
SECURE APPLICATION UPDATES ON POINT OF SALE DEVICES

Manuel Mendonça
Faculdade de Ciências da Universidade de Lisboa

Bloco C6, Campo Grande, 1749-016 Lisboa - Portugal

Nuno Ferreira Neves
Faculdade de Ciências da Universidade de Lisboa

Bloco C6, Campo Grande, 1749-016 Lisboa - Portugal

Keywords: Electronic payment systems, point of sale devices, secure application downloads

Abstract: Currently, a large number of electronic transactions are performed with credit or debit cards at terminals
located in merchant stores, such as Point of Sale Devices. The success of this form of payment, however, has
an associated cost due to the management and maintenance of the many equipments from different generations
and manufacturers. In particular, there is an important cost related to the deployment of new software upgrades
for the devices, since in most cases human intervention is required. In this paper we describe a secure solution
for this problem, where Point of Sale Devices are able to automatically discover and upload new software
updates.

1 INTRODUCTION

Even though several electronic payment protocols
have been developed for the Internet in the past
years (Bellare et al., 2000; Manasse, 1995; Schoen-
makers, 1998; MasterCard and Visa Corporations,
1997), currently most of the electronic transactions
continue to go through closed banking networks. Sev-
eral reasons explain the success of these networks, but
among them, two are specially important – it is rela-
tively easy to obtain a debit or credit card from a fi-
nancial institution, and there is a large number of ter-
minals, such as Point of Sale (POS) devices or Auto-
mated Teller Machines (ATM), where these cards are
accepted.

At the beginning, when these devices started to be
available, they were relatively expensive and had lim-
ited capabilities. Basically, they allowed operations
like purchase or cash withdraw. However, as the spec-
ifications of the equipments employed in a transaction
went through a standardization process, many com-
panies began to offer competing terminals at cheaper
prices, which resulted in the current situation where
most stores have a POS, and ATMs have been widely
deployed. Moreover, the type of services provided by
these devices has evolved, allowing for instance the
payment of electrical or insurance bills, purchase of
train or music concert tickets, deposits of checks, or
money transfers between accounts.

The success of these networks has a cost associated
with the management and maintenance of the consid-
erable number of equipments from different genera-
tions and manufacturers. In particular, an important
cost arises from keeping the software being run in the
devices updated. Contrarily to the hardware that once
deployed it stays stable for a long period, the Elec-
tronic Funds Transfer (EFT) applications can suffer
several changes during the lifetime of the devices.
Various causes justify the need for software changes,
for example, the creation of new services, the year
two thousand (potential) bug, or recent events such
as the introduction of the euro. Besides these causes
for modification, there are always the usual factors re-
lated to the maintenance of any software: undetected
bugs during the testing phase or security problems.

Nowadays, in most countries, software updates
continue to be performed manually. Once a new EFT
application has been certified by the entity respon-
sible for the network, the Payment Network Opera-
tor (PNO), the new version is given to a maintenance
company that will be in charge of the rest of the pro-
cess. This will require a technician to go to the lo-
cation where the equipment is placed, and then the
equipment has to be dismantled so that the chip where
the application is stored can be substituted by another.
In some occasions, just to save time, it is more cost
effective to simply exchange the terminal with a new
one.

38
Ferreira Neves N. and Mendonça M. (2004).
SECURE APPLICATION UPDATES ON POINT OF SALE DEVICES.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 38-45
DOI: 10.5220/0001394800380045
Copyright c© SciTePress

This procedure has many efficiency problems,
some of them related to cost and others to time.
For example, in Portugal, the POS network contains
around 140.000 devices. If each software update has
a fee of 50 euros and takes 20 minutes, then a com-
plete substitution of the network would cost 7 million
euros and would take more than 46 thousand person
hours. Moreover, from a security point of view, the
current procedure is far from the ideal because it re-
quires complete trust on the parties that will do the
actual software update and the PNO only controls the
operation in a limited way.

The specifications related to the Europay, Master
Card & Visa (EMV) (Europay, MasterCard and Visa
Corporations, 2000) suggest that a POS should have
the capability of uploading new versions of the soft-
ware. However, these specifications do not provide
any concrete solution to the problem. Furthermore,
currently available solutions are proprietary. Dur-
ing our research, we found two POS manufacturers
claiming to support remote software updates. How-
ever, when contacted by us, they did not provide any
information about their protocols.

In this paper we propose a solution for the secure
update of EFT applications in POS devices. Since we
wanted to build a solution that could be used in a real
banking environment, we decided to base our work on
the Portuguese banking network, that is called Multi-
banco. However, since the architecture and protocols
are relatively generic, we feel that our ideas can be ap-
plied to other networks (possibly with small changes).

2 BACKGROUND: MULTIBANCO
PAYMENT NETWORK

The Multibanco payment network carries most of the
electronic transactions made through POS and ATM
in Portugal (European Central Bank, 2001). The ar-
chitecture of the network is based on a client-server
configuration, where on one side resides the POS (or
ATM) and on the other a server maintained by the
PNO. Currently, more than 140.000 devices are linked
using different network technologies, ranging from
public telephone connections with X.25 to wireless
networks like GSM.

The EFT protocol is organized as a request-
response transaction. The POS always has the initia-
tive of starting the communication by contacting the
PNO server, called the Payment System Server (PSS).
The message contains several fields, and among them
there is the identifier of the selected service. Once
the message arrives, the PSS executes the service and
then returns a response indicating the success or fail-
ure of the operation. A Message Authentication Code
(MAC) secures both the request and response against

integrity and authenticity attacks. Each POS shares
with the PSS a number of symmetric keys that are
used to secure the communications. These keys are
stored in a secure module of the POS to ensure that
they are physically protected from tampering. If the
PSS wants to make the POS perform some action, it
has first to wait for the contact of the POS. Then, in
the response, it can include the code of a transaction
that should be executed next.

As an example, lets look at a payment transaction
with a debit card in a store. The merchant gets the
card from the client, and uses the POS reader to input
the data saved in the magnetic stripe of the card. This
data includes information about the account number
and bank of the client. The vendor types the cash
amount using the POS keyboard and lets the user in-
sert her Personal Identification Number (PIN). Next,
the EFT application executing in the POS constructs
a message containing the information related to the
transaction: the service code, a sequence number, the
device unique identifier, date, amount, client account
data, and the PIN encrypted with a key stored in the
POS. When a message arrives, the PSS performs sev-
eral tests to verify the correctness of the received in-
formation. For instance, it validates the PIN that was
input to make sure that the client is the owner of the
card. If the PIN is wrong, the user gets two other tries
before the card becomes permanently blocked. On
every occasion a test fails, a response is returned to
the EFT application indicating the problem. Next, the
PSS contacts the client and merchant banks to process
the payment. If the client bank authorizes the debit,
then the PSS can inform the merchant bank to credit
the requested amount on the vendor’s account. The
banking information about the merchant is known to
the PSS because it is associated with the POS unique
identifier, which is stored in a PNO database. If all
steps are concluded with success, then the PSS can
send an OK message to the EFT application. Other-
wise, an ERROR message is returned.

3 SECURE APPLICATION
UPDATES IN POS

The update of an EFT application requires the execu-
tion of two main tasks. First, a new version of the soft-
ware needs to be produced by some manufacturer and
certified by the organization supervising the network
(the PNO). The certification procedure is an impor-
tant step because it not only needs to guarantee that
the upgrade satisfies the specification, but also has
to ensure that all bugs and/or security problems have
been removed (at least as many as possible). As we
mentioned in the Introduction, several reasons might
contribute for the necessity of a new version of the

SECURE APPLICATION UPDATES ON POINT OF SALE DEVICES

39

application.
The second task comprises all activities related to

the upload of the application to the POS. Ideally, the
PNO should control this process since, in the end, it is
responsible for the good performance of the network.
Moreover, the whole procedure should be as auto-
matic as possible because this allows rapid deploy-
ment of new services, and potentially reduces costs
due to human intervention. Since electronic payment
transactions will be executed in the POS, the security
of the process is also very important.

The proposed update procedure, besides guarante-
ing the just mentioned objectives, also has some other
interesting characteristics such as: it maintains accu-
rate information about the POS and EFT applications
currently deployed, which is an attractive feature if
one wants to use the system to support managing de-
cisions.

3.1 System Architecture

The architecture of the payment system is displayed
in Figure 1. It includes both the POS in the merchant
store and the PSS located in the PNO. In order to sup-
port automatic updates of the EFT applications, the
PNO has to offer two interfaces to the outside: one to
the Software Manufacturers (SM) and another to the
POS.

The interface to the SM is provided by a new server,
called the Certification System Server (CSS). CSS is
in charge of all exchanges with the SM, and in partic-
ular coordinates the certification process. Whenever a
new application is developed, it should be submitted
through the CSS for validation. Then, a number of
tests are performed to ensure the quality of the soft-
ware, and a report is returned. Ideally, the analysis
would be done by machines in a controlled testing
environment, however, for the time being, one would
expect (and accept) some human intervention. The
communication between the CSS and the SM needs
to be secured to prevent attacks that could try, for in-
stance, to change the software upgrade.

At first, one might feel tempted to re-use the PSS
as the interface to the POS for the application updates.
In practice, this solution has some problems because
it takes a reasonable interval of time to download an
application (see Section 4), which could degrade sig-
nificantly the performance of the PSS (do not forget
that the main task of the PSS is to accept payment
transactions). Therefore, we introduce a new server,
called the Application Distribution Server (ADS), that
will store the code sent by the CSS and transfer the
updates to the POS.

The EMV specification for cards with a chip uses
asymmetric cryptography to secure the electronic
payment transactions (Europay, MasterCard and Visa
Corporations, 2000). Therefore, since it is expectable

in the near future the replacement of magnetic stripe
cards with chip cards, we decided also to use asym-
metric cryptography to protect the transactions of the
update protocol. The Certification Authority (CA)
plays an important role in the security of the whole
system because it manages the certificates with the
public keys of the various components.

The CA has to perform several functions: it needs
to reliably authenticate the entities that require the
creation of new certificates (as defined by the secu-
rity policy); it generates the certificate revocation lists
(CRL) whenever a certificate needs to be cancelled
(e.g., the private key was compromised); and it also
carries out other management functions, such as the
archival of all generated data.

3.2 Update Protocol

The update procedure of the EFT applications is im-
plemented by a set of sub-protocols, each one re-
sponsible for a specific task (see Figure 1). Due to
space limitations it is not possible to provide all de-
tails about the various fields of the messages and their
validation process. However, since most messages
are protected using the same mechanism, we will
give here a generic description (the only exception
are the EFT protocol messages that are secured us-
ing the standard MAC scheme, as mentioned in Sec-
tion 2). Whenever a component A sends a message
data to a component B, it constructs a message with
< data,E(KrA,Hash(data)), CERT KuA >,
where E(KrA,Hash(data)) is a signature and
means enciphering an hash of the data (Hash(data))
with the private key KrA of A. The message also in-
cludes all certificates with the public keys necessary
to the validation of the signature, which in this case is
CERT KuA. Once a message arrives, the receiver
makes the following verifications: CERT KuA is
validated using the public key of the CA that is stored
in CERT KuCA; the signature is verified by deci-
phering E(KrA,Hash(data)) with KuA, and com-
paring the result with the hash of the received data.
If they are equal then the message is correct.

Certificate Distribution Protocol This protocol
distributes the cryptographic keys and certificates pro-
duced by the CA. These keys and certificates are used
to ensure the authentication and non-repudiation of
the information exchanged among the components of
the architecture. The CSS, ADS and SM should exe-
cute the following actions:

• Obtain a copy of the certificate with the public key
of the CA (CERT KuCA).

• Generate a pair of asymmetric keys, public and
private key, and store them securely ((KuXXX,
KrXXX) where XXX is either CSS, ADS, or SM).

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

40

• Ask the CA for the creation of a certificate contain-
ing the public key (CERT KuXXX where XXX is
either CSS, ADS, or SM).

The certificate with the public key of the CA has
to be securely distributed through the components of
the architecture because all signature validations will
depend on the correctness of this key.

The creation of a certificate will typically re-
quire human intervention due to some authentica-
tion/authorization steps. The security policy might
impose, for instance, the need for an explicit autho-
rization from the PNO before a request for the cre-
ation of a certificate can be made. This type of re-
quirement is interesting because if applied to the SM,
it would limit who can produce correctly signed soft-
ware.

POS Set-up Protocol The manufacturer of the POS
needs to execute some set-up operations before send-
ing the device to a store. These operations include the
installation of the basic run-time software, the boot-
strap code and the application loader, and the secure
storage of the following keys:

• A pair of asymmetric keys of the POS (KuPOS, Kr-
POS).

• A copy of the certificate with the public key of
the POS (CERT KuPOS). This certificate can be
signed with the private key of the SM (instead of
the CA).

• A copy of the certificate with the public key of the
manufacturer (CERT KuSM).

• A copy of the certificate with the public key of the
CA (CERT KuCA).

Each device has a distinct pair of keys which en-
sures that a POS compromise will not affect the rest
of the network. To reduce the risk of key disclosure,
the local copies of the POS private keys should be de-
stroyed by the SM after their storage in the security
module.

The SM is responsible for the generation of the
certificate with the public of the POS. This option
is interesting from an economic and efficiency point
of view because it is simpler to produce a certifi-
cate locally (without the intervention of the CA)
with a more relaxed the security policy. How-
ever, the validation of a POS signature will re-
quire the possession of both certificates of the SM
and CA (CERT KuCA verifies CERT KuSM, and
CERT KuSM verifies CERT KuPOS).

The inclusion of the certificate of the manufacturer
is used to restrict who can create new versions of the
software – a POS will only accept upgrades signed by
the same manufacturer. At first, this might look like
an unnecessary limitation of the protocol. However,

it has important security implications because it pre-
vents certain types of attacks. For example, a bad CSS
is unable to substitute a new update with a malicious
one, signed by a friendly (and also malicious) SM.

Application Transfer Protocol This protocol de-
fines how new versions of the EFT applications and
certification reports are exchanged between the SMs
and the CSS. Whenever a new upgrade is produced,
the SM sends a signed copy of the code to the CSS
for approval. Then, the code goes through a testing
phase to guarantee that it works as expected. Next,
the CSS returns a signed report to the SM stating if
the new version of the software was accepted or not
by the certification tests (in the last case it also in-
cludes a list with a description of the failed tests).

From a security perspective, the certification proce-
dure is particularly important because it can constrain
the type of attacks that can be executed by an adver-
sary SM. Basically, with an exhaustive set of tests,
one can prevent bad software from being inserted in
some POS of the network.

If the CSS is controlled by an adversary, even if
momentarily, she (or he) will not be able to produce
correctly signed applications, at most she could try
to substitute the upgrade with a previous one (do not
forget that a POS only accepts updates from the its
own manufacturer). However, since we associate an
increasing version number to each upgrade, it is pos-
sible to prevent this attack with a simple rule enforced
at the POS – it only accepts updates with a larger ver-
sion number.

Internal Management Protocol This protocol
comprises all actions internal to the PNO, necessary
to support the software updates. Basically two tasks
have to be accomplished:

• Code transfer to the ADS: the CSS sends to each
ADS a signed message with a copy of the code and
a list of POS models that should be updated. Af-
ter storing the code, the ADS is ready to receive
requests from the POS.

• Notify the PSS about the upgrade: The CSS sends
a signed message to the PSS containing the list of
POS models that should updated, the version num-
ber of the code, and a signature of the code done by
the SM (i.e, based on the KrSM). This information
is then stored in the database of the PSS.

During normal operation, a POS only communi-
cates with the PSS. Therefore, it must be the PSS who
will inform the terminal that it must upload a new ver-
sion of the EFT application.

EFT Protocol In the standard EFT protocol, only
the POS can initiate the communication by sending a

SECURE APPLICATION UPDATES ON POINT OF SALE DEVICES

41

request to the PSS. In the response, the PSS can de-
mand the execution of an operation by indicating that
a given transaction should be carried out following the
current one. Therefore, we had to introduce four new
EFT transactions to inform the POS about new up-
dates and for some management activities. The new
EFT transactions are:

• Begin Update Transaction (BUT): indicates that
a new upgrade is available and provides the fol-
lowing information: configuration data about the
ADS that should be contacted (e.g., communica-
tion ports), version number of the code, and the
signature of the code made by the SM.

• End Update Transaction (EUT): serves to main-
tain audit information at the PSS database about
which software upgrades were made in the past.
After completing the download and the application
restart, the POS contacts the PSS to indicate that
the update was a success (or that there was an er-
ror).

• Key Version Transaction (KVT): POS sends the
versions of the keys (and certificates) that are stored
in its security module.

• Update Keys Transaction (UKT): the PSS can up-
date the keys saved in the POS. This transaction has
to be performed with some caution because a bad
PSS could use it to compromise the whole network.
There are basically these types of updates:

– new POS keys: to avoid tampering, the SM
should first encrypt the keys with the previous
public key of the POS, and then sign them. If the
cause for the keys exchange was the compromise
of the POS, then a different mechanism would
have to be used. An attack as severe as this one
would probably require the manual substitution
of the POS since it could no longer be trusted.

– renewal of CERT KuPOS: typically, certificates
are only valid during an interval of time. There-
fore, periodically a new version of the certificate
with the current POS public key must be pro-
duced and distributed by the SM (or CA).

– renewal of CERT KuSM: for the same reason, a
new version of the SM certificate has to be pe-
riodically distributed. The new certificate could
contain a different public key, however, it should
have the same SM identification and should be
correctly signed by the CA.

– renewal of CERT KuCA: due to the same rea-
son as before. If the new version of the certifi-
cate has a different public key, then it should be
accompanied with some proof demonstrating the
knowledge of the previous CA’s private key. This
scheme allows the substitution of the CA’s keys
and at the same time prevents attacks where, for

instance, the CA’s public key is replaced by a
malicious PSS.

These new transactions will be included on the
standard EFT protocol. Therefore, they will share
the regular security infrastructure where messages are
protected with a MAC based scheme.

Table 1: Fields of the ATS transaction.

Message Fields Request Response
POS → ADS ADS → POS

Message Type 304 314
Identifier (MTI)
System Trace Audit X X
Number
Error Indicator X
Source POS ident ADS ident
Destination ADS ident POS ident
Signature with KrPOS X
Signature with KrADS X
Next MTI X
Data Length X
Transport Data data block
Current Data X
Block Number
Next Data X
Block Number

Download Protocol This protocol downloads the
software from an ADS to the POS. An example of an
application transfer can be observed in Figure 2 (the
message format follows the standard ISO 8583 (Inter-
national Standard Organization, 2003)). To accom-
plish this task three different types of transactions are
executed between the POS and the ADS:

• Begin Transmission Session (BTS): POS sends a
message to the assigned ADS providing informa-
tion about the wanted version of the code and its
communication requirements, such as maximum
acceptable block size (MBS) and list of supported
compression algorithms. The response returned by
the ADS includes the total size of the application,
and the total number of MBS that will be sent (the
application might have to be fragmented if its size
is larger than the acceptable MBS).

• Application Transfer Session (ATS): in each ex-
change pair, the POS requests a specific block of
the application and the ADS transmits that block.
In case of failure, the POS can always restart the
transfer process from the last correctly received
block. As an example, we provide in Table 1 a
more detailed description of the various fields that
must be included in each of the transaction’s mes-
sages.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

42

• End Transmission Session (ETS): after the arrival
of the whole application, the POS confirms the cor-
rectness of the upgrade using the signature created
by the SM (that was provided by the PSS). Then,
it uses this transaction to inform the ADS about the
success (or failure) of the transfer. Next, it executes
the new software.

There are several causes for the interruption of an
application transfer session. For instance, there might
be an abnormal delay in the communications that re-
sults in a timeout either at the POS or the ADS; or
the session might be cancelled because a more recent
upgrade is received. In any case, depending on the
reason, the POS should be informed with different er-
ror codes if it can continue the transfer or it should
start from the beginning.

3.3 POS Software Architecture

This section discusses various options for the soft-
ware architecture of the POS. In general terms an ap-
plication can be compiled into one of the following
forms: executable object code or interpreted code.
The first solution usually leads to better performance
because it takes into consideration the particularities
of the system for which it was built. But exactly be-
cause this dependency, it is not portable. Moreover,
the source code must be compiled for each specific
system prior to its deployment.

Using an interpreted code approach, the source
code of the application is translated into byte codes
of a virtual machine. A virtual machine is a theoret-
ical microprocessor with standard characteristics that
defines such things as addressing mode, registers, and
address space. Once translated, the code can be in-
terpreted by the virtual machine implemented specif-
ically for a particular system (Morrison, 2001).

Therefore, in both solutions, at some level, there
is always a system dependency, either the compiled
machine code or the virtual machine implementation.

Another important aspect that has to be taken into
consideration is the loading operation (Hall, 1990).
Prior to a program execution the machine code must
be loaded into memory. There are two types of ma-
chine code: relocatable and non-relocatable machine
code (Intel, 1998). In the first case, every CPU in-
struction is associated with an offset address instead
of an absolute address. When the machine code is
loaded into memory a fixed base memory address is
given by the operating system (OS). Consequently, it
is possible to load the code in (almost) every mem-
ory location and to support the concurrent execution
of several programs (loaded at different offsets). One
disadvantage of this approach is that it typically needs
an operating system to load and manage programs and
memory. The non-relocatable code solution can be

used without an operating system but the program will
permanently be located at the same base address.

Taking the above in mind, a correct organization of
the POS software is essential to minimize the asso-
ciated difficulties related to the application manage-
ment, load and execution, and to take over the full po-
tential of software upgrades minimizing, where pos-
sible, the download time (Europay, MasterCard and
Visa Corporations, 2000). Several scenarios are pos-
sible for the software organization depending on the
physical characteristics of the terminal. Let’s take a
look at two extreme examples: a PC based architec-
ture running a well known OS and an embedded sys-
tem designed from scratch.

On a PC based architecture, programs can be com-
piled into executable object code or interpreted code.
There are many software manufacturers and several
languages that can be used to program the applica-
tion. The resulting machine code (either from the
program itself or from the virtual machine) is typ-
ically relocatable and the OS can be programmati-
cally interfaced by APIs to make the memory man-
agement. In this scenario the POS software architec-
ture can be very easily organized into the following
modules/programs:

• Module that implements the Set-up Protocol;

• Module that implements the Application Transfer
Protocol;

• Module that implements the EFT Protocol;

• Common Subroutines.

Upgrades can be done separately and updating each
one of the above is almost a matter of receiving, cre-
ating, checking, substituting and deleting files.

On the other hand, embedded systems are designed
for particular solutions requiring specific software im-
plementations. In this kind of systems the number of
software manufactures is very restricted, there are few
available development languages and usually no vir-
tual machine or OS is available. Therefore, the easiest
solution for a software upgrade is to generate non-
relocatable machine code programs and to substitute
every line of machine code by the downloaded ones.
The following tasks will have to be performed:

• Store the downloaded application into non-volatile
memory without erasing the running one;

• Check the correctness of the downloaded applica-
tion;

• Copy the downloaded application into the address
space of the previous application or point to the en-
try point address of the downloaded application;

• Free unnecessary memory space for future soft-
ware download.

SECURE APPLICATION UPDATES ON POINT OF SALE DEVICES

43

This solution leads to longer transfer times because
the application is not divided into independent mod-
ules and must be transferred as a whole. A better
(but more expensive) solution is to build an OS for
the embedded system, divide the POS application into
the previous proposed organization and use relocat-
able machine code programs. As the modules can be
independently upgraded this solution leads to shorter
upgrade times.

4 PROTOCOL EVALUATION

The update protocol was implemented and evaluated
on a network of PCs. The POS was simulated on a
machine with a 1.4 GHz AMD Duron processor, and
both the PSS and ADS were simulated on a PC with
a 700 MHz Pentium Celeron processor. Each PC had
128 MBytes of RAM and was running Windows XP.
The network was a 10 MBits/s Ethernet. In our exper-
imental setting, several types of networks can be sim-
ulated, in particular a modem over a telephone line or
a wireless GSM connection, by artificially delaying
the rate of packet transmission to the operating sys-
tem. In all measurements, the maximum acceptable
block size of the POS was set to 2048 Bytes. The
cryptographic algorithms used in the implementation
were the SHA hash function and the RSA encryption
algorithm (for the digital signatures) with 1024 Bit
keys.

Our measurements focus on the transactions di-
rectly related to the application download. They in-
clude all transactions that need to be executed from
the moment a POS finds out that there is an update un-
til the conclusion of the whole process (transactions in
dark boxes in Figure 2). The observed elapsed times
for application downloads with different sizes, rang-
ing from 100 KBytes to 2 MBytes, are displayed in
Figure 3. This figure shows the performance of the
protocol for three types of networks. Currently, the
most common way to connect POS devices is through
a telephone line at 9,6 Kbits/s, therefore, the other two
curves provide some indication about protocol’s fu-
ture behavior as faster networks start to be utilized.

5 CONCLUSIONS

The paper describes a solution for the secure and au-
tomatic upgrade of EFT applications in POS devices.
This solution requires the introduction of a few new
components on the current architecture of the pay-
ment system, in particular a certification server where
software manufactures can send and validate the up-
grades, and a set of application storage servers that

interact with the POS during the upload. A proto-
col was also provided to manage the various steps of
a software upgrade, from the moment it is produced
until it is installed in the POS. The solution was im-
plemented and evaluated on a network of PCs.

ACKNOWLEDGEMENTS

This work was partially supported by the FCT,
through the Large-Scale Informatic Systems Labo-
ratory (LASIGE) and project POSI/CHS/39815/2001
(COPE).

REFERENCES

Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk,
H., Steiner, M., Tsudik, G., Herreveghen, E. V., and
Waidner, M. (2000). Design, implementation, and de-
ployment of the iKP secure electronic payment sys-
tem. IEEE Journal on Selected Areas in Communica-
tions, 18(4).

Europay, MasterCard and Visa Corporations (2000).
EMV2000 Integrated Circuit Card Specification for
Payment Systems.

European Central Bank (2001). Payment and Securities Set-
tlement Systems in the European Union (Blue Book).

Hall, D. V. (1990). Microprocessors and Interfacing - Pro-
gramming and Hardware. McGraw-Hill.

Intel (1998). P6 Family of Processors. Hardware Devel-
oper’s Manual.

International Standard Organization (2003). ISO 8583 - Fi-
nancial Transaction Card Originated Messages: Inter-
change Message Specifications: Part 3 .

Manasse, M. (1995). The Millicent Protocols for Electronic
Commerce. In Proceedings of the 1st USENIX Work-
shop on Electronic Commerce.

MasterCard and Visa Corporations (1997). Secure Elec-
tronic Transaction (SET) Specification – Book 1:
Business Description Version 1.0.

Morrison, M. (2001). Java 1.1 Unleashed. SAMS Net.

Schoenmakers, B. (1998). Security Aspects of the Ecash
Payment System. In State of the Art in Applied Cryp-
tography, Course on Computer Security and Indus-
trial Cryptography, volume 1528 of Lecture Notes in
Computer Science. Springer-Verlag.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

44

Payment Network Operator (PNO)

Point of Sale
Device (POS)

Merchant StorePROTOCOLS:
1 – Certificate Distribution Protocol 4 – Internal Management Protocol
2 – POS Set-up Protocol 5 – EFT Protocol
3 – Application Transfer Protocol 6 – Download Protocol

Software Manufacturer (SM) Certification Authority (CA)

1

Point of Sale
Device (POS)

Application Distribution
Server (ADS)

Payment System
Server (PSS)

Certification System
Server (CSS)

1

1

2

3

4

4

5
6

Figure 1: Architecture of the payment system.

ADS

POS

…….

Initiates a
BUT

There is an update,
therefore, requests the

execution of a BUT
in the response

Returns ADS configuration
data, CERT_KuADS, version

of the code,
and code signature

Sends
communication
requirements,

and version of the
code

Request a
specific
block of

application

Returns total number of
application blocks

Verifies the
authenticity and
integrity of the

application
and terminates

Informs the
outcome of
the update

Saves audit
information

Some
Transaction

OK/NOK
Request BUT

BUT

BTS ATS ETS

OK/NOK
data

EUT

Block
update

PSS

OK/NOK

Figure 2: The update of an application.

����

����

����

���

���

���

���

��	

���

�	 ��
�������

���

����

����

����

����

� ��� ���� ���� ����

������������������������

�
�
�
�
�
�
�
�!
�
��
�
� �"���#��$�

��"���#��$�

���%#��$�

Figure 3: Elapsed time for the update of an application.

SECURE APPLICATION UPDATES ON POINT OF SALE DEVICES

45

