
PROTECTING LEGACY APPLICATIONS FROM UNICODE

Erik Wilde
Swiss Federal Institute of Technology (ETH)

Zürich, Switzerland

Keywords: XML, CRVX, XML validation, Unicode, DSDL

Abstract: While XML-based Web Service architectures are successfully turning the Web into an infrastructure for
cooperating applications, not all problems with respect to interoperability problems have yet been solved.
XML-based data exchange has the ability to carry the full Unicode character repertoire, which is approaching
100’000 characters. Many legacy application are being Web-Service-enabled rather than being re-built from
scratch, and therefore still have the same limitations. A frequently seen limitation is the inability to handle the
full Unicode character repertoire. We describe an architectural approach and a schema language to address this
issue. The architectural approach proposes to establish validation as basic Web Service functionality, which
should be built into a Web Services architecture rather than applications. Based on this vision of modular an
infrastructure-based validation, we propose a schema language for character repertoire validation. Lessons
learned from the first implementation and possible improvements of the schema language conclude the paper.

1 INTRODUCTION

For many applications today, the Extensible Markup
Language (XML) (Bray et al., 2000) is the way to ex-
change data, either through proprietary mechanisms,
or using some XML-bases standards such as Web Ser-
vices. In either case, the actual data is exchanged
using Unicode (Unicode Consortium, 2000), because
XML is based on Unicode. XML allows different
character encodings, but the only character encodings
that must be supported by all XML implementations
are UTF-8 and UTF-16. These two encodings are ca-
pable of encoding the full Unicode character reper-
toire, so that XML documents may contain any Uni-
code character.

In many cases, the applications implement-
ing XML-based interfaces are not fully Unicode-
compliant and require some sort of protection from
receiving documents using the full Unicode charac-
ter repertoire. In these cases, it is necessary to only
forward documents using supported character ranges
to the application, while XML documents containing
unsupported characters should be rejected or at least
trigger some kind of exception in the workflow.

In principle, filtering out unwanted documents in
an XML-based environment is the job of schema

languages. While XML’s built-in Document Type
Definition (DTD) schema language does not support
datatypes, the more recent XML Schema (Fallside,
2001) supports the concept of datatypes, including
regular expressions and unicode character classes.
Thus, Web Services based on XML Schema may de-
fine some restrictions of character repertoires. How-
ever, there are two major problems with this ap-
proach:
• Monolithic Design: XML Schema is a heavy

schema language integrating many different con-
cepts such as a type system for element and at-
tribute types, identity constraints for specialized
co-constraints, a library of simple datatypes, and
defaulting mechanisms for elements and attributes.
Application developers requiring only character
repertoire capabilities may be overwhelmed by
XML Schema’s complexity.

• Incomplete Support: XML Schema provides
datatype support for attribute values and element
content (excluding mixed content). This means that
character repertoire restrictions cannot be defined
for mixed content, element and attribute names,
comments, and processing instructions.
In this paper, we present an approach overcom-

ing these two limitations. We present a specialized

144
Wilde E. (2004).
PROTECTING LEGACY APPLICATIONS FROM UNICODE.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 144-151
DOI: 10.5220/0001388701440151
Copyright c© SciTePress



schema language which is specifically designed for
character repertoire validation. This makes it easier
to use this schema language, in particular in scenarios
where complex schema support is not yet required.
The approach of modular validation presented in Sec-
tion 2.1 is based on this perspective of XML valida-
tion as a sequence of processing steps, possibly per-
formed at different nodes of an XML-based workflow.
In Section 2.2 we give a more general description of
our perspective on XML processing and how the Web
Service world evolves towards a network-like infras-
tructure.

In Section 3 we describe the schema language for
character repertoire validation in greater detail. The
schema language is purely declarative and can be im-
plemented on top of different XML technologies.

2 XML VALIDATION AND WEB
SERVICES

According to (Booth et al., 2004), “a Web Service is
a software system designed to support interoperable
machine-to-machine interaction over a network. It
has an interface described in a machine-processable
format. Other systems interact with the Web service
in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-
related standards.”

For our purposes, the most important observations
are that Web Services are based on the exchange of
XML messages, and that the architecture is in no
way restricted to a certain topology. Specifically, the
well-known architectural concepts of computer net-
works, using concepts such as bridges, routers, gate-
ways, firewalls, and proxies, can be employed to de-
scribe Web Service architectures. In Section 2.1, we
discuss how this networked exchange of XML-based
messages can be used to process XML in a modular
and distributed way. Section 2.2 goes one step further
and explains how this distributed processing of XML-
based messages can be used to establish the concept
of Web Services networks.

2.1 Modular Validation

For many XML users today, validation is a one-step
process. Using a schema (in most cases a DTD or an
XML Schema), an XML document is validated and is
either successfully validated or classified as invalid.
While this view of validation often is true, it is possi-
ble to look at validation in a modular way. In this sce-
nario, validation is a modular process involving dif-
ferent schemas, which are checking different facets
of an XML document.

For example, in the Web Service architecture of a
company it might make sense to first check all incom-
ing document against a schema that restricts the al-
lowed character repertoire, because it is known that
characters outside this repertoire are not supported
within the company’s workflow and thus should be
rejected. If a Web Service request is valid with re-
spect to the character repertoire, it is validated against
the XML Schema for SOAP messages in general, and
then against the XML Schema for the specific SOAP
message type. Finally, before the SOAP message
is passed to the application, it is validated against a
message-specific schema, for example checking that
some identification number inside the SOAP mes-
sage corresponds to an existing item in the company’s
database.

The scenario discussed in the previous paragraph
enables us to make some interesting observations and,
in particular, generalizations regarding XML valida-
tion:

• Distributed Validation: The validation steps de-
scribed above could be performed at different
points within the company, for example the charac-
ter repertoire and XML Schema validation could be
performed on a central SOAP intermediary, while
the application-specific validation takes place on
the system implementing the SOAP service.

• Increasing Specificity: Typically, multiple valida-
tion steps increase the data quality by filtering
out unwanted documents. While character reper-
toire validation is rather generic, the lookup in a
database for some identifier is very specific and can
only be performed by an application-specific vali-
dation step.

• Application-Specific Validation: As mentioned al-
ready, validation does not always have to be
generic. Application-specific validation provides
the benefits of describing assertions declaratively,
making it easier to maintain and modify the
application-specific schema. Application-specific
validation also makes it easier for developers to
encapsulate assertions and separate them from the
code processing SOAP calls. (Nentwich et al.,
2003) discuss this in depth from a software engi-
neering point of view.

Based on these observations, it can be concluded
that a more modular way of dealing with validation
can be advantageous compared to the monolithic ap-
proach advertised by the more traditional approach
to validating XML. The Document Schema Defini-
tion Languages (DSDL) currently under development
by ISO is one example of a modular approach to-
wards XML validation. It is based on a collection
of schema languages, and a framework for specifying
how to validate documents against possibly multiple

PROTECTING LEGACY APPLICATIONS FROM UNICODE

145



schemas. However, DSDL will probably not provide
built-in support for distributed validation.

It would be possible to look at validation as a Web
Service itself, but this would make validation a rather
expensive task. Instead, validation should be viewed
as some kind of processing that is applied to SOAP
messages in transit. This perspective brings us to the
view of Web Services as something very similar to
computer networks, an analogy we explore in the fol-
lowing section.

2.2 Web Services Networks

For computer networks, a number of standard net-
working devices are well-known and established, and
composing networks out of bridges, routers, gate-
ways, firewalls, and proxies is common knowledge.
For Web Services, such a standard set of technologies
and devices has not yet evolved, and we argue that
many of the metaphors known from computer net-
working can be reused in the field of Web Services.
(Wilde and Steiner, 2004; Jeckle and Wilde, 2004)
give a more detailed discussion of the similarities of
traditional (i.e., network-oriented) and Web Service
protocol stacks, and describe how some of these simi-
larities can be exploited to use existing experience and
design patterns to build Web Service architectures.

As a concrete example, (Riggs, 2003) describes
the concept of Data Quality Firewalls, which are de-
vices that should be placed strategically to prevent or
at least detect the inevitable loss of data quality in a
workflow where many different peers are collaborat-
ing. From the XML and Web Services point of view,
these firewalls could be implemented as devices capa-
ble of performing XML validation. They could then
be configured to filter out SOAP messages which are
violating the data quality standards (which are defined
by schemas). The analogy between regular (i.e., com-
puter network level) and Web Services firewalls is evi-
dent, both devices have built-in knowledge of the data
to be processed, and both devices can be configured to
use this knowledge for classifying passing data.

In the current version of SOAP (Gudgin et al.,
2003), the notion of SOAP Intermediaries has already
been established. This is a big step forward towards
the vision of Web Services Networks. However, there
still remain many gaps to be filled. An interesting
approach is described by (Melzer and Jeckle, 2003).
They have implemented a gateway that signs SOAP
messages (encryption support is planned to follow).
This could be compared to the setup of a Virtual Pri-
vate Network (VPN), where the intranet is a trusted
network, but network traffic leaving the intranet is en-
crypted.

The concept of modular validation could be built
into different devices in a Web Services Networks.
SOAP gateways could be configured to perform val-

idation (thus becoming “validating intermediaries”),
and validation could also be integrated into develop-
ment frameworks, providing a clear separation be-
tween the validation part of a Web Services (the as-
sertions to be checked before the actual service in-
vocation), and the service implementation. Modu-
lar validation is one facet of looking at Web Service
from the perspective of modeling them after network-
ing protocol stacks, and the interesting similarity be-
tween “validating intermediaries” and traditional fire-
walls is that both components should be configured
rather than programmed, so that re-configuration can
be done rather quickly.

3 CRVX

In the preceding section, we describe why and how
modular validation can be useful. As one step in a val-
idation pipeline, checking for character repertoires is
a useful functionality (it is listed as one of the areas of
the DSDL framework), and the Character Repertoire
Validation for XML (CRVX) (Wilde, 2003a; Wilde,
2003b) language described here can be used to per-
form this kind of validation.

3.1 XML Information Models

The set of XML information models is constantly
growing, with diverse members such as XML 1.0
itself, the XML Information Set (Cowan and To-
bin, 2001), various versions of the Document Object
Model (DOM), and the XPath 1.0 (Clark and DeRose,
1999) and 2.0 (Fernández et al., 2003) information
models. Some of these models have rather subtle dif-
ferences, others have differences that may be very im-
portant for some applications. One example for this is
the lack of support for CDATA sections in the XPath
information models.

To avoid this diversity of different perspectives on
XML, CRVX remains close to the XML 1.0 model,
but completely ignores the physical structures of an
XML document. CRVX works on top of XML’s log-
ical structures, and consequently does not have any
means of specifically addressing the entity structure
of an XML document.

However, there is one additional aspect outside of
XML 1.0 that is supported by CRVX, and this is
the issue of XML Namespaces (Bray et al., 2004a).
Namespaces are very popular with XML applications,
and the usage of Namespaces implies some addi-
tional constraints for XML documents. Since Name-
spaces introduce a new perspective on XML docu-
ment, most notably by structuring names into prefixes
and local names, and by introducing Namespace dec-
larations as a special kind of attribute, they are ex-

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

146



Listing 1:

<crvx structures="namespaceXML" version="1.0"
xmlns="http://dret.net/xmlns/crvx10">

...
</crvx>

Listing 2:

<crvx structures="namespaceXML" version="1.0"
xmlns="http://dret.net/xmlns/crvx10">

<restrict charrep="\p{IsBasicLatin} \p{IsLatin-1Supplement}"/>
</crvx>

Listing 3:

<crvx structures="namespaceXML" version="1.0"
xmlns="http://dret.net/xmlns/crvx10">

<restrict structure="elementLocalName attributeLocalName" maxlength="8"/>
</crvx>

Listing 4:

<crvx structures="namespaceXML" version="1.0"
xmlns="http://dret.net/xmlns/crvx10">

<restrict structure="elementLocalName attributeLocalName PITarget"
charrep="\p{IsBasicLatin}"/>

<restrict structure="elementContent"
charrep="\p{IsBasicLatin} \p{IsLatin-1Supplement}"/>

<restrict structure="PITarget" minlength="3" maxlength="3"/>
</crvx>

Listing 5:

<crvx structures="namespaceXML" version="1.0"
xmlns="http://dret.net/xmlns/crvx10">

<context path="figure/caption">
<restrict charrep="\p{IsBasicLatin} \p{IsLatin-1Supplement}"/>
<context path="link">

<restrict structure="elementContent" maxlength="10"/>
</context>

</context>
</crvx>

Listing 6:

<crvx structures="namespaceXML" version="1.0"
xmlns="http://dret.net/xmlns/crvx10">

<namespace prefix="html" name="http://www.w3.org/1999/xhtml"/>
<context path="html:html/html:head/html:title">
<restrict charrep="\p{IsBasicLatin}"/>

</context>
</crvx>

Figure 1: CRVX Examples

plicitly supported by CRVX, making it possible to
interpret a document either as pure XML (it must
be well-formed) or as Namespace XML (it must be
namespace-well-formed).

Listing 1 shows how the information model to be
used for validation is selected in CRVX. It also shows
the general skeleton of an CRVX schema, which is
an XML document. The three attributes of the docu-
ment element specify the XML information model to
be used for the CRVX schema, the version of CRVX,
and declare the CRVX namespace (in this case using

a default namespace declaration).

3.2 Restrictions

The purpose of CRVX is to specify character reper-
toire restrictions, which are then used to validate
XML documents. Restrictions in CRVX have four
properties, the character repertoire, the minimum
and/or maximum length of character sequences, the
structural parts of an XML documents the restrictions

PROTECTING LEGACY APPLICATIONS FROM UNICODE

147



should apply to, and the context in which these re-
strictions should be validated:

• Character Repertoire: The character repertoire of
an CRVX restrictions uses mechanisms from XML
Schema Datatypes (Biron and Malhotra, 2001) to
specify character classes. These character classes
can have two forms, which are (1) a character class
expression (for example ‘[b-y]’ for the charac-
ter set from b to y)1, and (2) a category escape (for
example ‘\p{Ll}’ for all lowercase letters). Cat-
egory escapes may also be used inside character
class expressions, but since category escapes will
probably be used very often for specifying CRVX
constraints, they have been made a top-level con-
struct in CRVX.
The category escapes use values from the Unicode
Character Database (UCD), in particular values
from the general category and blocks. General Cat-
egories are used for classifying characters, such as
letters, number, symbols, or punctuation charac-
ters. Blocks are arbitrary names for ranges of code
points and are often used for grouping characters
according to their source, for example a certain lan-
guage (or family of languages) or application area.
Listing 2 shows how blocks can be used in CRVX.
In this example, it can also be seen that char-
acter repertoire can be combined by using XML
Schema’s list type, thus separating different char-
acter repertoire restrictions into tokens separated
by whitespace. If the charrep attribute speci-
fies a list (i.e., contains multiple token separated by
whitespace), then these are combined using a log-
ical “or”, so that the resulting character repertoire
effectively is the union of the character repertoires
specified by the list tokens.

• Lengths: It may be a validation requirement closely
related to character repertoires to limit the length
of certain structures of an XML document. Conse-
quently, it is possible to restrict the minimum and
maximum lengths. In most cases, this feature will
be used in combination with limiting the restric-
tion to certain structures, which is why the example
shown in Listing 3 combines these two features.

• Structure: In many cases, restrictions do not ap-
ply to all characters appearing in an XML docu-
ment, but only to certain structural parts, such as
element or attributes names, attribute values, or el-
ement content. As described in Section 3.1, CRVX
supports two XML information models, which are
pure XML and Namespace XML. The structural
parts of an XML document that are accessible

1Character class expressions may contain single char-
acter escapes (for example ‘\-’ for a hyphen), and multi-
character escapes (for example ‘\i’ for the initial name
characters).

in both models are element content, CDATA sec-
tions, attribute values, processing instruction tar-
gets, processing instruction contents, and com-
ments. For pure XML, the additional structures are
element names and attribute names. For Name-
space XML, the additional structures are element
local names, attribute local names, namespace
names, and namespace prefixes. Listing 3 shows
how to use structures for a restriction.
In this example, the actual character repertoire re-
mains unrestricted, but the maximum length of ele-
ment and attribute local names is restricted to eight
characters. This example also demonstrates an ad-
vantage over XML Schema, which can apply sim-
ple type restrictions only to typed parts of an XML
document (i.e., attribute values and character-only
element content), but not to other structural parts.

• Context: In some cases, it may be desirable to
limit the restrictions to certain parts of an XML
documents, for example to check only the charac-
ter repertoire of text that appears as descendant of
some given element. CRVX supports this kind of
application as context, but since there are several
ways of using contexts, they are described sepa-
rately in Section 3.3.

It is thus possible to use different orthogonal di-
mensions for defining restrictions. Since users in
many cases want to combine these dimensions dif-
ferently, restrictions can be combined to yield more
complex CRVX schemas, as shown in Listing 4.

It should be noted that this CRVX schema defines
two restrictions for processing instruction targets, one
(together with element and attribute names) for re-
stricting targets to basic latin (i.e., ASCII) characters,
and the other one for requiring that they must have
three characters. However, even by using multiple re-
strictions, they still always apply to the entire docu-
ment scope, and the following section describes how
this can be changed by using CRVX contexts.

3.3 Contexts

A context in CRVX is defined by an XSLT pattern.
Consequently, contexts may only be used with Name-
space XML, since the whole set of XSLT/XPath rec-
ommendation is based on an information model that
requires namespace-well-formed XML. Contexts are
defined using a special CRVX element, as shown in
Listing 5.

This example shows various features of context
definitions. Context definitions may contain restric-
tions, in which case the restriction only applies to
the context selected by the context’s path attribute.
Contexts may be nested, in which case the nested con-
text is evaluated in the context in which it is speci-
fied. To make contexts reusable, they may also carry

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

148



a name attribute, which can then be referenced from
restrictions or contexts with a within attribute, thus
allowing context hierarchies to be directed acyclic
graphs instead of trees.

Since contexts are based on Namespace XML and
use XSLT patterns which include element and/or at-
tribute names, they may also use namespaces. Name-
spaces are declared using a special element, which is
described in the following section.

3.4 Namespace Declarations

Namespace declarations are specified using a spe-
cial CRVX element. They may only appear as direct
children of the crvx element. All namespace pre-
fixes used in path attributes of context elements
must be declared using a special namespace ele-
ment (i.e., it is not sufficient or required that they are
declared as namespaces in the CRVX schema docu-
ment). Listing 6 shows how a namespace is declared
and used in CRVX.

4 CRVX IMPLEMENTATION

CRVX is a rather simple schema language, and its
main advantage over performing character repertoire
validation within program code is that it is declarative.
This means that an CRVX author only specifies what
should be checked for, but not how it should be done.
The actual validation is the task of an CRVX imple-
mentation. Similarly to Schematron, a CRVX imple-
mentation can be programmed rather easily by trans-
forming a CRVX schema into an XSLT stylesheet.
This approach is described in Section 4.1. However,
the XSLT-based approach has some disadvantages,
such as performance issues and the inability to deal
with non-namespace-compliant XML. Thus, alterna-
tive implementations could be based on existing XML
parsers, and this second approach is described in Sec-
tion 4.2

4.1 Based on XSLT

CRVX uses XML as its notation and thus can be pro-
cessed using XSLT. It is thus possible to write an im-
plementation of CRVX that uses XSLT as a tools to
transform an CRVX schema into an XSLT stylesheet,
and then uses this stylesheet to perform CRVX val-
idation. Such an implementation is described in the
CRVX specification (Wilde, 2003a). The advantage
of this approach is that it does not require any spe-
cial software, the only thing that is required is an
XSLT processor. The disadvantages are that a XSLT
2.0 (Kay, 2003) processor is required, because only
XSLT 2.0 supports the regular expression matching

that is required to perform CRVX validation.2 Other
disadvantages are that due to the information model
of XSLT 2.0, there

• is no way to process non-namespace-compliant
XML documents with an CRVX implementation
based on XSLT, and

• it is impossible to support the structural part
of CDATA sections, because XSLT’s information
model does not support CDATA sections.

Given these limitations, an XSLT-based implemen-
tation of CRVX is rather simple. Contexts can be im-
plemented using template rules and nested contexts
can be implemented using looping. The restrictions
themselves can be implemented using regular expres-
sion matching, with lengths being mapped to XML
Schema regular expression quantifiers. The differ-
ent structural parts can be accessed using XQuery
1.0 and XPath 2.0 Functions and Operators (Mal-
hotra et al., 2003), which provides functions such as
local-name() for evaluating the local name of an
element or attribute.

4.2 Based on XML Processor

While an XSLT-based implementation is sufficient for
applications that can live with the rather poor per-
formance of an XSLT stylesheet and the limitations
that are caused by the underlying XSLT, more ef-
ficient and feature-complete CRVX implementations
will need to use another foundation. Most likely, an
XML processor will be used. Popular interfaces for
writing software based on XML processors are the
Document Object Model (DOM) and the Simple API
for XML (SAX). The DOM3 XPath Module (Whitmer,
2003) would make it rather easy to implement con-
texts, while SAX does not support this kind of func-
tionality and thus would require more programming
effort to implement contexts.

5 FURTHER WORK

CRVX has been designed as a small schema language
and as a starting point. It is useful for basic validation
tasks for character repertoires, but is also limited in
a number of ways. The following points have been
identified as possible extensions of CRVX:

• Treatment of Nested Restrictions: Currently, nested
restrictions are treated as a logical union, so that the
restrictions of a nested part of an XML document

2It should be noted that XSLT 2.0 is in working draft
status and thus may still change. Also, there are only few
implementations, which also may change.

PROTECTING LEGACY APPLICATIONS FROM UNICODE

149



are the union of all restrictions applying nodes fur-
ther up the XML document tree structure. This im-
plicit way of joining nested restrictions could be
made explicit and variable, for example allowing
overwriting of restrictions.

• Character Reference Restrictions: Characters in
XML may appear literally or as character refer-
ence. Most XML information models do not distin-
guish between these two forms and pass the charac-
ter to the application. However, it may be required
to disallow the use of character references or, on
the contrary, force characters from certain charac-
ter ranges to appear as character references only.

• XPath 2.0: The XPath expression supports in
CRVX currently are based on XPath 1.0. XPath
2.0 defines a more powerful language for address-
ing parts of an XML document (which may include
type information, if the type information for a doc-
ument can be inferred from some schema).

• Character Normalization: Unicode defines canon-
ical and compatibility equivalences between char-
acters or sequences of characters. For processing
purposes, it can be useful to normalize a document.
XML (including the emerging XML 1.1 (Bray
et al., 2004b)) does not require character normal-
ization, so that normalization checks are necessary
for all documents which are not certified as being
in normalized form (Dürst et al., 2003).

While these improvements are targeting CRVX, the
surrounding infrastructure also need to evolve, before
visions such as distributed and transparent validation
in a Web Services network can be implemented in an
easy way. In particular, the ideas of validation and
SOAP intermediaries need to be merged to yield val-
idating intermediaries, ideally configurable in a fully
declarative way.

6 CONCLUSIONS

Web Services and the deployment of existing services
through Web Service interfaces still are young disci-
plines. The schema language and the architectural
approach to Web Service networks presented in this
papers are contributions which hopefully help to in-
crease the success of Web Service technologies. The
major hurdle for Web Service deployment today is se-
curity, and if the Web Service standards evolve to a
point where using an encrypting SOAP intermediary
is as easy and natural as setting up a VPN, then Web
Services will become a commodity as computer net-
works are today.

ACKNOWLEDGEMENTS

I would like to thank Diederik Gerth van Wijk and
Martin Bryan for their comments regarding CRVX
and possible improvements.

REFERENCES

Biron, P. V. and Malhotra, A. (2001). XML Schema Part
2: Datatypes. World Wide Web Consortium, Recom-
mendation REC-xmlschema-2-20010502.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Cham-
pion, M., Ferris, C., and Orchard, D. (2004). Web
Services Architecture. World Wide Web Consortium,
Note NOTE-ws-arch-20040211.

Bray, T., Hollander, D., Layman, A., and Tobin, R.
(2004a). Namespaces in XML 1.1. World Wide Web
Consortium, Recommendation REC-xml-names11-
20040204.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler,
E. (2000). Extensible Markup Language (XML) 1.0
(Second Edition). World Wide Web Consortium, Rec-
ommendation REC-xml-20001006.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler,
E., Yergeau, F., and Cowan, J. (2004b). XML
1.1. World Wide Web Consortium, Recommendation
REC-xml11-20040204.

Clark, J. and DeRose, S. J. (1999). XML Path Language
(XPath) Version 1.0. World Wide Web Consortium,
Recommendation REC-xpath-19991116.

Cowan, J. and Tobin, R. (2001). XML Information
Set. World Wide Web Consortium, Recommendation
REC-xml-infoset-20011024.

Dürst, M. J., Yergeau, F., Ishida, R., Wolf, M., and Texin,
T. (2003). Character Model for the World Wide Web
1.0. World Wide Web Consortium, Working Draft
WD-charmod-20030822.

Fallside, D. C. (2001). XML Schema Part 0: Primer.
World Wide Web Consortium, Recommendation
REC-xmlschema-0-20010502.

Fernández, M. F., Malhotra, A., Marsh, J., Nagy, M., and
Walsh, N. (2003). XQuery 1.0 and XPath 2.0 Data
Model. World Wide Web Consortium, Working Draft
WD-xpath-datamodel-20031112.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-
J., and Frystyk Nielsen, H. (2003). SOAP Version
1.2 Part 1: Messaging Framework. World Wide
Web Consortium, Recommendation REC-soap12-
part1-20030624.

Jeckle, M. and Wilde, E. (2004). Identical Principles,
Higher Layers — Modeling Web Services as Protocol
Stack. In Proceedings of XML Europe 2004, Amster-
dam, Netherlands.

Kay, M. (2003). XSL Transformations (XSLT) Version 2.0.
World Wide Web Consortium, Working Draft WD-
xslt20-20031112.

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

150



Malhotra, A., Melton, J., and Walsh, N. (2003). XQuery
1.0 and XPath 2.0 Functions and Operators. World
Wide Web Consortium, Working Draft WD-xpath-
functions-20031112.

Melzer, I. and Jeckle, M. (2003). A Signing Proxy for
Web Services Security. In Tolksdorf, R. and Eckstein,
R., editors, Berliner XML Tage 2003, pages 292–304,
Berlin, Germany.

Nentwich, C., Emmerich, W., Finkelstein, A., and Ellmer,
E. (2003). Flexible Consistency Checking. ACM
Transactions on Software Engineering and Methodol-
ogy, 12(1):28–63.

Riggs, S. (2003). Data Quality and XML Validation. In
Proceedings of XML Europe 2003, London, UK.

Unicode Consortium (2000). The Unicode Standard: Ver-
sion 3.0. Addison Wesley, Reading, Massachusetts.

Whitmer, R. (2003). Document Object Model (DOM) Level
3 XPath Specification. World Wide Web Consor-
tium, Candidate Recommendation CR-DOM-Level-
3-XPath-20030331.

Wilde, E. (2003a). Character Repertoire Validation for
XML (CRVX) Version 1.0. Technical Report TIK-
Report No. 172, Computer Engineering and Networks
Laboratory, Swiss Federal Institute of Technology,
Zürich, Switzerland.

Wilde, E. (2003b). Validation of Character Repertoires
for XML Documents. In Proceedings of the Twenty-
fourth Internationalization and Unicode Conference,
Atlanta, Georgia.

Wilde, E. and Steiner, A. (2004). Networking Metaphors
for E-Commerce. Technical Report TIK-Report No.
190, Computer Engineering and Networks Labora-
tory, Swiss Federal Institute of Technology, Zürich,
Switzerland.

PROTECTING LEGACY APPLICATIONS FROM UNICODE

151


