action potentials due to the 
proximity of muscle fibers to the surface electrodes. 
This problem has three levels of complexity; (i) 
where all the fingers move together, (ii) where two 
fingers move together and (iii) where each of the 
finger are independent. As the first level of 
complexity may be considered as trivial, two sets of 
controlled experiments were conducted.  

Single channel SEMG was recorded from the 
flexor digitorum superficialis muscle using BIOPAC 

System EMG100C at 2000 Hz sampling rate. The 
SEMG recording system had HPF at 10 Hz, LPF at 
1000 Hz and a notch filter at 50 Hz to eliminate 
power-line interference and with gain of 2000. Three 
male volunteers were tested on three separate 
occasions. 

 The experiments were repeated and the 
network was trained with 10 signals from each class. 
The length of each signal for training purposes was 
500 samples. TWN used had 500 nodes at its 
wavelet layer, 498 nodes at maxima layer, 8 nodes at 
its thresholding layer and 100 nodes at its hidden 
layer. The TWN used Db2 wavelet at scale 1. The 
experimental results are shown in Table 1.  

The first experiment had two finger positions 
classes. Class A signals were recorded when the 
middle and ring fingers were flexed, while class B 
signals were recorded when the index and little 
fingers were flexed (Figure 3). These were selected 
because the tendons of middle and ring fingers are 
superficial compare to the tendons of index and little 
fingers (J Cram, 1998, N Palastanga, 1994). The 
muscle fibers of middle and ring fingers are more 
superficial then the fibers of distal tendons. Thus the 
shape and magnitude of recorded action potentials 
when flexing the middle and ring fingers are 
different to the action potentials when flexing the 
index and little fingers. The results are presented in 
Table 1.  

The second set of experiments involved the 
classification of SEMG signals for four different 
fingers (flexion and extension). The finger positions  
for the experiments are shown in Figure 4, 5 and 6, 
while the experimental results are shown in Table 2, 
3 and 4.  

 

 

(a) 

 

 
(b) 

 
Figure 3: The finger positions for experiment 2. 
a) The finger position when class A signals were 
being recorded. b) The finger position when class 

B signals were being recorded. 
 

 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 6: The finger positions for experiment 5. 

(a) 
 

 

(b) (c) 

 

(d) 

Figure 4: Finger positions for experiment 3. 

 

(a) 

 

(b) (c) 

 

(d) 

Figure 5: The finger positions for experiment 4.  

ICINCO 2004 - ROBOTICS AND AUTOMATION

224



 

Table 1: 
 

 
Table 2: The Classification Error of Experiment 3 

 
 Class A Class B Class C Class D Average 
Subject 1 10.0% 6.67% 20.0% 6.67% 10.83% 
Subject 2 13.33% 30.0% 13.33% 0% 14.16% 
Subject 3 16.67% 26.67% 33.33% 0% 19.16% 
Average 13.33% 21.11% 22.22% 2.22% 14.72% 

 
Table 3: The Classification Error of Experiment 4 

 
 

 Class A Class B Class C Class D Average 
Subject 1 0% 6.67% 6.67% 46.67% 15.0% 
Subject 2 0% 6.67% 40.0% 6.67% 13.33% 
Subject 3 40.0% 13.33% 0% 0% 13.33% 
Average 13.33% 8.89% 15.56% 17.78% 13.89% 

 
Table 4: The Classification Error of Experiment 5 

 

5 RESULTS AND DISCUSSION 

The results of the experiments are tabulated in tables 
1 to table 4. From these tables it is observed that 
single channel SEMG when classified using the 
magnitude of the wavelet coefficients gives high 
level of accuracy, ranging from 93% to 85%.  
From the results it is also observed that the 
classification performance using the TWN decreases 
as the complexity increases (number of classes 
increases). The error for the classification of two 
classes of signal was 7 %, while the error for the 
classification of four classes ranged between 12% 
and 14%.  

The experiments confirmed the effectiveness of 
using wavelet transform in feature extraction stage 
of the classification process. The TWN could extract 
wavelet’s time-scale features of input signal and 
adaptively select the proper features necessary for 
the classification through wavelet thresholding 
mechanism. The thresholding mechanism eliminates 

the need for manual feature selection process. The 
network initialisation did not require the priori 
knowledge of the signal to be considered. 
 The experiments also demonstrated the efficacy 
of TWN to classify SEMG signals recorded during 
low-level, steady state contractions. All the SEMG 
signals used in the experiments were recorded when 
the fingers were bended with a minimal needed 
contraction. This advantage enables the TWN to be 
applied in SEMG classification of natural finger 
movement where the contraction level is minimal. 
Also this classification technique can be applied in 
the system that responds to steady state contraction 
rather than the transient of contraction as in Hudgins 
network (Hudgins, 1993). 

6 CONCLUSION 

This paper presents a new technique where single 
channel SEMG from the flexor digitorum 
superficialis muscle is used to accurately determine 
the movement (flexion and extension) of the 
individual fingers. The authors have used a wavelet 
network that has been developed by them (D Kumar, 
2003). The network classifies SEMG signals by 
extracting time-scale features with wavelet 
transform, and adaptively adjusts its thresholding 
level during its learning process to select wavelet 
maxima with certain magnitude that characterised 
the input signals. 

The experimental results of the SEMG 
classification using TWN are extremely promising. 
From the results, it is observed that:  
a) This technique provides high accuracy of 

classification, accuracy ranging from 93% to 
85%. 

b) The accuracy of increases as the number of 
signal class decreases.  

c) The TWN can be applied to classify low 
contraction level SEMG signals. This advantage 
allows the network to be applied in SEMG-
based finger posture classifier and may find 
applications for other tonic muscle contractions 
such as muscles of the back. 

d) The TWN is less sensitive to the window size.  
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