
A METHOD FOR THE PERFORMANCE ANALYSIS OF 
INTEGRATED APPLICATION SERVICES 

Simulating the execution of integrated application services 
coordinated by workflow-driven broker-servers 

Hiroshi Yamada, Akira Kawaguchi 
NTT Service Integration Laboratories, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan 

Keywords: EAI (enterprise application integration), business process, UML (unified modeling language), performance 
evaluation, Web service, simulation, OPNET 

Abstract: Most EAI tools facilitate the integration of several application services to implement a designed workflow 
process.  The individual application systems are coordinated by a workflow-driven broker-server that 
integrates the system through web-service technologies such as SOAP and XML.  This paper describes a 
performance-evaluation methodology that we have developed for the analysis of such integrated application 
services.  Elements of the methodology include a method for the design and implementation of application-
traffic models as UML sequence diagrams and the implementation of workflow-process models as UML 
activity diagrams.  On this basis, we develop a set of OPNET process models to represent the functions of 
workflow-driven broker-servers.  We also develop application-traffic and workflow-process node models 
that configure the OPNET broker-server models into simulated networks, provide the other components of 
the networks, and specify the flows of data and control.  Such OPNET models allow us to simulate 
integrated services that are driven by workflow-process descriptions, vary the network architecture scenario, 
and evaluate the resulting overall performance.  Applying the proposed methodology from the early stages 
of development of systems will help us to avoid later problems with performance.  We also give an example 
of a simple case study of the methodology’s application. 

1 INTRODUCTION 

In many enterprises, particular application systems 
run on different computers. Most business processes 
consists of several procedures, each of which may be 
handled by a different application systems.  
However, the individual application systems are not 
systematically integrated.  Therefore, the user must 
sometimes manually input results from one 
application system to another application system.   
This manual procedure delays the business process 
and increases the possibility of mistakes and the cost 
of the service.  To improve and speed up business 
processes and decrease costs, many enterprises are 
adopting enterprise application technologies and the 
associated tools. 

In implementing EAI tools to integrate multiple 
existing application systems, we have to resolve 
several issues.  Many application systems have their 
own data structures.  Therefore, successfully 
exchange of data by the broker-server that integrates 

the several application systems has to be able to 
handle the several data structures used by the 
various application systems, for example, CSV, 
XML, etc.  The broker-server must understand the 
workflow process in the integrated service and 
invoke the appropriate application services for the 
respective phases of the workflow activity to 
implement the designed workflow process.  
Transitions of the workflow activity may depend on 
parameters of the client requests or on system 
conditions.  

Applications must be subjected to performance 
analysis from the early stages of their development.   
Conne Smith used the term “performance 
engineering” to indicate the application of 
performance-evaluation techniques to software 
systems (Smith, 1990).  The behaviour of 
communications between applications running on 
several computers connected by networks is 
becoming more complex.  We have to evaluate the 
overall performance of the integrated service as well 

275Yamada H. (2004).
A METHOD FOR THE PERFORMANCE ANALYSIS OF INTEGRATED APPLICATION SERVICES - Simulating the execution of integrated application
services.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 275-280
DOI: 10.5220/0001383702750280
Copyright c© SciTePress



 

as the performance of the individual applications of 
which it is composed.  When we consider integrated 
services in which EAI tools are used from the 
viewpoint of performance, the time taken to 
complete delivery of the overall integrated service 
through workflow activity is one of the most 
important performance measures.  Traffic generation 
by each application is governed by the workflow 
process, so traffic patterns generated by applications 
working together are correlated with each other.  
Traffic from one application will often cause 
multiple other applications to simultaneously 
generate traffic.  In such cases, an increase in traffic 
from one application leads to an increase in traffic 
from related applications.  Therefore, in designing 
the architecture and capacity of the network and 
server resources, the IT-system designers will have 
to cooperate with the application developers and 
consider the workflow process and the 
characteristics of application traffic invoked during 
execution of the designed workflow process. 

In this paper, we propose a methodology for 
evaluating the performance of generic EAI systems 
of the kind described above, i.e. where the broker-
server has a workflow engine that invokes 
applications according to the workflow process.  The 
network is in a hub and spoke configuration with the 
broker at the center.  The proposed methodology 
involves step-by-step modeling of the following 
items: (i) the workflow process, (ii) the traffic-
communication paths of applications, (iii) the 
network and server system, and (iv) defining the 
applications invoked in the various phases of the 
workflow activity (binding of applications to the 
workflow process).  For the proposed methodology 
to be practicable, we developed OPNET (OPNET) 
process and node models to realize the functions of 
the above workflow-driven broker-server.   

This paper is organized as follows.  In the next 
section, we briefly survey past works about the 
performance engineering in application.  In section 3, 
we give an overview of the proposed methodology.  
In section 4, we briefly cover OPNET modeling of 
the workflow broker-server and the workflow 
processing.  In section 5, we describe a simple case 
study of the application of this methodology.  We 
close with a very brief review and a couple of ideas 
we are working on to improve the proposed 
methodology. 

2 PERFORMANCE 
ENGINEERING IN 
APPLICATION 

The unified modeling language (UML) is currently 
the best tool we have that encompasses the 
information, business systems, and technical 
architecture (Erikson, 2000).  Korthaus proposed the 
BOOSTER (Business-Object-Oriented Software 
Technology for Enterprise Reengineering) process 
(Korthaus, 1998; Schder, 1998) as a multilevel 
approach to business-object-based system 
development.  A “multilevel process architecture” 
defines the framework for the activities which have 
to be performed.  The BOOSTER process 
architecture has four levels: business engineering, 
system-architecture engineering, application 
engineering, and “business-object component” 
engineering.  Korthaus has summarized the activities 
in each level of engineering and the UML diagrams 
that should be used in engineering activities 
(Korthaus, 1998).  Aoyama (2002) described another 
framework for the creation of business-driven web 
services.  Aoyama’s model for the development of 
web services consists of business-process, 
application, and platform layers.  The UML is the 
common language for development of the 
application software.  When the model that defines 
an IT system is written in UML, it is convenient to 
use UML as the basis for defining models to be used 
in evaluating the IT system.  Pooley et al. (1999) 
summarized past approaches to software-
performance engineering and proposed some ideas 
on the exploitation of UML designs in performance 
modeling.  Here, the use-case diagram provides the 
basis for the definition of workloads in the system.   
Implementation diagrams provide the mapping onto 
computing and storage devices.  They are essential 
to definition of contention and the quantification of 
available resources.  Correspondences are then 
drawn between the implementation diagrams and an 
underlying queuing model.  Finally, the behaviour of 
the above queuing model is obtained either through 
queuing-network analysis or simulation.  Balsamo et 
al. (2003) proposed a simulation-based approach to 
the performance modeling of software architectures 
specified in UML.  They defined a way to set up 
process-oriented simulation models of UML 
software specifications.  Correspondences between 
UML and simulator objects are as follows: use-case 
diagrams correspond to the workload models, the 
deployment diagrams correspond to resources 
models, and the activity diagrams correspond to the 
steps of the simulation.  They called the prototype 
version of this tool UML-Ψ,  which is intended to 
indicate “UML performance simulator.” 

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

276



 

Most of the above-cited researches are focused 
on the performance of software running on a single 
computer or simple application of the client-server 
type.  Our methodology expands UML-based 
software performance engineering to cover 
distributed and integrated applications.  
Furthermore, as mentioned, an EAI tool can 
orchestrate several applications to implement a 
workflow processes.  In our methodology, the UML 
activity diagrams are set up in the OPNET simulator.  

3 METHODOLOGY 

In designing a commercial or other business-related 
IT system, the system designer has to consider a 
three-layered model, consisting of the business-
process layer (BP layer), application layer (AP 
layer), and network/system layer (NW layer).   We 
create the following UML diagrams in the BP layer: 
the use-case diagram, which shows the relationship 
between the system and its users, the activity 
diagram, which shows how the user uses the system, 
the class diagram, which shows the objects needed 
in order to realize the application, and the sequence 
diagram, which shows the relationships between 
objects within the application procedures.   The 
above information is useful in development of the 
software for the AP layer and in evaluating the 
performance of the business processes and 
applications.  Levels of performance of the 
applications should be examined in a small-network 
environment before they are deployed within the 
larger enterprise.  In the NW layer, the designer is 
required to plan and design the NW and system 
architecture and capacities so that the overall IT 
system does not violate the conditions of service 
level agreements (SLAs).   

In our proposed methodology for performance 
engineering, modeling proceeds from layer to layer 
(BP/AP/NW, in that order).  Evaluating the overall 
performance of an integrated service set up by the 
EAI broker-server and its workflow-driven engine 
requires that the workflow model be modeled in the 
BP layer.  For this task, an activity diagram of the 
type shown in the figure 1 is useful.  The workflow 
process is modeled by using the OPNET Node 
Editor.  We combined process and link modules to 
create the activity diagram shown in the figure 1.  
Each process module represents the function of an 
element of the activity diagram.  The process 
modules are connected by link modules to set up the 
same topology as that in the activity diagram.  The 
mapping between the functions of the elements of 
the activity diagram in UML and the attributes set in 
the OPNET process modules is shown in table 1.  

In the AP layer, we model the path of each 
application service in the various phases of the 
workflow invoked by the workflow-driven broker-
server.  The communication path is defined as the 
sequence of communications among servers and 
clients.  The probability density functions (pdf) of 
message size, the intervals between messages, and 
numbers of messages sent between servers and 
clients are required to describe the traffic on the 
paths.  The above information is set as attributes of 
the application task utility node model in OPNET 
model.  The sequence diagram is then used in 
making the application model. 

In the NW layer, we use OPNET to create a 
virtual network environment.  This model represents 
the configurations, i.e., the interfaces, routing 
protocols, etc., of the routers and switches within the 
network.  Finally, we should bind the appropriate 
application to each phase of the designed workflow.   
These bindings are set up as attributes of the BP/AP 
binding node model.   

After these modeling procedures, we are ready to 
run the simulation model that simulates the 
behaviour of the application processes integrated by 
the workflow-driven broker-server.  We can 
compare the overall completion times of integrated 
application services.  We can perform what-if design 
tests, where we vary the workflow diagram, the 
application sequence diagram, traffic volume, or 
network and system configuration, simulate the 
modified model, and then compare the results on 
performance. 

Figure 1: A UML activity diagram and an OPNET 
workflow model

Table 1: Mapping the elements of a UML Activity
Diagram to the attributes of OPNET process models 

A METHOD FOR THE PERFORMANCE ANALYSIS OF INTEGRATED APPLICATION SERVICES - Simulating the
execution of integrated application services

277



 

4 OPNET MODELING 

In this section, we briefly describe the use of 
OPNET to model workflow-description node models 
and workflow-driven broker-servers.  OPNET is 
simulation and management software for networks 
and applications.  This software gives us a way to 
create simulation models of our customized 
protocols and node models. 

We use the OPNET Node Editor to make 
workflow-description node models that represent 
workflow processes.  Each such model consists of 
process modules and links.  Each process module 
corresponds to an element of the UML activity 
diagram, as shown in table 1.  Links connect process 
modules.  We set up these models by selecting 
process modules from the OPNET Node Editor 
Palette, placing the modules, and then using link 
objects to connect the process modules in the same 
way as the elements of the UML activity diagram.   
We then set the attributes of the module; i.e., the 
name of the workflow and phase in the workflow 
process, and a maximum time over which a WPE is 
allowed to stay in that phase.  The WPE is a virtual 
packet that flows within the diagram of the process 
modules (as set up with OPNET workflow-
description nodes).  Its format is as shown in figure 
2.  The bp_id is a unique identifier for the WPE 
immediately after the broker-server has received the 
request from the client and generated the WPE in 
response.  The abort_flag indicates when the 
workflow process has been aborted in the mid-flow.   
The field bp_start_time is used to determine 
whether or not the overall workflow process has 
taken too much time.  The fields clone_id and 
synch_start_time are used to manage parallel 

processing between synchronous bars of UML 
diagrams.  If a WPE exists in the phase A in the 
workflow process B, then the current state of the 
workflow process B is A, that is, all activities of the 
phases prior to the phase A in the workflow B have 
been done.  

After modeling the workflow process, our next 
step is to configure the binding procedure, in which 
we define the correspondences between phase names 
in the workflow description and phase-type 
attributes of UML elements. This is shown in the 
table 1.  Next, we define flags that indicate whether 
or not an application is invoked in that phase; if an 
application is invoked, its name is also set as an 
attribute.  The application name should be the same 
as the name defined in the OPNET application task 
utility node.  The above binding procedure ensures 
that the simulation process invokes a defined 
application when the WPE arrives at the 
corresponding phase of the workflow process.   

A common process model runs on each process 
module; the state diagram of this model is given as 
figure 3.  After the initialization procedure, the 
workflow-simulation process enters the waiting 
state.  When the workflow simulation process is 
interrupted by the REQ_RECEIVED signal from the 
broker-server simulation process, it enters the 
receive_signal state and processes the WPE, and 
then sends the WPE to the next process module, 
which represents the next phase of the workflow.   
When the WPE arrives at the process module, the 
simulation process enters the receive_entity state.  
In case that an application is invoked in this phase, 
the simulation process then generates an 
AP_INVOKE signal, which interrupts the broker-
server process.  The broker-server simulation 
process invokes the appropriate application for its 

Figure 2: Format of work flow-process entities
(WPEs); the example is in the initial state

Figure 3: State diagram of processing by all
workflow-simulation processes 

Figure 4: Communication between 
workflow activities and the broker-server 

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

278



 

current state and sends any required request 
messages to the application servers.  As stated 
above, the WPE is only allowed to stay in a 
workflow-simulation process for a per-process 
specified maximum time.  A process is aborted if 
this maximum is reached, that is, the workflow-
simulation process enters the timeout state.  The 
interrupting signal that flow between the workflow 
and the broker-server simulation processes are 
summarized in figure 4.  

5 CASE STUDY 

In this section, we describe how we set up a 
performance-analysis simulation of an integrated-
application as a case study to illustrate the 
effectiveness of the proposed methodology.  

We consider three multi-tiered applications and 
integrate them with a workflow-driven broker-
server. The network configuration is shown in figure 
5.  The sequence diagrams of the three applications, 
AP_1, AP_2, and AP_3, are given in figure 6.  
Traffic information on the application messages is 
added to the sequence diagram.  This information is 
configured in the OPNET application task utility 
node model.  Figure 7 shows two UML activity 
diagrams for comparison, one of the pipeline-type 
and the other of partial fan-out-type.  Each activity 
diagram has three phases of activity.  The names of 

the invoked applications in PROC_1, PROC_2, 
and PROC_3 are AP_1, AP_2, and AP_3 
respectively.  In this case study, applications AP_2 
and AP_3 access DB_server_01.  Processing in the 
PROC_2 and PROC_3 phases is parallel because 
of the fan-out workflow model, so conflicts of 
requests to DB_server_01 will occur.  To 
emphasise how differences between workflow 
activity processes affect performance and the need 
for the workflow designer to consider IT-system 
resources, we configure DB_server_01 so that its 
CPU only has half the power of the CPU in 
DB_server_02. 

In this case study, generation of client requests is 
according to a stochastic process.  In the first 
scenario, each client in the LAN node starts to send 
its first request according to a uniform distribution 
across the simulation interval from 20 to 110.  The 
pdf of the interval between consecutive requests 
after the first request is sent is an exponential 
distribution with a mean of 90.   Processes for 
consecutive intervals are identical and independent.  
In the second scenario, the request-generation 
process has two modes, ON and OFF. The start of 
the first period in ON mode is governed by a 
uniform distribution across the simulation interval 
from 20 to 320.  During periods in ON mode, the pdf 
of the intervals between consecutive requests from 
each client is an exponential distribution with a 
mean of 30.  The period in ON mode is a constant 
300.  Requests are not generated during periods in 
OFF mode.  The period in OFF mode is a constant 
600.  So, in both cases, requests from each client are 
generated once every 90 on average.  The difference 
is that requests are concentrated in short intervals in 
the case of the second scenario. 

Figure 8 shows the completion times for the first 
scenario of integrated application services.   
Completion times are shorter for the parallel fan-out-
type workflow than for the pipeline-type workflow. 
However, when we compare the completion times 
for each application, the average completion times 
for AP_2 and AP_3, which are executed as parallel 
fan-out-type workflows, are longer than those for the 
pipeline-type workflows.  Requests to 
DB_server_01 are concentrated in the period of 
parallel fan-out-type workflow.  Figure 9 shows 
completion times for the second scenario.  The 
completion time for the parallel fan-out-type 
workflow is greater than that for the pipeline-type 

Figure 6: Sequence diagrams

Figure 7: Workflow models 

Figure 5: Network model 

A METHOD FOR THE PERFORMANCE ANALYSIS OF INTEGRATED APPLICATION SERVICES - Simulating the
execution of integrated application services

279



 

workflow during busy period, i.e. the period where 
the request-generating processes of several clients 
are simultaneously in ON mode.  This gives us some 
idea of how the performance of an integrated service 
is affected by the workflow design, application 
characteristics, IT resources and architecture, and 
pattern of usage.  IT-system and application designer 
thus have to cooperate in evaluating the performance 
of the application at every milestone of the 
development process.  In this process of evaluation, 
the UML provides both a useful common language 
and the basis of a methodology for evaluating the 
performance of integrated services coordinated by 
the workflow-driven broker-servers. 

 
 
 
 
 
 
 
 
 
 
 
 
 

6 CONCLUSION 

In this paper, we propose a methodology for 
evaluating the performance of generic EAI systems, 
of the type where a broker-server has a workflow 
engine which invokes appropriate application to 
implement a workflow.  To demonstrate the 
practicability of the proposed methodology, we 
developed OPNET models of processes and nodes to 
realize the functions of workflow-driven broker-
servers as described above.  We are expanding the 

broker-server module so that it can handle WPEs 
which include information specifying actual XML 
files for transfer in the simulated workflow process 
and directions for the workflow process (a form of 
branch control). 

REFERENCES 

Conne Smith 1990. Performance Engineering of Software 
Systems. Addison-Wesley, Reading, Massachusetts. 

Erickson and Penker, 2000. Business Modeling with UML, 
John Wiley & Sons, Inc. 

A. Korthaus and S. Kuhlins, 1998. BOOSTER process—a 
software development process model integrating 
business object technology and UML, in Beyond the 
Notation: Selected Papers from the First International 
Workshop on the Unified Modeling Language 
<<UML>>’98, Lecture Notes in Computer Science 
1618, Springer-Velag, Berlin u.a., pp. 215-226. 

Martin Schder and Axel Korthaus, 1998. Modeling 
business processes as part of the BOOSTER approach 
to business object-oriented system development based 
on UML, Proceedings of the Second International 
Enterprise Distributed Object Computing Workshop, 
3–5 Nov. 1998, La Jolla, California, USA, IEEE, 
pp.56–67. 

M. Aoyama, 2002. A Business-Driven web service 
creation methodology, Proceedings of the 
International Workshop on Web Services Engineering, 
Nara, Feb. 2002, pp. 225–228. 

Rob Pooley and Peter King, 1999. The Unified Modeling 
Language and Performance Engineering, IEE 
Proceedings on Software, Vol.146, No.1, pp. 2–10, 
February 1999. 

Simonetta Balsamo and Moreno Marzolla, 2003. A 
simulation-based approach to software performance 
modeling, Proceedings of the 9th European Software 
Engineering Conference, pp. 363–366, 2003. 

OPNET, http:/www.opnet.com/. 

Figure 9: Completion time (Second scenario) 

Figure 8: Completion time (first scenario)

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

280


