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Abstract: The vulnerability and importance of computers, robots, internet etc, demand the employment of exceedingly 
reliable security protocols. E-Business can not be encouraged with susceptible underlying security 
protocols. We present a heuristic state space search model for automatic security protocol verification. Our 
model exploits its knowledge of the search space and intelligently enhances the efficiency of security 
protocol verification process. It uses the representation of security protocols in terms of Strand Space Model 
(SSM) and logic of authentication. The attributes of security protocol are first represented in SSM and then 
interpreted into logic. This logical module is coded in the form of states. Our model accepts these states as 
its input and attempts to verify them. An efficient algorithm is used for the verification procedure. The goal 
is to avoid state space explosion problem and improve the overall efficiency by exploring maximum number 
of states in a given amount of time. The simplicity of our approach enables it to be translated into existing 
solutions for greater efficiency. 

1 INTRODUCTION 

Increased reliance on computers for data storage, 
retrieval, and communication has elevated the need 
for reliable security protocols. A security protocol is 
a sequence of messages between two or more parties 
in which encryption is used to provide authentication 
or to distribute cryptographic keys for new 
conversations (Roger Needham et al., 1978). A 
security protocol ensures the legitimate and desired 
working of the encapsulating object, e.g. a computer, 
a wireless network, a robot, e-software etc. Serious 
efforts have been deployed in crafting security 
protocols as they provide the foundation for a secure 
system. History has proven security protocols to be 
vulnerable to attacks even after circumspect design 
and meticulous review by the experts. These 
vulnerabilities have motivated the researchers to 
design formal methods for security protocol 
verification. 
   Many researchers have tried to formally verify the 
correctness of security protocols. The first work was 
done in this area by (Danny Dolev et al., 1983) and 
by (Danny Dolev et al., 1982). Most of the later 
work on formal analysis of cryptographic protocols 
is based on the Dolev-Yao model or some variant of 
it (Catherine Meadows, 2003). Trace-based model 
(TBM) was successfully applied as automatic 

security protocol analysis approach. However, the 
TBM based approaches suffer severely from the 
state space explosion problem as the number of 
states and transitions grow exponentially with the 
number of participants involved in the protocol 
(Doron Peled, 1993) (Doron Peled, 1994). Partial 
order and symmetry reductions techniques have 
been utilized to reduce the search space. These 
techniques, however, experience redundant state 
checking (Dawn Song et al., 2001). Theorem 
proving has been utilized but it requires more 
expertise and human interaction. Isabelle (Lawrence 
Paulson, 1997) is an example of theorem prover. It 
has the disadvantage of generating direct 
counterexamples like most of the theorem proving 
based techniques. NRL protocol analyzer (Catherine 
Meadows, 1994) is also based on theorem proving 
and has the advantage of proving a protocol correct 
for arbitrary number of participants. However, it 
often requires non-trivial amount of human 
interaction and expertise, and the running time could 
be much slower than in model checking approach 
(Catherine Meadows, 1996). Tools (Darrel kindred 
et al., 1996) (Stephen Brackin, 1997) (Gawin Lowe, 
1995), based on the logics of knowledge and belief 
such as BAN logic (Martin Burrows et al., 1989) and 
GNY logic (Li Gong et al., 1990), have also been 
exploited to discover flaws in security protocols. 
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   (Martin Burrows et al., 1989) presented logic of 
authentication to formally express security protocol 
analysis. (Javier Fabrega et al., 1999) developed a 
notion of strand space model (SSM) and applied the 
strand space formalism to prove the correctness of 
the Needham-Shroeder-Lowe protocol. Our 
technique is an extension to their work. We propose 
a heuristic state space search model for security 
protocol verification using strand space model and 
logic of authentication. The notion of bundle is used 
to represent any instance of protocol execution. The 
bundles are then represented in states. A state 
represents the collection of properties of bundles. 
We apply our search strategies to verify protocol 
correctness after representing protocol executions as 
states. The algorithm terminates if protocol 
execution is verified. Otherwise, it intelligently 
explores the search tree to verify correctness. A 
failure in finding correctness suggests that the state 
needs further exploration. Experiments show that 
our model avoids trapping into state space explosion 
problem and improves the overall efficiency. It can 
successfully be embedded in most of the SSM based 
approaches for an efficient state space reduction. We 
have designed this model to improve the overall 
security of the encapsulating system (e.g. e-
commerce, internet, etc.) which is of primary 
importance in winning the trust of clients. We have 
focused only on authentication and secrecy of 
security protocols. Encompassing complete security 
features will be a part of our future work. 
   The paper is organized as follows. We first present 
basics of strand space in section 2. Section 3 deals 
with the explanation of SSM and its incorporation in 
our model. Section 4 describes our algorithm, 
experimental results, and advantages of strategies 
based on our model. Conclusion is followed in 
section 5. 

2 STRAND SPACE MODEL (SSM) 

(Javier Fabrega et al., 1998) proposed Strand Space 
Model (SSM) to prove certain security properties 
manually, for example, authentication and secrecy. 
We first briefly mention some of the basic terms 
used in SSM. A detailed explanation of these terms 
can be found in (Javier Fabrega et al., 1999) (Dawn 
Song et al., 2001). 
   The set of actions ‘Act’ that principals can take 
during the execution of a protocol include external 
actions such as send (denoted by +) and receive 
(denoted by -), and user-defined internal actions 
such as debit, credit, etc. An event is a pair <action, 
a>, where action ∈ Act, and a ∈ A is the argument 
of the action from the set of terms A. A strand is a 

sequence of events that a participant may engage in. 
For a legitimate participant, each strand is a 
sequence of message sends and receives; it 
represents the action of that party in a particular run 
of the protocol. A collection of strands for various 
legitimate protocol parties with penetrator-strands 
defines strand space. A strand space over A is a set Σ 
together with the trace mapping tr: Σ → (±A)*. 
   A bundle consists of a number of strands hooked 
together where one strand sends a message and 
another strand receives the same message. In other 
words, a bundle is a portion of a strand space large 
enough to represent a full protocol exchange. A node 
is a pair <s, i> with s ∈ Σ and i an integer satisfying 
1 ≤ i ≤ length (tr(s)). The set of nodes is denoted by 
N. Each node belongs to a unique strand. Term (n)i = 
(tr(s))i, i.e, the ith signed term in the trace of s. There 
is an edge n1 → n2 if and only if term(n1) = +a and 
term(n2) = -a for some a ∈ A. When n1 = <s, i> and 
n2 = <s, i+1> are members of N, there is an edge n1 
=> n2. 

3 SSM APPLICATION 

We present the example of Needham-Shroeder-
Lowe (NSL) protocol used in strand space model as 
in (Gawin Lowe, 1996) (Stephen Brackin, 1996). 
The NSL is preferred to provide a better idea of 
SSM application. NSL protocol is defined as 
follows: 
 
1) A → B: { Na . A }KB
2) B → A: { Na . Nb . B }KA
3) A → B: { Nb }KB  
 
   NSL defines initiator and responder roles which 
are represented in strand space model as follows: 
 
Resp[A,B,Na,Nb]      Init[A,B,Na,Nb] 
 
1)<−{Na.A}KB>      1)<+{Na.A}KB> 
 
    

)<− B>            3)<+{ }KB> 

 Dawn Song, Sergey Berezin, and Adrian Perrig 

2)<+{Na.Nb.B}KA>   2)<−{Na.Nb.B}KA> 
 
 
3 {Nb}K Nb
 
  
designed a logic based on SSM that can formally 
express various security properties including 
authentication, secrecy, and properties related to 
electronic commerce. They developed automatic 
procedure for evaluating well formed formulae in 
this logic (Dawn Song et al., 2001). Protocol 
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authenticity can be verified by using security 
properties defined by (Gawin Lowe, 1996) (Gawin 
Lowe, 1997) (Gawin Lowe, 1999). Strand spaces 
prove his agreement properties. A protocol 
guarantees a participant B (say, as the responder) 
agreement for certain data items x if: 
 
   Each time a participant B completes a run of the 

 A weaker non-injective agreement does not ensure 

 Each time a participant B completes a run of the 

 The non-injective agreement property can be 

C.Resp(x)∈ C 

protocol as responder using x, apparently with A, 
then there is a unique run of the protocol with the 
principal A as initiator using x, apparently with B. 
 
  
uniqueness, but requires only: 
 
  
protocol as responder using x, apparently with A, 
then there exists a run of the protocol with the 
principal A as initiator using x, apparently with B. 
 
  
specified using the logic as follows: 
 
∀  Init(x)∈ C 

 Secrecy property can be defined as: 

∃C.(Resp(x)∈ C 

 
  
 
┐  node( +v) ∈ C) 

 ( t  2 0) (Dawn 999) 

C.s1∈ C 

 
Adrian perrig e  al., 00 Song, 1  

(Dawn Song et al., 2000) introduced notion of a goal 
to represent the received terms, and a notion of ‘goal 
binding’ to represent that a goal term is first sent by 
a node. A ‘state’ is a tuple of ‘semi-bundle’, 
‘unbounded-goals’, relation for ‘goal-bindings (->)’, 
and reflexive and transitive closure of ‘->’ and ‘=>’. 
They proposed the evaluation of two simple well 
formed formulas as: 
 
∀  s2∈ C, and 

 where s1 is a strand constant and s2 is a regular 

 We build an efficient state space search approach 

4 HEURISTIC MODEL 

We describe the working of our model in section 4.1 

4.1 Algorithm  

Initialize ∆; //∆ is a structure 
    

 δ (); 

 

∆); 

// this function expands the 

= Minimum_Node (ξ); 

// the job of this function is  

i = 0; 

 
= empty) 

If ζλ = ζµ   
lµ  

ty (∆[i]);

_Priority (∆[i+1]);

 Φ 

∃C.s1∈ C 
 
  
strand constant. 
 
  
for security protocol verification using the logic of 
authentication and strategy for protocol verification. 
Any instance of protocol execution is represented as 
a bundle. Bundles are represented in states, that is, 
state represents the collection of properties of 
bundles. The initial state, say l0, specifies that any 
bundle it represents must satisfy the protocol P and 
contain all of its sets of strands. Once the protocol 
execution is represented in terms of states, we apply 
our search strategies to verify the protocol 
correctness. If the protocol execution is verified, our 

algorithm terminates and returns true. Otherwise, it 
intelligently explores the search tree to verify the 
correctness. A failure in finding the protocol 
correctness results in a false return value. False 
value suggests that the protocol needs further 
exploration. process.  

and analyze its experimental results, advantages, and 
disadvantages in section 4.2.  

 
While (there are states to explore
      in the structure) 
{ 
   
    Ω (); 
    Ξ (); 
} 
δ()
{ 
 evaluate = Evaluate (
 If evaluate == TRUE 
  Ξ (); 
}  
Ω() 
    // optimized state 
{ 
 ω
 Expand (ω_state); 
 Replace (ω); 
} 
 
Ξ() 
    // to set the priority of best  
    // candidate state for   
    // evaluation 
{ 
   
   λ = i; 
   µ = i+1;
   While (∆ !
   { 
      
         If  lλ < 
            Set_Priori
         Else 
            Set
      Else if sλ=lµ //where λ ≠ µ 
         If lµ-lλ > φ AND |ζµ– ζλ| <
            Set_Priority (∆[i]); 
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         Else 
   Priority to state with  

   Priority to state with   

f(∆ with priority) 

in our search with the initial state po and 

s starts with the initial state. We call 

e enter into Ξ (pronounced as big xi) 

 

 

 

 

 

 

 

4.2 Experimental Results 

We conducted extensive experiments to appraise the 

(Non-Heuristic)  = (0.90) * (0.95) = (0.85) 

      minimum ζ. 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Else 
      
         minimum ζ. 
      i = i+1; 
      λ = indexo
      µ = i+1; 
    } 
 } 
 

 We beg  
store this state in ∆. ∆ holds the values, pi (state id), 
si (no. of strands possessed by the current state), li 
(no. of child states of pi), ξi (pronounced as small xi) 
= ξ i-1 + ζi (ξ serves as a bound in the search space). 
ζi (pronounced as zeta) = sili, is used to compute the 
priority of individual states. Initially ∆ = { po, so, lo, 
ξo = ζo = solo }. 
   Search proces
δ function for our initial state. δ function takes our 
structure ∆ and evaluates the current state. It returns 
true if current state is verified or rejected. That is, 
either s2 belongs to the state or unbounded goals of 
that state are empty (see section 3 for details). If δ 
returns false, it means the current state needs further 
expansion. Ω function is then called for further 
expansion. Ω selects the state with minimum ξ and 
expands it. The astute use of ξ makes sure that we do 
not go in one direction in the search space. Ω 
function modifies ∆ array entries for the state with 
minimum ξ. 
   After Ω, w
function. The job of Ξ is to set the priority of the 
best candidate state. A node having fewer numbers 
of children and/or fewer numbers of strands is given 
preference. Heuristics are used to decide the trade 
offs between strands and children of a node. We 
used Φ and φ as thresholds where Φ>>φ. After 

setting the priority, we start the process again by 
calling δ function. 

Simulation scenario 1
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Figure 1: Search Space losion.

 

efficiency of our model. A java based 
implementation of the proposed model was 
simulated on Windows XP with Pentium-4 
processor and 256MB RAM. The graphs in figure 1 
depict the comparison between simulations of 
automatic protocol verification  using our model and 
without using our model. A significant difference 
between the two strategies can be seen as the 
number of states grow exponentially with time and 
heuristic based approach tends to end sooner with 
greater number of states explored. It is clear from 
the graphs that non-heuristic strategies are prone to 
state space explosion (which is more obvious in 
scenario 1 of figure 1) and explore far lesser number 
of states in a given amount of time (which is more 
obvious in scenario 2 of figure 1). Figure 2 is based 
on results of extensive simulations. It is clear from 
state space explosion in figure 2 that approximately 
90% of the time state space explosion problem 
occurred without using any state space reduction 
technique. A comparison between Heuristic and 
Non-Heuristic in figure 2  shows that our model was 
able to reduce the problem approximately 95% of 
the time. We define the probability that state space 
explosion will occur and Non-Heuristic strategies 
will suffer from the problem as P(Non-Heuristic). 
We call the probability that state space explosion 
will occur and our proposed model will suffer as 
P(Heuristic). The probabilities calculated 
corresponding to our simulations are: 
 
P
                              = approximately 85% 

 Exp
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State Space Explosion
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Explosion

No Explosion
Explosion

Heuristic vs Non-Heuristic Explosion
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Figure 2: Comparison of Heuristic and Non Heuristic Models 

P(H

  
se results are based on our simulations. 

ch 

Authentication of Security Protocols is a big 

manual verification has urged the security 

This work was partially supported by NSF under 

Needham, R., and Schroeder, M., (1978) Using encryption 

euristic)     =(0.90)*(0.05)=(0.05) 
                             = approximately 5%   
 
  
The
However, the excessive number of simulation is a 
fair measure to get an idea of practicability of our 
approach. The failure rate of 5% with our model, as 
compared to 85% without any model, is an 
encouraging, although not the best, achievement.  
   Our algorithm dramatically reduces the sear
space. It increases the number of protocols verified 
in a given amount of time and avoids falling into 
traps by intelligently bounding the search procedure. 
The approach employed to  represent the protocol  is 
simple and tries to minimize human interaction and 
expertise. It can easily be incorporated in most of the 
existing SSM approaches to avoid state space 
explosion problem. The simplicity of this algorithm 
allows its idea to be translated in strategies other 
than SSM based approaches. We posit that the 
authenticity of the beneficiary system, i.e. the 
system using our model for its protocol verification 
(e.g. a wireless network, a web site etc.), will be less 
vulnerable to security threats. We have confined 
ourselves to secrecy and authentication aspects of 
security protocols. We are focussed to extend our 
work to include other security features. 

5 CONCLUSION 

question in security community. Experience has 
shown that well designed security protocols can also 
be proven false in their later stages. The limitation of 

community to find ways for automatic verification 
techniques for security protocols. We have presented 
a heuristic based model for  reducing  search space 
in    automatic   security   protocol   verification. Our 
approach is based on the strand space model and 
logic of authentication. The presented model 
facilitates minimum human interaction and 
guarantees efficiency. Our model intelligently 
reduces the workload on existing software for 
automatic security protocol verification. 
Experimental results support the employment of 
heuristic based strategies. The existing solutions can 
also benefit by employing our proposed logic to 
enhance their efficiency. At present, we limit 
ourselves to few security aspects. However, we  plan 
to expand the research to include other security 
aspects in the future.  
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