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Abstract. This paper deals with flood routing in rivers using neural networks. 
The unsteady river flow may be formulated in terms of two one-dimensional 
partial differential equations. These are the Saint Venant flow continuity and 
dynamic equations. 
Several methods of solution of these equations are known. These methods are 
based upon characteristics of equations, finite difference, finite element and 
finite volume. All of these methods have some limitations regarding data 
requirements and complications involved in solution of equations. Neural 
network techniques have been developed recently. These are easy to use and 
need comparatively less data and less labor for solution of the problem. One of 
these techniques is used in this research work. The model was applied for flood 
routing in River Chenab in Pakistan. Its reach from Marala to Khanki was 
selected. Date for various flood events was collected from Meteorological 
Department, Lahore and Flood Commission Islamabad. The error between the 
observed and simulated values of flood hydrograph ordinates was found to be in 
acceptable range. 

1   Introduction 

Rivers, which provide water to the millions of people settled on their banks and flood 
plains, can also bring calamity in the form of floods. Today, all over the world, 
hundreds of floods occur annually. The consequences of these floods are the 
persistent recurrence of damage and tragedy of death and disease, and a constant 
menace to the progress of industry and civilization. 

 
The climatic conditions of Pakistan are hot rainy in summers and dry cold in 

winters. There are five large rivers, which are in flood during the monsoon season. 
These floods are devastating. For example, during 1988 and 1992, the floods caused 
widespread human sufferings, loss of lives and colossal damage of private and public 
infrastructure. In 1988, flood resulted in the loss of 370 people and damaged more 
than one million hectare of agricultural land. In 1992, flood caused even greater 
damage, more than 1000 people died and about 13000 villages with about one million 
houses were destroyed. Over two million hectares of agricultural land inundated 
resulting in the loss of about 15 percent of both cotton and rice crop. The nation wide 
damage was estimated at about $ 2.2 billion (Khan R.A., 2001). 

In order to safeguard property and lives, flood control and its dissipation play an 
important and vital role. Flood forecasting becomes utmost important in such 
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conditions. Flood routing techniques have been developed mainly for the study of 
floods traveling through channels, reservoirs and lakes. The technique determines the 
time and magnitude of flood peaks occurring at various points along a river as the 
flood travels downstream. Presently, flood routing is employed for a wide variety of 
problems associated with water use. Some of these include; (i) evaluating past floods 
for which records are incomplete; (ii) determining hydrograph of channel flow from 
hypothetical design floods on tributaries and upstream reaches of the main channels: 
(iii) forecasting floods along the main course of a river, by use of predicted 
hydrographs at key points in the drainage network; (iv) determining hydrographs 
modified by reservoir storage; and (v) studying the effects of water resources 
development on the downstream flow conditions.  

 
Flood routing is carried out by solving the unsteady flow equations. These are 

partial differential equations and for solution of these equations, many simplifying 
assumptions such as uniform roughness, constant channel cross-section with constant 
bed slope etc., are made. Without these assumptions, the relationship between 
variables becomes more complex and the method of solution needs more data to 
describe the channel and wave conditions. Faced with the limitations of time and 
economy in the preparation of data, one has to resort to approximate methods of 
solution. Along with the labor required for solving the equations, a tremendous work 
is required for identification of some of the parameters required, (see for example 
Ghumman A.R. 1996). 

 
An effort is made in this study to use a neural networking technique and prepare a 

flood-warning scheme for rivers in Pakistan. A reach of River Chenab between 
Marala and Khanki is selected for this as it receives flood nearly every year for the 
last so many years. 

2   Neural Networking Models 

Artificial Neural networks are increasingly used in predicting and forecasting water 
resource variables (Nash, J.E. and Sutcliffe (1970), French et, M.N. (1992), Zhu, M.L. 
and Fujita, M. (1994), Dawson C. W. & Wilby R. L.(2001), Yi-Ming Kuo (2003)). 
Hydrologic models can be divided into three broad categories, namely: Physical 
distributed models, lumped conceptual models and black box models. 

 
Physical based distributed models require excessive field data whereas in case of 

lumped conceptual models, large number of parameters and subsequent difficulty in 
calibration is involved. Both of these models are used where detailed understanding of 
the hydraulic phenomenon is necessary. Black box models do not contribute much in 
enhancing the understanding of hydrological and hydraulic phenomena; nevertheless 
in operational hydrology and hydraulic Engineering their usefulness is of utmost 
importance. Neural Networking models can be considered as black box models. These 
are easy to use and have comparatively less data requirements. This is the reason why 
they are becoming popular and are recently being used in the field of Water 
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Resources Engineering also. There are several neural network softwares. EasyNN was 
used in this study. 

3   Training 

The training process estimates the Artificial Neural Networks (ANN) weights and is 
similar to the calibration of a mathematical model. The ANNs are trained with a 
training set of input and known out put data. The weights are initialized either with a 
set of random values, or based upon some previous experience. These weights keep 
on changing till the goal is achieved. The goal of learning is to determine a set of 
weights that will minimize the error function. 

4   Training and Validation Example 

The input data of the model were taken as the observed 6 hourly discharges at Marala, 
River Chenab, Pakistan. The 6 hourly measured discharge data at Khanki were used 
as the target discharges in the EasyNN model calibration and verification. The target 
was to forecast flood hydrograph at Khanki. By considering the data of 1973 flood 
hydrograph at Marala the training was carried out. The flood data of August 1976 and 
1986 was used in the model testing. 

5   Data Processing 

The model was run both without and with data processing. For processing purpose the 
data was normalized by the following formulae  
 

Qpi 
maxQ
Qi=  

where   Qpi is processed discharge at ith time step. Qi  is discharge at ith time step 
and 
Qmax is the peak discharge 

After normalizing all the input values, the data was again entered into the EasyNN 
software. The results were used to calculate the efficiency of the model. 
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6   Network Architecture 

6.1   Architecture – I 

In the grid, two input columns in one test and four in the second case and one output 
column were made. The total number of training example rows were 47. The grid did 
not contain any validating rows and had only one querying row. The learning rate and 
momentum were set to be 1.0 and 0.6 respectively and were optimized. Growing layer 
no. 1 generated the new network with the growth rate changing after every 10 cycles 
or 5 seconds. 

 
In the network two input nodes in one test and four in the second case were one 

output node were selected. Hidden layer no. 1 was provided with five nodes in first 
case and seven in second case whereas hidden layers 2 and 3 were not provided with 
any nodes. The first test then started learning and gave the following results. 

 
Hidden layer  1 No.  Hidden Nodes  5 Nos 
Learning Cycles 517   Learning Rate  1 
Learning Momentum 0.6  Minimum error  0.002128 
Average error  0.049995 Maximum error  0.228 
Target error  0.05 
 
 
The second test gave the following results after learning. 
 
Hidden layer  1 No.  Hidden Nodes  7 Nos 
Learning Cycles 273   Learning Rate  1 
Learning Momentum 0.8  Minimum error  0.000301 
Average error  0.049738 Maximum error  0.323219 
Target error  0.05 

6.2   Architecture – II 

The grid was same as that in architecture-1. The learning rate and momentum were set 
to be 1.0 and 0.7 respectively and were optimized. Growing layer no. 2 generated the 
new network with the growth rate changing after every 20 cycles or 2 seconds. 

 
In the network two input nodes and one output node were selected. Hidden layer 

no 1 was provided with three nodes whereas hidden layers 2 and 3 were not provided 
with any nodes. The network then started learning and gave the following results. 

 
Hidden layer  1 No.  Hidden Nodes  3 Nos 
Learning Cycles 677 Nos  Learning Rate  1 
Learning Momentum 0.7  Minimum error  0.000951 
Average error  0.049995 Maximum error  0.211899 
Target error  0.05 
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It was found that the first test in the former network yields a better accuracy than 
the other one. 

7   Model Performence 

The model performance was evaluated both qualitatively by the visual comparison of 
the simulated and observed hydrographs and quantitatively using a statistical 
parameter namely the Model Efficiency Index (EI) given by the following equations. 
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, N is the number of data points. Qsi is simulated discharge 

and Qoi is the observed discharge at ith time step. 

8   Results and Discussion 

8.1   Training and Validation Run 1  

Architecture 1 was used. Data of 1973 flood was used for learning purpose and that of 
1976 & 1986 was used for validation. 

 
The observed and simulated hydrographs are shown in fig. 1 & fig. 2. It is 

observed from fig. 1 that observed and simulated hydrographs are similar. For two 
input columns, a slight variation in time to peak is observed. The E.I in this case is 
nearly 60%. In case of fig. 2 the simulated and observed hydrographs match with each 
other. The error between observed and simulated discharges is small. The value of E.I 
is 77.3%. In case of four input columns the EI of 1976 flood was found to be 62.32% 
and that for 1986 flood was found to be 79.28%. 

8.2   Training and Validation Run 2  

Architecture 2 was used in this test run. Data of flood hydrographs was taken as same 
as that in test run-2. EI in case of 1976 flood was nearly 50% and that in 1986 flood 
was estimated to be 30%. This architecture did not give good results  
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8.3   Training and Validation Run 3 

Test run 1 was repeated by normalized data. It was observed that the EI was improved 
and came out to be 68% for the first figure and 84% for the second. The smaller EI in 
case of 1976 hydrograph is due to the difference in shape of hydrographs used for 
training and validation. 
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Fig. 1. 1976-Flood Hydrographs at Khanki 
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Fig. 2. 1986-Flood Hydrographs at Khanki 
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9   Conclusions 

A neural network model for discharge forecasting at Khanki, River Chenab, Pakistan 
was developed. The model developed was found to perform very well in both training 
and validation. The efficiency index of the model was found to be about 84%. The 
neural network model is however still dominated by trial and error process in many 
aspects. It is important to mention that the selection of the network architecture 
significantly influences the output performance of the model and the computational 
time. The model requires discharge data but not the topographical data. 

10   Future Recommendations 

More studies are encouraged to apply neural network models for flood forecasting in 
other reaches of this river and other rivers of Pakistan so that the models could be 
applied with confidence in operational flood forecasting and warning. 
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