
A MODEL DRIVEN ARCHITECTURE FOR
TELECOMMUNICATIONS SYSTEMS USING DEN-NG

John Strassner
Founder, MDAPCE.com

Keywords: DEN-ng, Model Driven Architecture, Network Management, Telecommunications Software, Web Services,
Information Modeling, Data Modeling

Abstract: Current network management approaches rely on stovepipe architectures that can only share data through
complicated mediation services that are costly to design and hard to maintain. This causes business rules to
be embedded directly in the OSS, which means that every change on them requires direct modifications to
the OSS. This paper describes an innovative approach that uses the DEN-ng models to represent the
lifecycle of the solution. Extensions to the Model Driven Architecture initiative are presented which enable
code to be generated for this approach. A case study is presented that illustrates the power of this approach.

1 INTRODUCTION

Current approaches to network configuration and
management are insufficient for achieving important
new business and technical objectives (John Strassner,
2002). These approaches lack the ability to define
network services as a function of how a business
operates. More importantly, they prevent network
services from adapting to the varying demands of a
changing environment. This adaptation is crucial for
Service Providers and Enterprises to run profitable
businesses. It is also a necessary foundation for both
e-Business and newer approaches, such as
autonomic computing (IBM Autonomic Manifesto),
(HP Adaptive Enterprise).

For example, TL1, SNMP and CLI are unable to
express business rules, policies and processes. This
makes it impossible to use these technologies to
directly change the configuration of a network
element in response to new or altered business
requirements. Instead, software must translate the
business requirements to a form that can then be
translated into TL1, SNMP or CLI (John Strassner and
John Reilly, 2003). This disconnects the main system
stakeholders – the business people determining how
the business is run from the network people who
implement network services on behalf of the
business.

This problem is exacerbated by the proliferation
of important management information that is only

found in private MIBs, the many different dialects of
CLIs, and the significant differences in the
capabilities of a particular network operating system
version. Fundamentally, these are all symptoms of a
more strategic problem: common management
information, defined in a standard representation, is
not available. This missing piece prohibits different
components from sharing and reusing common data,
which leads to “stovepipe” architectures that are so
common in the Operational Support Systems (OSSs)
and Business Support Systems (BSSs) of today. This
also requires a huge integration tax to be paid to
integrate best-of-breed applications that were never
designed to communicate with each other (John
Strassner and John Reilly, 2003).

Worse, current approaches do not provide a
complete view of the environment. This is because
the information and data models that they use were
designed to model the current state of a managed
object. These models instead focus on technical
concepts, such as how to model a laptop or the
performance of a particular type of traffic, and rarely
model business concepts.

This paper describes a novel approach, based on
the DEN-ng models. It focuses on the ability to
model the lifecycle of a system. DEN-ng, currently
being developed in the TMF (TeleManagement
Forum) (TMF SID, 2003), (John Strassner, 2005)
addresses the entire lifecycle of the managed
environment, including how to describe different

118
Strassner J. (2004).
A MODEL DRIVEN ARCHITECTURE FOR TELECOMMUNICATIONS SYSTEMS USING DEN-NG.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 118-128
DOI: 10.5220/0001391001180128
Copyright c© SciTePress

views of information. This paper also describes
initial code generation efforts.

In effect, DEN-ng is used as a lingua franca that
abstracts the different programming models and
functions of different vendor devices into a common
form. Significantly, DEN-ng is not just for
representing network devices and functions, but can
also be used to represent people, Service Level
Agreements (SLAs), business policies, and other
entities of interest. This enables the entire spectrum
of stakeholder interests – from the business analyst,
to the product manager, to the system architect, to
Network Operations Center technicians (and others)
to participate in the definition, design, management,
and retirement of the solution.

This paper is organized as follows. Section 1
introduces the problem and briefly describes the
proposed solution. Section 2 provides a brief
overview of the scope of the DEN-ng model, and its
applicability to (tele)communications solutions.
Section 3 briefly describes the OMG’s Model
Driven Architecture (MDA) initiative, and the
enhancements made to it in this program. Section 4
describes the lifecycle model used in DEN-ng.
Section 5 provides a simple case study to illustrate
the practicality and applicability of this approach.
Sections 6 and 7 provide conclusions and further
work, and references, respectively.

2 DEN-NG OVERVIEW

The DEN-ng object-oriented information model
provides a cohesive, comprehensive and extensible
means to represent things of interest in a managed
environment. Things of interest can include users,
policies, processes, routers, services, and anything
else that needs to be represented in a common way
to facilitate its management. DEN-ng defines the
static and dynamic characteristics and behavior of
these managed entities as an abstraction of the
entities in a managed environment. This is done
independent of any specific type of repository,
software usage, or access protocol.

DEN-ng was built using Zachman’s perspective
(Zachmann Framework) of “Who-What-Where-When-
Why-How” for each object, as shown in Figure 1
below.

DEN-ng is based on the Unified Modeling

Language (OMG UML – 1.5), the de facto
international standard for defining information
models. The “ng” denotes its support for the
TeleManagement Forum’s NGOSS architecture
(TMF TNA, 2003), which is a framework that enables
the rapid and flexible integration of Operation and
Business Support Systems in the communications
industry. The TeleManagement Forum is an
international consortium of communications service
providers and their suppliers (TMF Website).

UML provides a robust metamodel and facilities
that enable it to be extended and customized to meet
application-specific needs. UML can model the
static and dynamic aspects of managed objects. ts
metamodel defines the concepts of events and state
machines. This is an important point, for as we will
see, state machines are used in DEN-ng to model the
lifecycle of managed objects. In contrast, the DMTF
has its own “metaschema” that is not compliant with
UML, and the ITU and IETF don’t use UML at all.

DEN-ng is built as a framework of frameworks.
This approach has two distinct advantages. First, it
enables multiple modelers to work in parallel on
different subject domains. Second, it enables
information from other standards bodies and fora to
be incorporated as is, or have their concepts and
ideas mapped into the DEN-ng framework. Mapping
is necessary if information is mined from an external
standard or other document that isn’t compliant with
UML. In fact, information has already been mined
from several different ITU Recommendations and
IETF RFCs; plans include submission to the ITU-T.

The structure of the DEN-ng framework is

shown in Figure 2 below.
DEN-ng is built on three foundational principles:

capabilities, constraints, and context. Capabilities
represent the set of functions that are available in a
managed object. In effect, they normalize the

<<concept>>

What (Thing)
<<concept>>

How (Method)

<<concept>>

Why (Reason)
<<concept>>

When (Time)

<<concept>>

Where (Location)
<<concept>>

Who (Entity)

Figure 1: Zachman as Used in DEN-ng

P
arty M

odel

L
ocation M

odel

P
rod

u
ct M

od
el

P
olicy

F
ram

ew
ork

Service
F

ram
ew

ork

R
esource

F
ram

ew
ork

Figure 2: The DEN-ng Framework

Core Framework

A MODEL DRIVEN ARCHITECTURE FOR TELECOMMUNICATIONS SYSTEMS USING DEN-NG

119

different commands and variations in functionality
between vendor-specific devices.

Figure 3 shows an operator trying to accomplish
the same task on two different routers. As can be
seen, the CLI is completely different on these two
devices. More importantly, the device on the left has
different configuration modes, which are absent in
the device on the right. Thus, the programming
model for these devices is different. This means that
the operator must be aware of these differences,
and/or different management tools must be used.
This is analogous to requiring the network
technician to speak multiple languages fluently.
However, even that analogy falls short, because of
the significant changes that can be introduced in a
new version of an operating system of a device.

Constraints define which capabilities can be used
as a function of a particular context; context defines
the current environment, objectives, obligations, and
policies governing operation, and the desired
behavior of the system.

For example, consider a device that can perform
different types of encryption. Each different type of
encryption is modeled as a capability. Constraints,
such as ITAR regulations, restrict certain capabilities
from being used in a given environment. The context
is the overall environment that is being modeled.

DEN-ng supports the needs of different
constituencies through the use of different views.
This is similar to the RM-ODP concept of
viewpoints (ODP, 96), but with an important
difference. RM-ODP defines a set of disparate
viewpoints that were only loosely related to each
other. In contrast, DEN-ng defines a set of views
that are strongly related to each other. This enables
the needs of different constituencies, such as
business analysts, architects, developers, operational
support personnel, and others, to be associated with
each other. Thus, each constituency can use the
terms and concepts that they understand to express
their needs, yet have those needs clearly
communicated to other personnel having different
areas of expertise in the organization.

For instance, a business rule can be translated
into command changes for a device configuration to
ensure that an SLA violation does not occur. This is
much more complex than it first appears – the SLA,
though technical in nature, is fundamentally a
business concept and thus doesn’t use networking
terminology (e.g., queuing algorithms, drop
probabilities, and so forth). Yet, it is these things
that the network engineer needs to decide on in order
to implement the appropriate traffic conditioning
specified by the SLA. Note that this can be
exacerbated by the concept of the extended
enterprise – the set of business partners, external

organizations, and other actors that take part in the
business.

DEN-ng enables these different concepts to be
associated with each other, so that other stakeholders
can be assured that any two stakeholders are indeed
speaking the same language.

DEN-ng is built using patterns (Pattern example,
96). These patterns frequently use other abstraction
mechanisms, such as roles (Role Object Pattern, 97), to
separate how an object is used from the basic
definition of the object. This approach makes the
model extensible, and helps model the real-world
application of the model by embedding in the model
facilities that enable it to be used by practitioners.

DEN-ng uses a finite state machine to enable the
characteristics and behavior of elements being
modeled to be represented throughout their entire
lifecycle. Most other information models are
“current state” models – they are limited to defining
the behavior of a managed entity at a particular point
in time. In contrast, DEN-ng models the static and
dynamic characteristics of a managed object using
different types of UML diagrams. In effect, static
diagrams, such as class diagrams, define a set of
building blocks that can be used to represent
different features of a managed environment.
Dynamic models, such as collaboration and
sequence diagrams, use entities defined in these
static diagrams to model the behavior of managed
objects.

The TMF uses DEN-ng to form the core of its
Shared Information and Data (SID) model, as well
as its policy, service and resource domains.
Currently, the business view of the SID consists of
over 1,600 pages of documentation, as well as
detailed UML models.

In summary, DEN-ng is the only information
model that uses patterns and roles, along with
abstractions like capabilities and constraints, to
shape its design. It is also the only information
model that represents the entire lifecycle of managed

Figure 3: Different Programming Models

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

120

entities. Its use of finite state machines enables it to
be easily mapped to the OMG’s Model Driven
Architecture (MDA) initiative (OMG homepage).

Figure 4 is a simplified UML diagram showing
some of the conceptual relationships that exist across
the Product, Service, and Resource DEN-ng models.
This provides a simple example of how different
types of objects, and their views, can be combined.
Conceptually, this figure shows that a Product,
which is a business abstraction, contains Services
and Resources. The power of this approach is that
changes in these business entities (e.g., Product and
SLA) can be directly mapped to changes in resource

and service configuration.
Thus, as a Product Offering changes to include

new functionality, the underlying model changes to
reflect the updated configuration of the services and
resources making up the model.

3 MDA ENHANCEMENTS

MDA defines an architecture, expressed as a set of
models, that separates the specification of system
functionality from the specification of the
implementation of that functionality.

In MDA, platform-independent models are
initially expressed in UML, which is a platform-
independent modeling language. Such models can be

subsequently translated to platform-specific models
through a set of mapping functions. There are a set
of standards that support MDA, but these are beyond
the scope of this paper.

Fundamentally, MDA seeks to integrate, through
formal modeling, the entire lifecycle of a system:
from business modeling to system design,
component construction, through implementation
and deployment. By providing this traceable
evolutionary path, MDA enables the system to
further evolve.

DEN-ng builds on and enhances MDA by first
building a telecommunications profile. A profile is a

set of model elements (not just classes!) that have
been customized for a specific domain or purpose
using the native extension mechanisms of UML (i.e.,
tagged data, stereotypes, and constraints, as defined
in (OMG UML, 1.5)). As such, DEN-ng extends the
UML metamodel to define additional constructs
required to represent telecommunications concepts.
This is further refined to represent concepts for
modeling communications systems and networks. A
second profile, the NGOSS profile, is then built to
support the critical concepts defined in the TMF
NGOSS program. This is shown in Figure 5 below.

For example, DEN-ng extends the concept of a

UML state machine to use coordinated sets of state
machines to model behavior. DEN-ng also defines
the formal notions of policy (John Strassner, 2003) and

Figure 4: Business Driven Device and Service Management

A MODEL DRIVEN ARCHITECTURE FOR TELECOMMUNICATIONS SYSTEMS USING DEN-NG

121

contracts. NGOSS further refines contracts (TMF
Contract, 2004). By defining formal profiles for DEN-
ng and NGOSS, these new constructs can be used,
just as standard classes are used, to construct new
models.

Figure 6 below shows that different types of
management data have varying characteristics. This
means that different traffic conditioning mechanisms
must be used for different traffic. Since these data
have different characteristics, they require different
storage mechanisms, and management applications
will manipulate these data in fundamentally different
ways. Thus, we may require multiple types of
repositories, each having different characteristics,
for representing management information.

Current approaches tackle this problem by
building different stovepipe applications for each
different usage. This makes it difficult to coordinate
different management applications. In contrast, the
formal modeling of DEN-ng enables the
fundamental relationships between different types of
data to be represented, allowing management data to
be more easily manipulated, and consequently,
management applications to share and reuse data.

An important point is that the above
characteristics point out a need for increased
intelligence of the network and its applications. The
problem of managing different traffic streams is not
a bandwidth problem! First, most Service Providers
have plenty of bandwidth. Second, increasing the
bandwidth for certain types of traffic, such as SNA
or voice, doesn’t help their performance – rather,
they need guarantees on jitter and other metrics.

Management applications of the future present
even more difficult challenges. For example,
autonomic computing requires applications to
change dynamically in response to changing needs.
Plus, autonomic services and resources are likely to
be dynamically composed from lower-level services
and resources (John Strassner, 2004).

Thus, we must enhance MDA to enable it to
address these and other advanced features.

Since the DMTF CIM, as well as the IETF and
ITU models, are not UML compliant, it is unclear
how they can be used with MDA. In contrast, the
DEN-ng models are derived from UML, so they are
perfect candidates for MDA. Furthermore, DEN-ng
models the lifecycle of the solution, which is aligned
with the goal of MDA.

As with the MDA approach, modeling behavior
enables code to be generated to control how the
different managed objects interact. MDA, however,
has a number of existing problems that this approach
seeks to correct (John Strassner, 2004). Behavior in
DEN-ng is described through mechanisms for
dynamically defining, configuring, and deploying
policies and rules for defining and controlling how
the elements in the FSM interact with each other.
This formalizes the application of FSMs and codifies
how state transitions are implemented.

Figure 7 illustrates the initial code generation
process used in the DEN-ng MDA prototype. This
process takes a specified UML model file as input –
note that this includes static diagrams (e.g., class
diagrams) as well as interaction diagrams (required
to represent behavior) and other inputs, such as use
cases (an integral part of DEN-ng and NGOSS
contracts, and necessary to document the scenarios).
Since an information model is independent of
platform, language, and access protocol, it must be
normalized to a common form which enables
efficient data model development. This is done by
the Schema Normalization process.

Figure 5: DEN-ng and NGOSS Profiles

UML Metamodel

DEN-ng Profile

NGOSS Profile

Figure 6: Characteristics of Different Traffic Streams

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

122

The parsed output is then examined for errors,
problems, and other inconsistencies. Significantly,
these problems can be fed into either the UML
model(s) directly, or to the Schema Normalizer. This
flexibility is very important, as it enables systemic
problems to be fixed in the model, and the Schema
Normalizer to in essence “fine-tune” the results.

This fine-tuning consists mainly of producing
output files that are programmer-ready in terms of
resolving any ambiguities between the UML model
and target platforms. For example, UML defines a
“string” datatype, but this in and of itself is
insufficient for generating code. What type of string
is desired? What are its character limitations, if any?
What are its specific syntax rules? Another example
is producing import statements to handle different
class dependencies.

This normalized result is then fed into the
Schema Generator, along with a set of appropriate
Mapping Rules. The Mapping Rules enable common
concepts and components in the DEN-ng
information model to be implemented in different
types of repositories. These rules include packaging,
persistence, exception handling, querying, and other
platform- and language-specific rules to the
generated output.

DEN-ng is much more than just a model of
current state. DEN-ng uses the notion of a set of
Finite State Machines (FSMs). Each FSM models a
particular set of behavior, using components that are
defined using the static parts of the DEN-ng model.
The functionality of the heterogeneous components
making up the solution is normalized using the
DEN-ng capabilities abstraction. This enables
common functions, such as queuing, to be
represented in a standard form. The DEN-ng data
model is used to translate from this vendor-
independent standard format to a vendor-specific
form, such as CLI.

Several outputs are produced by the schema
generator. Currently, we have developed multiple
data mappings (for directory, JavaSpace, and Java
using JDO). For example, there are several property
files available that control how the generator
produces code. Additionally, a log file is output for
inspection of informational, warning, and any error
messages that were produced during the generation.

We have also automated the extraction of
pertinent documentation from the SID addenda and
from the UML model itself, and packaged that as
programmer-friendly documentation.

It must be realized that many developers are not
UML literate. Even if they are UML literate, the
DEN-ng model is quite large (1600 pages for the
business view alone!). Thus, we have started
building programmer-friendly tools to help the
developer better understand how to use the DEN-ng
model. These include tools to simplify navigation in
the model, tools that provide different options for
different types of associations (e.g., what is the list
of all classes that can be contained by this class, or
vice-versa), and other design aids.

Additional work will soon start on building tools
that enable other constituencies, such as business
analysts, to similarly navigate the model according
to their domain-specific needs. Since UML models
are not natural vehicles for representing knowledge
for several different constituencies, our approach is
based on using another tool as the infrastructure, and
importing or otherwise displaying UML diagrams
when appropriate. This will be the subject of future
follow-on work.

Reference (John Strassner, 2004) provides a brief
overview of some innovative extensions to the
OMG’s Model Driven Architecture (OMG
Homepage) initiative that show how different UML
models can be used as “templates” to generate code.
This enables behavior to be represented and
implemented through automating the application of
knowledge. This is, of course, the first step to
implementing behavior autonomously.

4 DEN-NG LIFECYCLE MODEL

DEN-ng was built to model not just the current state
of a managed entity, but the entire lifecycle of that
managed entity, using an FSM. This concept is
extended by coordinating multiple FSMs, which
enable the behavior of components and entire
solutions to be represented.

More importantly, DEN-ng recognizes that
different stakeholders have a different view of a
managed object. For example, the business analyst
looks at an SLA object and sees an entity that

DEN-ng UML
Models

Schema
Normalization

Schema
Generator

Data Model
Mapping Rules

Documentation
and Help Files;

Directory,
JavaSpace, and
Java Mappings

Parsed Output

Figure 7: DEN-ng MDA Code Generator

A MODEL DRIVEN ARCHITECTURE FOR TELECOMMUNICATIONS SYSTEMS USING DEN-NG

123

represents a contractual agreement, whereas a
network administrator looks at the same object and
sees the different network services that must be
supported using different functions.

This is done through using a novel approach,
which consists of a combination of modeling (as
described above) and a new methodology for
applying the model, called the lifecycle
methodology. This uses a combination of static and
dynamic models to represent the overall behavior of
the solution, using a set of FSMs.

The lifecycle methodology is based on
integrating a set of different views of the solution
(and its components). This is based on a principle
called progressive grounding, where conversation
between the partners is used to form common
understanding that develops over time (H. H. Clark,
96).

Fundamentally, this methodology quantifies an
important fact: the processes of analyzing business
and system requirements, modeling the design,
implementing a solution and then deploying the
solution make up a lifecycle. The NGOSS Lifecycle
effort (TMF Lifecycle, 2003) uses the four views
defined in DEN-ng (business, system,
implementation and deployment) and formalizes
them into a cohesive methodology that can be used
to define the characteristics and behavior of NGOSS
components and solutions. This methodology is
organized to enable flexible modeling of the
solution. Sequential progress through the lifecycle is
of course supported, but the NGOSS lifecycle
methodology also enables organizations to progress

through different aspects of the solution in whatever
manner models the way their organization works.

The lifecycle provides traceability from the
business definition through the deployment of a
solution through defining views, as shown in Figure
8 below. These views enable the interests of various
stakeholders to be protected by representing the
evolution of their interests as the solution progresses
from the definition of its business concerns, through
its mapping to a particular architecture and
implementation, through its deployment.

Specifically, the NGOSS Lifecycle contains two
planes of interest: the Logical Plane, which is
technology neutral, and the Physical Plane, which is
technology specific. The Logical plane describes the
conceptual design of the solution from a business
and a system perspective. The Physical plane
describes the actual implementation of the solution.
The Logical and Physical planes intersect two
different perspectives, the Service Provider
perspective and the Service Developer perspective.
The Service Provider perspective is concerned with
the operation of the business, while the Service
Developer perspective focuses on the underlying
architecture and its implementation.

The Business View is used to describe the goals,
obligations, and policies that will be used to drive
the services offered by the business. This is done
using high-level, technology-independent terms. The
eTOM (TMF eTOM, 2003) and the SID are used to
focus on the concerns of the business: processes,
entities and business interactions. DEN-ng models
these various tasks and functions as interaction

Logical
View

Physical
View

Service Developers
View

Service Providers
View

ImplementationDeployment

Business System

Deployment Capabilities,
Constraints & Context

Implementation Capabilities,
Constraints & Context

Business Capabilities,
Constraints & Context

System Capabilities,
Constraints & Context

Corporate
Knowledge

Base

NGOSS
Knowledge

Base
Shared

Corporate
Knowledge

Base

NGOSS
Knowledge

Base
Shared

Corporate
Knowledge

Base

NGOSS
Knowledge

Base
Shared

Technology
N

eutral
Technology

Specific

Figure 8: The NGOSS Lifecycle Methodology

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

124

diagrams in which contracts are used to specify how
information is exchanged between collaborating
entities.

The System View is primarily concerned with
the modeling of processes and information that
affect the overall architecture of a component or a
solution in a technology neutral manner. The SID,
eTOM, and the NGOSS Architecture are used in
conjunction to focus on system concerns: managed
objects, the specification of behavior, and associated
computational interactions, again in a technology
neutral manner. Interactions are again used; the
difference is that in the system view, contracts also
specify how functionality is exchanged between
collaborating entities.

The Implementation View puts the focus on how
to build hardware, software, and firmware that will
implement the system being designed. This View
uses the particular NGOSS architectural style to map
from the technology neutral specifications of the
system to a selected target architecture. This drives
the customization of an appropriate DEN-ng data
model. Again, interactions are used; the difference is
that contracts also contain implementation artifacts,
such as code, APIs, or Web Service invocations.

Finally, the Deployment View is concerned with
operating and actively monitoring the system to
ensure that the observed solution behavior is what is
expected – if not, then the behavior can be adjusted
appropriately by using the NGOSS behavior and
control mechanisms of process and policy based
management. Once again, interactions are used to
specify the details of the desired behavior. Thus,
deployment contracts can contain a wide range of
data (e.g., statistical performance data to evaluation
the performance of the solution, policies to define
specific behavior in response to particular stimuli,
and so forth).

This approach enables business, technology, and
product lifecycles of a given solution to be
synchronized. The advantage of this approach is that
it provides traceability from the business definition
of the solution through its architecture,
implementation and deployment. It also enables
information and data entities to be further developed
as part of the development process.

The DEN-ng lifecycle model uses contracts (John
Strassner, 2004) as the “unit of interoperability”.
Contracts build upon the work done by ANSA as
documented in the RM-ODP specifications as well
as from current software technologies like Java.
However, the previous work has not addressed the
issue of different users requiring multiple views of
the same object, such as a contract. For example,
preceding work has focused on the definition of
Application Programming Interface (API) aspects of
interactions. This focuses on the implementation and

run-time concerns of software interaction, but
ignores its business and system aspects.

The NGOSS Architecture uses contracts in each
of the four views. This means that contracts are
always used to provide an interface definition
mechanism that links the business, system,
implementation and deployment aspects of a
solution together.

An important point is that the NGOSS contract
morphs as necessary to contain new and/or changed
information. For example, a contract in one view
could contain the specification of a service to be
delivered; that same contract in a different view
could specify information and code that implement
the service. Thus, a contract is more than a software
interface specification – it also defines pre- and post-
conditions, semantics for using the service, policies
affecting the configuration, use, and operation of the
service, and much more. In short, the Contract is a
way of reifying a specification of a service, and
implementing the functionality of the service
(including obligations to other entities in the
managed environment).

5 CASE STUDY

A prototype of the NGOSS approach, including the
DEN-ng MDA code generator, has been
implemented and is being tested in a live Service
Provider environment. Its focus is to prove that key
provisioning tasks that result from a service order
can be modeled and, hence, automated.

In this test, various product offerings consisting
of rate-limited MPLS VPN services are used to
provide secure connectivity. The customer can
purchase different connectivity options, dictated by
the combination of the type of customer premise
equipment purchased, along with the number of
different services purchased (e.g., VoIP services in
addition to Internet connectivity) and their
respective QoS.

The MPLS VPN is modeled as a product offering
to ensure that the business policies and motivation
for the VPN, on a per customer basis, are properly
captured in the model. The DEN-ng product model
defines a Product as an aggregation of
PhysicalResources (e.g., a CPE device) and/or
customer-facing services. Thus, a VPN is a customer
facing service because the Customer is directly
aware of the VPN.

The PhysicalResources and customer-facing
services define logical resources (e.g., routing
processes) and resource-facing services (e.g., BGP)
that are used to ensure the proper operation of what
the customer sees. For example, the VPN may

A MODEL DRIVEN ARCHITECTURE FOR TELECOMMUNICATIONS SYSTEMS USING DEN-NG

125

require the use of BGP. The Customer isn’t aware of
this, so BGP is not a customer facing service.
However, since BGP is required for the VPN to
work, it is modeled as a resource facing service.

DEN-ng models this product offering through a
combination of roles and models. The major roles
used are (TMF Service, 2003):

 VPNPhysicalDeviceRole
 VPNLogicalDeviceRole
 DeviceInterfaceRole

The VPNPhysicalDeviceRole represents the
physical capabilities that a particular device has. It
enables the correlation of physical and logical
aspects of components that are used to route traffic.
The VPNLogicalDevice Role abstracts the
functionality required for the CPE, PE, and P
(customer premise edge, provider edge, and provider
core, respectively) roles of an MPLS VPN. Finally,
the DeviceInterfaceRole enables different types of
roles (e.g., edge vs. core functionality) to be
associated with a particular DeviceInterface.

The DEN-ng QoS model (TMF QoS, 2003)
enables different types of services to be abstracted.
A ServicePackage defines the attributes, methods,
relationships, and constraints that characterize the
behavior of a particular Service as seen by the
Customer (e.g., Gold Service provides VoIP access
in addition to Internet access, while Bronze Service
doesn’t; in addition, the user gets faster downloads
using Gold Service). A ServiceBundle is a collection
of specifications of ResourceFacingServices. A
ResourceFacingService is an abstraction that defines
network-facing services. This enables different
specifications for different types of traffic (e.g., QoS
for voice traffic versus QoS for data traffic) to be
defined. These are collectively bundled into
CustomerFacingServices (e.g., “Gold Service” vs.
“Bronze Service”).

These abstractions enable the VPN model to be
modeled in an extensible fashion, enabling different
offerings from the Service Provider to be
productized to suit different customer needs while
maintaining a common abstraction. For example,
Gold Service and Bronze Service may both contain
data traffic, but offer different levels of QoS. Gold
Service may be further differentiated by providing
VoIP traffic. This is shown in Figure 9.

The DEN-ng model enables two different
implementations of the same type of traffic (e.g.,
data or web) to have different traffic conditioning
characteristics as defined by different customer
service levels (e.g., Gold vs. Bronze).

Each service level is abstracted through roles.
Roles are assigned to model the physical as well as
the logical characteristics of the service. For

example, every VPN service requires a particular
physical port of a device to be used. This is
abstracted through the VPNPhysicalDeviceRole,
enabling all physical ports that play the same role in
the network to be provisioned in the same way. It
also helps define certain parameters that characterize
the solution. For example, the CPE device can be
connected to the PE device using a number of
different combinations of media and protocols. The
VPNPhysicalDeviceRole enables the invariant
physical characteristics and behavior of media and
protocol to be captured. Thus, certain types of
connections can always be provisioned the same
way.

Similarly, the VPNLogicalDeviceRole is used to

provision CE-, PE-, or P-specific logical
functionality. Finally, the DeviceInterfaceRole is
used to provision common logical characteristics
that this interface must have.

This combination enables the following
workflow to be established. First, an event such as
the insertion or removal of a new Card into a device
is detected (e.g., by trapping a SysLog event).
Second, the event is parsed to determine the
particular action that has occurred. Extensions of the
DEN-ng capabilities model are used to model the
particular physical and logical characteristics of
different vendor devices (Intelliden homepage). This
enables specific action to be taken when a certain
type of Card is inserted into a device. Finally, the
physical and logical characteristics of the Card can
be programmed without manual intervention.

For example, assume that a two-port GigE Card
is inserted into a router. An event is received that
says that a Card was inserted into a specific device.
This Card is then identified using vendor-specific
commands (e.g., show commands for a Cisco IOS
router). The information gleaned from these show
commands identify a DEN-ng model of the Card,
along with a description of its physical and logical
characteristics. A series of UML interaction
diagrams define how to provision this type of Card
using a set of appropriate roles. These roles in turn

Figure 9: Different Service Packages

Q
uality

Data

Service Level

Web

VoIP

Data

Web

Gold Service Bronze Service

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

126

identify parameterized configurations, stored as
objects. This enables a physical port to be
configured, and an appropriate device interface (e.g.,
an Ethernet sub-interface) to be instantiated. The
generic functionality of the interface is programmed
using the DeviceInterfaceRole abstraction; then, the
VPN functionality of the interface is programmed
using the VPNLogicalDeviceRole abstraction. When
these tasks are complete, the relevant portions of the
OSS (e.g., the billing component) are informed.

The FSM approach enables the interaction
between these and other aspects of the overall
solution to be modeled, providing a global view of
the behavior of the solution. The Lifecycle is then
used to model how this solution is defined, designed,
implemented and deployed. Changes to the solution
are captured as changes to individual parts of the
lifecycle.

6 CONCLUSIONS

Current network management approaches rely on
stovepipe architectures that can only share data
through complicated mediation services that are
costly to design and hard to maintain. Worse, they
disconnect the various stakeholders from each other
in two important ways. First, the lack of common
information inhibits the sharing and reuse of
management information. Second, the information
models being used only describe the current state of
the managed object.

This paper has described an innovative approach
to modeling the lifecycle of the components of a
solution using the DEN-ng models. DEN-ng is being
developed in the TMF, and has several unique
aspects that make it well-suited to modeling the
lifecycle of managed objects. These include: (1) it is
based on UML, and extends the metamodel of UML
using UML approved techniques; (2) it has the
concept of views, which enable different aspects of
the same object to be described to best suit the needs
of different constituencies; (3) it is built as a
framework of frameworks, which enables
knowledge from external standard bodies and fora to
be incorporated; (4) it uses a set of powerful
abstractions – capabilities, constraints, context, and
roles, and patterns – to make its models inherently
extensible. Most importantly, DEN-ng uses the
concept of a finite state machine to model the static
and dynamic aspects of a set of collaborating
entities. This combination of characteristics is a
unique contribution to the industry.

This paper has briefly described some significant
enhancements to MDA, which enable the power of
the models to be better utilized by various

constituencies that aren’t necessarily UML literate.
A significant enhancement was the generation of
tools and documentation to help users take
advantage of the power of the DEN-ng models.

However, models are not a natural means of
communication amongst most stakeholders. In
addition, UML isn’t well suited to representing
many aspects of a solution, such as policy-based
management. Even UML’s use cases pale in
comparison to the ability to convey information
using simple textual templates. We are investigating
using other tools as a framework in which UML-
based tools plug in to provide specific functionality.

The NGOSS Lifecycle is a formal specification
for defining the characteristics and behavior of
NGOSS components. It also enables the interests of
various stakeholders to be protected by representing
the evolution of their interests as the solution
progresses from the definition of its business
concerns, through a mapping to a particular
architecture and implementation, through its
deployment.

A case study using the DEN-ng models, the
MDA-based code generation, and the NGOSS
lifecycle, was briefly described. The use of the
DEN-ng model enabled the business, system,
implementation and deployment aspects of the
overall solution to be represented. FSMs enable the
interaction of the various components making up the
solution to be modeled; the lifecycle ensures that
each stage in the evolution of the solution is properly
represented.

REFERENCES

John Strassner – 2002: “A New Paradigm for Network
Management – Business Driven Device
Management”. In SSGRRs 2002 summer session.

IBM Autonomic Manifesto: Please see:
www.research.ibm.com/autonomic/manifesto

HP Adaptive Enterprise: Please see:
 http://www.hp.com/large/globalsolutions/ai.html
John Strassner and John Reilly – 2003: “Learning the

SID”. Day Tutorial for TMW 2003 Fall Conference
TMF SID – 2003: “Shared Information and Data (SID)

model”. GB922 (and Addenda) and GB926 (and
Addenda). TeleManagement Forum, Dec 2003

John Strassner – 2005: “The Art of Information
Modeling”. Book to be published

Zachmann Framework: Please see: http://www.zifa.com/
OMG UML – 1.5: “Unified Modeling Language

Specification”, version 1.5, OMG, March 2003
TMF TNA – 2003: “The NGOSS Technology Neutral

Architecture”. TMF053 and Addenda.
TeleManagement Forum, Dec 2003

A MODEL DRIVEN ARCHITECTURE FOR TELECOMMUNICATIONS SYSTEMS USING DEN-NG

127

TMF Website: Please see www.tmforum.org
ODP – 96: Open Distributed Processing Reference Model

– Foundations, ISO/IEC 10746-2, 1996
Pattern example – 96: See, for example, M. Fowler,

“Analysis Patterns – Reusable Object Models”,
ISBN 0-201-89542-0

Role Object Pattern – 97: In particular, variations of the
role object pattern are used – please see
http://www.riehle.org/computer-science-
research/1997/plop-1997-role-object.pdf

OMG homepage: Please see: www.omg.org/mda
John Strassner – 2003: “Policy-Based Network

Management”, Morgan Kaufman Publishers,
ISBN 1-55860-859-1, Sept. 2003

TMF Contract – 2004: “The NGOSS Technology Neutral
Architecture – Contract Description: Business and
System Views”, TeleManagement Forum, TMF053b,
Jan 2004

John Strassner – 2004: “Autonomic Networking – Theory
and Practice”. Tutorial for NOMS 2004

H. H. Clark – 96: Using Language. Cambridge University
Press, 1996

TMF Lifecycle – 2003: “The NGOSS Lifecycle
Methodology”, TeleManagement Forum, GB927,
Dec 2003

TMF eTOM – 2003: “Enhanced Telecom Operations Map
(eTOM) – The Business Process Framework”, GB921,
v3.5, June 2003

TMF Service – 2003: “Shared Information and Data (SID)
model – Service Overview Addendum”,
TeleManagement Forum, GB922 Addendum 4SO,
Dec 2003

TMF QoS – 2003: “Shared Information and Data (SID)
model – QoS Addendum”, TeleManagement Forum,
GB922 Addendum 4S-QoS, Dec 2003

Intelliden homepage: Please see www.intelliden.com

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

128

