
A HEURISTIC STATE SPACE SEARCH MODEL FOR
SECURITY PROTOCOL VERIFICATION

Zeeshan Furqan, Ratan Guha, Shahabuddin Muhammad
Schoool of Computer Science,Universityof Central Florida, Orlando, Florida, USA

Keywords: Security Protocols, Verification, State Space Explosion, Strand Space Model, Logic of Authentication

Abstract: The vulnerability and importance of computers, robots, internet etc, demand the employment of exceedingly
reliable security protocols. E-Business can not be encouraged with susceptible underlying security
protocols. We present a heuristic state space search model for automatic security protocol verification. Our
model exploits its knowledge of the search space and intelligently enhances the efficiency of security
protocol verification process. It uses the representation of security protocols in terms of Strand Space Model
(SSM) and logic of authentication. The attributes of security protocol are first represented in SSM and then
interpreted into logic. This logical module is coded in the form of states. Our model accepts these states as
its input and attempts to verify them. An efficient algorithm is used for the verification procedure. The goal
is to avoid state space explosion problem and improve the overall efficiency by exploring maximum number
of states in a given amount of time. The simplicity of our approach enables it to be translated into existing
solutions for greater efficiency.

1 INTRODUCTION

Increased reliance on computers for data storage,
retrieval, and communication has elevated the need
for reliable security protocols. A security protocol is
a sequence of messages between two or more parties
in which encryption is used to provide authentication
or to distribute cryptographic keys for new
conversations (Roger Needham et al., 1978). A
security protocol ensures the legitimate and desired
working of the encapsulating object, e.g. a computer,
a wireless network, a robot, e-software etc. Serious
efforts have been deployed in crafting security
protocols as they provide the foundation for a secure
system. History has proven security protocols to be
vulnerable to attacks even after circumspect design
and meticulous review by the experts. These
vulnerabilities have motivated the researchers to
design formal methods for security protocol
verification.
 Many researchers have tried to formally verify the
correctness of security protocols. The first work was
done in this area by (Danny Dolev et al., 1983) and
by (Danny Dolev et al., 1982). Most of the later
work on formal analysis of cryptographic protocols
is based on the Dolev-Yao model or some variant of
it (Catherine Meadows, 2003). Trace-based model
(TBM) was successfully applied as automatic

security protocol analysis approach. However, the
TBM based approaches suffer severely from the
state space explosion problem as the number of
states and transitions grow exponentially with the
number of participants involved in the protocol
(Doron Peled, 1993) (Doron Peled, 1994). Partial
order and symmetry reductions techniques have
been utilized to reduce the search space. These
techniques, however, experience redundant state
checking (Dawn Song et al., 2001). Theorem
proving has been utilized but it requires more
expertise and human interaction. Isabelle (Lawrence
Paulson, 1997) is an example of theorem prover. It
has the disadvantage of generating direct
counterexamples like most of the theorem proving
based techniques. NRL protocol analyzer (Catherine
Meadows, 1994) is also based on theorem proving
and has the advantage of proving a protocol correct
for arbitrary number of participants. However, it
often requires non-trivial amount of human
interaction and expertise, and the running time could
be much slower than in model checking approach
(Catherine Meadows, 1996). Tools (Darrel kindred
et al., 1996) (Stephen Brackin, 1997) (Gawin Lowe,
1995), based on the logics of knowledge and belief
such as BAN logic (Martin Burrows et al., 1989) and
GNY logic (Li Gong et al., 1990), have also been
exploited to discover flaws in security protocols.

113
Furqan Z., Guha R. and Muhammad S. (2004).
A HEURISTIC STATE SPACE SEARCH MODEL FOR SECURITY PROTOCOL VERIFICATION.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 113-118
DOI: 10.5220/0001394101130118
Copyright c© SciTePress

 (Martin Burrows et al., 1989) presented logic of
authentication to formally express security protocol
analysis. (Javier Fabrega et al., 1999) developed a
notion of strand space model (SSM) and applied the
strand space formalism to prove the correctness of
the Needham-Shroeder-Lowe protocol. Our
technique is an extension to their work. We propose
a heuristic state space search model for security
protocol verification using strand space model and
logic of authentication. The notion of bundle is used
to represent any instance of protocol execution. The
bundles are then represented in states. A state
represents the collection of properties of bundles.
We apply our search strategies to verify protocol
correctness after representing protocol executions as
states. The algorithm terminates if protocol
execution is verified. Otherwise, it intelligently
explores the search tree to verify correctness. A
failure in finding correctness suggests that the state
needs further exploration. Experiments show that
our model avoids trapping into state space explosion
problem and improves the overall efficiency. It can
successfully be embedded in most of the SSM based
approaches for an efficient state space reduction. We
have designed this model to improve the overall
security of the encapsulating system (e.g. e-
commerce, internet, etc.) which is of primary
importance in winning the trust of clients. We have
focused only on authentication and secrecy of
security protocols. Encompassing complete security
features will be a part of our future work.
 The paper is organized as follows. We first present
basics of strand space in section 2. Section 3 deals
with the explanation of SSM and its incorporation in
our model. Section 4 describes our algorithm,
experimental results, and advantages of strategies
based on our model. Conclusion is followed in
section 5.

2 STRAND SPACE MODEL (SSM)

(Javier Fabrega et al., 1998) proposed Strand Space
Model (SSM) to prove certain security properties
manually, for example, authentication and secrecy.
We first briefly mention some of the basic terms
used in SSM. A detailed explanation of these terms
can be found in (Javier Fabrega et al., 1999) (Dawn
Song et al., 2001).
 The set of actions ‘Act’ that principals can take
during the execution of a protocol include external
actions such as send (denoted by +) and receive
(denoted by -), and user-defined internal actions
such as debit, credit, etc. An event is a pair <action,
a>, where action ∈ Act, and a ∈ A is the argument
of the action from the set of terms A. A strand is a

sequence of events that a participant may engage in.
For a legitimate participant, each strand is a
sequence of message sends and receives; it
represents the action of that party in a particular run
of the protocol. A collection of strands for various
legitimate protocol parties with penetrator-strands
defines strand space. A strand space over A is a set Σ
together with the trace mapping tr: Σ → (±A)*.
 A bundle consists of a number of strands hooked
together where one strand sends a message and
another strand receives the same message. In other
words, a bundle is a portion of a strand space large
enough to represent a full protocol exchange. A node
is a pair <s, i> with s ∈ Σ and i an integer satisfying
1 ≤ i ≤ length (tr(s)). The set of nodes is denoted by
N. Each node belongs to a unique strand. Term (n)i =
(tr(s))i, i.e, the ith signed term in the trace of s. There
is an edge n1 → n2 if and only if term(n1) = +a and
term(n2) = -a for some a ∈ A. When n1 = <s, i> and
n2 = <s, i+1> are members of N, there is an edge n1
=> n2.

3 SSM APPLICATION

We present the example of Needham-Shroeder-
Lowe (NSL) protocol used in strand space model as
in (Gawin Lowe, 1996) (Stephen Brackin, 1996).
The NSL is preferred to provide a better idea of
SSM application. NSL protocol is defined as
follows:

1) A → B: { Na . A }KB
2) B → A: { Na . Nb . B }KA
3) A → B: { Nb }KB

 NSL defines initiator and responder roles which
are represented in strand space model as follows:

Resp[A,B,Na,Nb] Init[A,B,Na,Nb]

1)<−{Na.A}KB> 1)<+{Na.A}KB>

)<− B> 3)<+{ }KB>

 Dawn Song, Sergey Berezin, and Adrian Perrig

2)<+{Na.Nb.B}KA> 2)<−{Na.Nb.B}KA>

3 {Nb}K Nb

designed a logic based on SSM that can formally
express various security properties including
authentication, secrecy, and properties related to
electronic commerce. They developed automatic
procedure for evaluating well formed formulae in
this logic (Dawn Song et al., 2001). Protocol

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

114

authenticity can be verified by using security
properties defined by (Gawin Lowe, 1996) (Gawin
Lowe, 1997) (Gawin Lowe, 1999). Strand spaces
prove his agreement properties. A protocol
guarantees a participant B (say, as the responder)
agreement for certain data items x if:

 Each time a participant B completes a run of the

 A weaker non-injective agreement does not ensure

 Each time a participant B completes a run of the

 The non-injective agreement property can be

C.Resp(x)∈ C

protocol as responder using x, apparently with A,
then there is a unique run of the protocol with the
principal A as initiator using x, apparently with B.

uniqueness, but requires only:

protocol as responder using x, apparently with A,
then there exists a run of the protocol with the
principal A as initiator using x, apparently with B.

specified using the logic as follows:

∀ Init(x)∈ C

 Secrecy property can be defined as:

∃C.(Resp(x)∈ C

┐ node(+v) ∈ C)

 (t 2 0) (Dawn 999)

C.s1∈ C

Adrian perrig e al., 00 Song, 1

(Dawn Song et al., 2000) introduced notion of a goal
to represent the received terms, and a notion of ‘goal
binding’ to represent that a goal term is first sent by
a node. A ‘state’ is a tuple of ‘semi-bundle’,
‘unbounded-goals’, relation for ‘goal-bindings (->)’,
and reflexive and transitive closure of ‘->’ and ‘=>’.
They proposed the evaluation of two simple well
formed formulas as:

∀ s2∈ C, and

 where s1 is a strand constant and s2 is a regular

 We build an efficient state space search approach

4 HEURISTIC MODEL

We describe the working of our model in section 4.1

4.1 Algorithm

Initialize ∆; //∆ is a structure

 δ ();

∆);

// this function expands the

= Minimum_Node (ξ);

// the job of this function is

i = 0;

= empty)

If ζλ = ζµ
lµ

ty (∆[i]);

_Priority (∆[i+1]);

 Φ

∃C.s1∈ C

strand constant.

for security protocol verification using the logic of
authentication and strategy for protocol verification.
Any instance of protocol execution is represented as
a bundle. Bundles are represented in states, that is,
state represents the collection of properties of
bundles. The initial state, say l0, specifies that any
bundle it represents must satisfy the protocol P and
contain all of its sets of strands. Once the protocol
execution is represented in terms of states, we apply
our search strategies to verify the protocol
correctness. If the protocol execution is verified, our

algorithm terminates and returns true. Otherwise, it
intelligently explores the search tree to verify the
correctness. A failure in finding the protocol
correctness results in a false return value. False
value suggests that the protocol needs further
exploration. process.

and analyze its experimental results, advantages, and
disadvantages in section 4.2.

While (there are states to explore
 in the structure)
{

 Ω ();
 Ξ ();
}
δ()
{
 evaluate = Evaluate (
 If evaluate == TRUE
 Ξ ();
}
Ω()
 // optimized state
{
 ω
 Expand (ω_state);
 Replace (ω);
}

Ξ()
 // to set the priority of best
 // candidate state for
 // evaluation
{

 λ = i;
 µ = i+1;
 While (∆ !
 {

 If lλ <
 Set_Priori
 Else
 Set
 Else if sλ=lµ //where λ ≠ µ
 If lµ-lλ > φ AND |ζµ– ζλ| <
 Set_Priority (∆[i]);

A HEURISTIC STATE SPACE SEARCH MODEL FOR SECURITY PROTOCOL VERIFICATION

115

 Else
 Priority to state with

 Priority to state with

f(∆ with priority)

in our search with the initial state po and

s starts with the initial state. We call

e enter into Ξ (pronounced as big xi)

4.2 Experimental Results

We conducted extensive experiments to appraise the

(Non-Heuristic) = (0.90) * (0.95) = (0.85)

 minimum ζ.

Else

 minimum ζ.
 i = i+1;
 λ = indexo
 µ = i+1;
 }
 }

 We beg
store this state in ∆. ∆ holds the values, pi (state id),
si (no. of strands possessed by the current state), li
(no. of child states of pi), ξi (pronounced as small xi)
= ξ i-1 + ζi (ξ serves as a bound in the search space).
ζi (pronounced as zeta) = sili, is used to compute the
priority of individual states. Initially ∆ = { po, so, lo,
ξo = ζo = solo }.
 Search proces
δ function for our initial state. δ function takes our
structure ∆ and evaluates the current state. It returns
true if current state is verified or rejected. That is,
either s2 belongs to the state or unbounded goals of
that state are empty (see section 3 for details). If δ
returns false, it means the current state needs further
expansion. Ω function is then called for further
expansion. Ω selects the state with minimum ξ and
expands it. The astute use of ξ makes sure that we do
not go in one direction in the search space. Ω
function modifies ∆ array entries for the state with
minimum ξ.
 After Ω, w
function. The job of Ξ is to set the priority of the
best candidate state. A node having fewer numbers
of children and/or fewer numbers of strands is given
preference. Heuristics are used to decide the trade
offs between strands and children of a node. We
used Φ and φ as thresholds where Φ>>φ. After

setting the priority, we start the process again by
calling δ function.

Simulation scenario 1

0
5000

10000
15000
20000
25000

30000
35000
40000

45000
50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time in seconds

N
um

be
r o

f s
ta

te
s e

xp
lo

re
d

Heuristic

Non
Heuristic

Simulation scenario 2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Time in seconds

N
um

be
r o

f s
ta

te
s e

xp
lo

re
d

Heuristic

Non
Heuristic

Figure 1: Search Space losion.

efficiency of our model. A java based
implementation of the proposed model was
simulated on Windows XP with Pentium-4
processor and 256MB RAM. The graphs in figure 1
depict the comparison between simulations of
automatic protocol verification using our model and
without using our model. A significant difference
between the two strategies can be seen as the
number of states grow exponentially with time and
heuristic based approach tends to end sooner with
greater number of states explored. It is clear from
the graphs that non-heuristic strategies are prone to
state space explosion (which is more obvious in
scenario 1 of figure 1) and explore far lesser number
of states in a given amount of time (which is more
obvious in scenario 2 of figure 1). Figure 2 is based
on results of extensive simulations. It is clear from
state space explosion in figure 2 that approximately
90% of the time state space explosion problem
occurred without using any state space reduction
technique. A comparison between Heuristic and
Non-Heuristic in figure 2 shows that our model was
able to reduce the problem approximately 95% of
the time. We define the probability that state space
explosion will occur and Non-Heuristic strategies
will suffer from the problem as P(Non-Heuristic).
We call the probability that state space explosion
will occur and our proposed model will suffer as
P(Heuristic). The probabilities calculated
corresponding to our simulations are:

P
 = approximately 85%

 Exp

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

116

State Space Explosion

No Explosion

Explosion

No Explosion
Explosion

Heuristic vs Non-Heuristic Explosion

Heurist ic Explosion

Non-Heurist ic Explosion

Heuristic Explosion

Non-Heuristic
Explosion

Figure 2: Comparison of Heuristic and Non Heuristic Models

P(H

se results are based on our simulations.

ch

Authentication of Security Protocols is a big

manual verification has urged the security

This work was partially supported by NSF under

Needham, R., and Schroeder, M., (1978) Using encryption

euristic) =(0.90)*(0.05)=(0.05)
 = approximately 5%

The
However, the excessive number of simulation is a
fair measure to get an idea of practicability of our
approach. The failure rate of 5% with our model, as
compared to 85% without any model, is an
encouraging, although not the best, achievement.
 Our algorithm dramatically reduces the sear
space. It increases the number of protocols verified
in a given amount of time and avoids falling into
traps by intelligently bounding the search procedure.
The approach employed to represent the protocol is
simple and tries to minimize human interaction and
expertise. It can easily be incorporated in most of the
existing SSM approaches to avoid state space
explosion problem. The simplicity of this algorithm
allows its idea to be translated in strategies other
than SSM based approaches. We posit that the
authenticity of the beneficiary system, i.e. the
system using our model for its protocol verification
(e.g. a wireless network, a web site etc.), will be less
vulnerable to security threats. We have confined
ourselves to secrecy and authentication aspects of
security protocols. We are focussed to extend our
work to include other security features.

5 CONCLUSION

question in security community. Experience has
shown that well designed security protocols can also
be proven false in their later stages. The limitation of

community to find ways for automatic verification
techniques for security protocols. We have presented
a heuristic based model for reducing search space
in automatic security protocol verification. Our
approach is based on the strand space model and
logic of authentication. The presented model
facilitates minimum human interaction and
guarantees efficiency. Our model intelligently
reduces the workload on existing software for
automatic security protocol verification.
Experimental results support the employment of
heuristic based strategies. The existing solutions can
also benefit by employing our proposed logic to
enhance their efficiency. At present, we limit
ourselves to few security aspects. However, we plan
to expand the research to include other security
aspects in the future.

ACKNOWLEDGEMENTS

Grant EIA 0086251 and ARO under grant
DAAD19-01-1-0502. The views and conclusions
herein are those of the authors and do not represent
the official policies of the funding agencies or the
University of Central Florida.

REFERENCES

for authentication in large networks of computers,

A HEURISTIC STATE SPACE SEARCH MODEL FOR SECURITY PROTOCOL VERIFICATION

117

Communications of the ACM, vol. 2, issue 1, 2, 993-
999.

Lowe, G., (1996) Breaking and fixing the Needham-
Schroeder public-key protocol using FDR, In Tools
and Algorithms for the Construction and Analysis of
Systems, vol. 1055 of Lecture Notes in Computer
Science, 147-166, Springer-Verlag.

Burrows, M., Abadi, M., and Needham, R., (1989) A logic
of authentication. Technical Report 39, DEC Systems
Research Center.

Lowe, G., (1997) A hierarchy of authentication
specifications, In proceedings of 1997 IEEE Computer
Society Symposium on Research in Security and
Privacy, 31-43, Rockport, MA, USA.

Gong, L., Needham, R., and Yahlalom, R., (1990) Reason
about belief in cryptographic protocols, In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, 234-248, Oakland, CA, USA.

Fabrega, F., Herzog, J., and Guttman, J., (1998) Strand
Spaces: Why is a security protocol correct?, In
Proceedings of 1998 IEEE Symposium on Security and
Privacy, 160-171, Oakland, CA, USA.

Fabrega, F., Herzog, J., and Guttman, J., (1999) Strand
Spaces: Proving security protocols correct, Journal of
Computer Security, vol. 7, issue 2, 3, 191-230.

Song, D., Berezin, S., and Perrig, A., (2001) Athena: a
novel approach to efficient automatic security protocol
analysis, Journal of Computer Security, vol. 9, issue
1, 2, 47-74.

Perrig, A., and Song, D., (2000) An initial approach to
automatic generation of security protocols, In
proceedings of NDSS’00 (Network and Distributed
System Security Symposium), San Diego, CA, USA.

Song, D., (1999) Athena: An automatic checker for
security protocol analysis, In proceedings of the 12th
computer science foundation workshop, Mordano,
Italy.

Song, D., and Perrig, A., (2000) Looking for a diamond in
the dessert-extending automatic protocol generation to
three party authentication and key distribution
protocols, In proceedings of IEEE Computer Security
Foundation Workshop (CSFW’2000), Cambridge,
England.

Lowe, G., (1999) Towards a completeness result for
model checking security protocols, Journal of
Computer Security, vol. 7, issue 2, 3, 89-146.

Kindred, D., and Wing, J., (1996) Fast, automatic
checking of security protocols, In USENIX 2nd
workshopon Electric Commerce, 41-52, Oakland, CA,
USA.

Peled, D., (1993) All from one, one for all: on model
checking using representatives, In Costas
Courcoubetics, editor, proceedings of the Fifth
workshop on Computer Aided Verification, vol. 697 of
Lecture Notes in Computer Science, 409-423,
Elounda, Greece, Springer-Verlag.

Peled, D., (1994) Combining partial order reductions with
on-the-fly model-checking, In David L. Dill, editor,
Proceedings of the sixthworkshop on computer aided
verification, vol. 818 of Lecture Notes in Computer
Science, 377-390, Stanford, CA, USA, Springer-
Verlag.

Brackin, S., (1996) Automatic formal analyses of
cryptographic protocols, In Proceedings of the 19th
National Conference on Inofrmation Systems Security,
40-51, Baltimore, MD, USA.

Brackin, S., (1997) Automatic formal analyses of two
large commercial protocols, In Proceedings of the
DIMACS workshop on design and formal verification
of security protocols.

Lowe, G., (1995) An attack on the Needham-Schroeder
public-key authentication protocol, Information
Processing Letters, vol. 56, issue 3, 131-136.

Meadows, C., (1994) A model of computation for the
NRL protocol analyzer, In Proceedings of the 1994
Computer Security Foundation Workshop, 84-89,
Frankonia, NH, USA.

Paulson, L., (1997) Proving properties of security
protocols by induction, In Proceedings of the 1997
IEEE Computer Society Symposium on Research in
Security and Privacy, 79-83, Rockport, MA, USA.

Meadows, C., (1996) Analyzing the Needham-Schroeder
public key protocol: A comparison of two approaches,
In Proceedings of the 4th European Symposium on
Research in Computer Society ESORICS, 351-364,
Rome, Italy.

Dolev, D., Yao, A., (1983) On the security of public key
protocols, IEEE Transactions on Information Theory,
vol. 29, issue 2, 198-208.

Dolev, D., Even, S., Karp, R. (1982) On the security of
ping-pong protocols, Information and Control, 57-68.

Meadows, C., (2003) Formal methods for cryptographic
protocol analysis: Emerging issues and trends, IEEE
Journal on Selected Areas in Communication, vol. 21,
issue 1, 44-54.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

118

