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Abstract: In this paper we propose the use of a TCP/IP-friendly link level error recovery mechanism with novel de-
sign in conjunction with state-of-the-art Transmission Control Protocol (TCP) enhancements to improve TCP
performance on network paths involving Wireless Wide-Area Network (W-WAN) links. We show that by
combining a selected set of TCP enhancements TCP performance is significantly improved over W-WAN
links. In addition, we employ a TCP/IP-friendly link layer protocol which minimizes the additional delay due
to the Automatic Repeat reQuests (ARQ) by limiting the number of retransmission attempts and by adding
redundancy in the retransmitted frames in a novel way. We perform experiments in an emulated satellite envi-
ronment with a real implementation of the TCP/IP-friendly link layer and TCP enhancements in Linux. The
results show that both TCP enhancements and link-level ARQ significantly improve TCP performance over
W-WAN links, and combining the approaches yields the best performance.

1 INTRODUCTION

Transmission Control Protocol (TCP) is the main
transport protocol in the Internet and it carries the
bulk of the traffic in the Internet. With the rapid rise
in wireless communication in recent years, it has be-
come important to adapt TCP to heterogeneous en-
vironments that include both wireline networks and
Wireless Wide-Area Networks (W-WANs), such as
satellite and terrestrial wireless networks. TCP per-
formance over W-WANs is often poor due to the char-
acteristics of wireless links such as high latency, link
losses and often limited bandwidth. The link losses
often occur in bursts resulting in the loss of several
segments in a single TCP window. In terms of re-
sulting transport performance the TCP loss recovery
tends to be inadequate with such loss patterns. Typi-
cally wireless links also possess other characteristics,
such as bandwidth-on-demand allocation, bandwidth
asymmetry, that may affect TCP performance.

The several schemes proposed to improve the per-
formance of TCP over wireless links can be broadly
classified as split-connection, link-layer and end-to-
end approaches (Balakrishnan et al., 1997). The split-
connection approach replaces an end-to-end TCP
connection with two or more separate connections.

One of the connections is across the problematic wire-
less link allowing TCP modifications for more effi-
cient loss recovery or even replacing TCP with an al-
ternative transport protocol. This, however, has seri-
ous implications as it breaks the end-to-end seman-
tics of the connection. In particular, it cannot coexist
with the end-to-end use of Internet Protocol security
(IPsec)(Border et al., 2001).

In the link-layer approach, link-level error recovery
is used locally on an error-prone link to improve the
reliability of the link. Local knowledge of the link can
be used to optimize the recovery mechanism. Many
link-layer recovery mechanisms are based on Auto-
matic Repeat reQuests (ARQ) used in a highly persis-
tent mode of recovering lost frames. This may cause
unwanted interaction with TCP retransmissions (Bal-
akrishnan et al., 1997)(Fairhurst and Wood, 2002). In
particular, highly persistent link ARQ easily leads to
delay spikes that can result in suboptimal TCP perfor-
mance by causing spurious TCP timeouts, unneces-
sary retransmissions and a multiplicative decrease in
the congestion window size.

The end-to-end approach preserves the end-to-end
semantics of TCP. The proposals in this category in-
clude TCP enhancements that follow the Internet con-
gestion control principles (Floyd, 2000)(Allman et al.,
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1999) suggested by Internet Engineering Task Force
(IETF) such as large initial window (Allman et al.,
2002), TCP Selective Acknowledgment Option (TCP
SACK) (Mathis et al., 1996), window scaling (Jacob-
son et al., 1992), and TCP Control Block Interde-
pendence (TCP-CBI) (Touch, 1997). Other propos-
als include research work such as TCP Peach (Aky-
ildiz et al., 2001) and TCP Westwood (Mascolo et al.,
2001).

In this paper, we propose the use of a selected
set of state-of-the-art TCP enhancements in conjunc-
tion with a TCP/IP-friendly link-level error recov-
ery mechanism to achieve acceptable TCP perfor-
mance over W-WANs. There has been little earlier
work in evaluating TCP performance when a proper
set of TCP enhancements are combined. Studying
the combined effect of the TCP enhancements al-
lows better understanding how well a state-of-the-
art TCP can perform in such a challenging environ-
ment. The TCP/IP-friendly link protocol is employed
over the error-prone wireless link to reduce the resid-
ual packet-error rate and thereby allow more efficient
TCP operation. It minimizes the additional delay due
to the ARQ by limiting the retransmission attempts to
a low number, but still keeping the residual packet-
error rate at low level. This is possible by adding
FEC-encoded redundancy in the retransmitted frames
in a novel way, increasing the probability that a re-
transmitted frame is successfully delivered without
additional retransmissions.

In addition, we incorporate other important and
useful features into the TCP/IP-friendly link proto-
col implementation. One such feature is the use
of flow control between the IP layer and the link
layer together with limiting the amount of link buffer-
ing. With wireless systems, such as Digital Video
Broadcasting-/Return Channel via Satellite (DVB-
RCS) satellite systems (ETSI, 2003), IP packets often
flow directly to the Medium Access Control (MAC)
buffer without flow control between the layers and
the excess packets are dropped if the MAC buffer be-
comes full. The IP queue will always be empty; thus,
proper IP router queue sizes to control total amount
of buffering cannot be used and the use of the IP ac-
tive queue management mechanisms is not effective.
In the TCP/IP-friendly approach, arriving packets are
forwarded to the MAC buffer only if space is avail-
able in the MAC buffer; otherwise, packets are kept in
the IP buffer. In addition, any unnecessary link-level
buffering is avoided to minimize the overall delay.

We perform an extensive set of performance ex-
periments in an emulated satellite DVB-S/DVB-
RCS environment with real TCP/IP stacks in the
end hosts and employing our implementation of the
TCP/IP-friendly link-layer protocol, called Satellite-
Link Aware Communication Protocol (SLACP) (Kojo
et al., 2004), over the satellite segment. A satellite

platform is used to emulate several levels of error rate
and a Demand Assignment Multiple Access (DAMA)
bandwidth-on-demand allocation scheme on the satel-
lite return link.

The results show that employing the selected set of
TCP enhancements reduces the median transfer time
up to 68 % depending on the link error rate. Employ-
ing the SLACP protocol on a lossy link is extremely
beneficial to TCP, reducing the median transfer time
more than 90 % for high error rates. Although both
TCP enhancements and SLACP protocol can signifi-
cantly improve TCP performance, combining the use
of the TCP enhancements with the SLACP protocol
yields additional performance gain.

2 TCP/IP-FRIENDLY LINK
LAYER FOR W-WAN LINKS

Typically link-layer design follows a strict layering
paradigm. This implies that most design choices are
done almost in full isolation from the other protocol
layers. However, when designing a link layer for a W-
WAN link with an intention to best support Internet
protocols, several crucial design choices that heavily
affect the performance of the TCP/IP traffic carried
over the link must be made.

As W-WAN links typically experience specific link
characteristics, in particular high latencies and fre-
quent frame losses due to bit-corruption, designing
link-level error recovery requires specific care. TCP
suffers from uncorrected link errors as it interprets all
losses as congestion signals and reduces the transmis-
sion rate drastically. With high error rates TCP spends
excessive time in slow start or congestion avoidance
procedures triggered by packet losses due to transmis-
sion errors, resulting in severe performance penalty.
In addition, W-WAN links not only incur high loss
rates but often errors occur in bursts, resulting in mul-
tiple segment losses within a TCP window. Regu-
lar TCP with NewReno-based fast recovery (Floyd
and Henderson, 1999) can recover at most one seg-
ment per Round Trip Time (RTT), resulting in ad-
ditional performance penalty in presence of bursty
losses. The TCP SACK option (Mathis et al., 1996)
with an appropriate loss recovery algorithm (Blanton
et al., 2003) is more effective than NewReno when
multiple TCP segments are lost within a window as it
may recover multiple segments without requiring one
or more round-trips per lost segment (Dawkins et al.,
2001b). However, even the SACK-based loss recov-
ery is often inefficient if a large number of segments
are lost in a single TCP window or if the window is
small, because the number of duplicate ACKs may
remain too low to provide enough SACK-information
for recovering the lost segments.
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The high link latencies typical for W-WAN links
translate to long end-to-end RTT for TCP. Long RTT,
in particular when combined with high error rate, ad-
versely affects TCP throughput (Padhye et al., 1998)
(Dawkins et al., 2001b). This is because after each
loss event it may take multiple round trips for TCP to
repair the lost segments and, more importantly, after
recovering the lost segments TCP enters congestion
avoidance with a reduced congestion window, requir-
ing several round trips to increase the congestion win-
dow back to the level prior the loss event. Therefore,
it is much slower for TCP to restore the earlier trans-
mission rate if the RTT is long.

When traversing over a lossy W-WAN link, it
would be highly beneficial for TCP to employ link-
layer ARQ as it lowers the residual packet loss rate
significantly. However, link-layer ARQ techniques
tend to introduce delay spikes that easily lead to spuri-
ous TCP Retransmission Timeouts (RTOs), if highly
persistent ARQ is employed (Fairhurst and Wood,
2002). After a spurious RTO, the late TCP acknowl-
edgements of original TCP segments arriving at the
sender usually trigger unnecessary retransmissions of
whole window of segments during the RTO recovery
(Sarolahti et al., 2003). This is inefficient and results
in wasting the scarce link capacity. Another way to
reduce the frame loss rate is to use Forward Error
Correction (FEC), but it decreases the available link
bandwidth by introducing significant amount of over-
head in the form of redundancy.

Perfect reliability is not a requirement for IP net-
works, nor is it a requirement for links (Karn, 2004).
In order to best serve TCP traffic, the link-level ARQ
mechanism should reduce the number of retransmis-
sion attempts down to minimum with the intention to
minimize the additional delay and possible interac-
tion with TCP timers. This can be achieved in our
TCP/IP-friendly approach with a novel use of FEC
with retransmitted frames. The original transmission
of frames is not protected with FEC to save bandwidth
when link conditions are good.

The frames that require retransmission are immedi-
ately retransmitted when a repeat request arrives. The
FEC-encoded redundancy is not added separately to
each frame as usual. Instead, the retransmitted frames
are organized as FEC blocks. Each FEC block con-
sists of actual frames and redundancy frames (see Fig-
ure 1). The FEC-encoded redundancy is added to the
redundancy frames by computing the Reed-Solomon
codeword vertically so that the ith octet of each frame
in a FEC block comprises a codeword. As soon as
a predetermined amount of retransmitted frames, or
other frames deserving FEC protection, has been sent
or a threshold timer expires, a proper amount of FEC-
encoded redundancy frames are computed to com-
plete the FEC block and transmitted. A link receiver
can use the redundancy frames in a FEC block for

recovering any of the retransmitted but lost actual
frames. In addition, the position of the errors (missing
octet in a codeword) is known, resulting in an erasure
channel with much better recovering capability.
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Figure 1: Organization of a FEC block

To minimize the additional delay due to the re-
transmissions we suggest reducing the number of re-
transmission attempts down to one attempt only. The
delay is further reduced by assigning higher priority
for retransmitted frames by scheduling them first for
transmission and by implementing selective repeat re-
quests without relying on link sender retransmission
timers. Instead, an ACK timer is used at the link re-
ceiver to repeat the latest acknowledgement if new
frames are not arriving.

With this approach low delay is achieved without
sacrificing the reliability or adding excessive amount
of redundancy to all frames. Even though the ap-
proach improves reliability with minimal amount of
extra delay, it is not desirable for all types of flows
to increase the reliability at the cost of any extra de-
lay. The additional delay and variations in delay that
ARQ introduces may be highly undesirable for delay-
sensitive flows such as interactive audio, for example.
Therefore, the link layer should be able to treat sep-
arately IP flows with different classes of service and
turn off the link ARQ mechanism for flows not ben-
efiting from it. This requires implementing several
logical link channels over a single physical link.

Implementing an efficient ARQ mechanism re-
quires storing the sent but not yet acknowledged
frames in a relatively large send buffer for possible re-
transmission. Many link-layer ARQ implementations
accept a full buffer of packets from the upper layer to
be queued at the link head before transmission over
the channel. However, buffering unsent packets at the
link layer adds to the queuing delay and thereby to
the end-to-end RTT which is undesirable for TCP. A
link sender implementing an ARQ mechanism does
not need to buffer a full window of unsent data, but
it is quite enough to accept only one or a few unsent
packets. This requires flow control between the IP
layer and link layer. The additional benefit is that the
majority of packets can be kept in IP queues subject
to proper IP-level queue management.

We have implemented the SLACP protocol on
Linux (Kojo et al., 2004). It is a logical link layer pro-
tocol that runs on top of satellite link service and fol-
lows closely the TCP/IP-friendly link protocol princi-
ples discussed in this section.
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3 TCP IMPROVEMENTS

In this section we briefly introduce several techniques
that we have selected for enhancing the performance
of TCP in W-WAN networks. We have selected only
such enhancements that follow the congestion con-
trol principles (Floyd, 2000)(Allman et al., 1999) and
therefore can be safely used over the global Internet.

Increasing TCP’s Initial Window from 1 up to 4
segments (Allman et al., 2002) increases the number
of segments during the first RTT, allowing more rapid
opening of the congestion window. This is extremely
useful for high latency environments.

With the Delayed ACKs After Slow Start
(DAASS) (Allman et al., 2000) technique the receiver
is sending an acknowledgment for every segment dur-
ing slow start instead of using delayed acknowledge-
ments from the very beginning of the connection.
This will also inflate the congestion window faster.

TCP Window Scaling (Jacobson et al., 1992) al-
lows a TCP connection to use a window larger than
the standard maximum TCP window size (65,535
bytes) in order to fully utilize the available bandwidth
on a network path with large bandwidth-delay prod-
uct. This is useful in many high latency environ-
ments where the bandwidth-delay product easily ex-
ceeds 65,535 bytes.

Limited transmit (Allman et al., 2001) allows the
sender to transmit a segment for every of the first
two duplicate acknowledgments. This is useful for
TCP connections with small congestion windows or
when a large number of segments are lost in a sin-
gle transmission window as otherwise it may happen
that not enough duplicate acknowledgments arrive at
the sender to trigger the fast retransmit algorithm and
the TCP sender must wait for a costly retransmission
timeout.

TCP SACK option (Mathis et al., 1996) enables
the use of a loss recovery algorithm (Blanton et al.,
2003) that allows TCP to recover more efficiently
from multiple segment losses in a window of data as
discussed in Section 2.

Forward RTO Recovery (F-RTO) (Sarolahti
et al., 2003) (Sarolahti and Kojo, 2004) algorithm
effectively helps detecting spurious TCP RTOs and
avoiding unnecessary retransmissions and thereby
improves TCP performance in the presence of delay
spikes. This is very useful as delay spikes may still
occur even though a TCP/IP-friendly link ARQ mech-
anism is used, for example, due to dynamic link band-
width allocation. An alternative to F-RTO is the TCP
Eifel algorithm (Ludwig and Katz, 2000), which can
detect spurious TCP timeouts and avoid unnecessary
retransmissions as well.

TCP Control Block Interdependence (TCP-
CBI) (Touch, 1997) mechanism aims to share a part
of the TCP Control Block (TCB) to improve transient

TCP performance. TCB is a data structure associ-
ated with each TCP connection containing informa-
tion about the connection state such as the RTT esti-
mate, congestion window size, and slow-start thresh-
old (ssthresh). In particular, sharing the ssthresh
value from a previous TCP connection is useful. If
no packet losses occur during the initial slow-start,
the slow-start overshoot (Dawkins et al., 2001a) oc-
curs in the end of the slow-start, resulting in multiple
packet losses in a single TCP window. Sharing the
ssthresh value from the previous connection allows a
TCP sender to use this value as a better estimate of the
available bandwidth when initializing the ssthresh for
a new connection. Thus, the new connection is able
to complete the initial slow-start earlier and avoid the
slow-start overshoot problem. However, reusing the
ssthresh value can also create problems of using too
low initial ssthresh value when the ssthresh of a pre-
vious connection is reduced by the occurrence of a
packet loss due to a link error.

4 PERFORMANCE
EXPERIMENTS

We ran experiments to evaluate the performance of
the TCP enhancements combined with our implemen-
tation of the TCP/IP-friendly link layer, the SLACP.
We compare the TCP performance of regular and en-
hanced TCP variants over an emulated satellite link.
We also compare the TCP performance with and with-
out SLACP.

Figure 2 shows an overview of the network topol-
ogy used in the experiments. The satellite end-host
(H1) accesses the emulated satellite network through
a Satellite Terminal (ST). The other end host (H2) is
connected to the satellite network through a Broad-
band Access Server (BAS). The ST and BAS act as
routers. The direction from the ST to the BAS is
referred to as Return Link; the other direction is re-
ferred to as Forward Link. The SLACP protocol is
employed over the satellite link between the ST and
the BAS. The SLACP protocol is configured to re-
transmit a missing frame at most once. The retrans-
mitted frames are protected with FEC-encoded redun-
dancy frames. The number of redundancy frames in
a FEC block equals to the number of actual frames in
the block.

ST BAS
H2H2H1H1 Satellite

Emulator
Satellite
Emulator SLACPSLACP

Return Link

Forward Link

Figure 2: Network Topology for Performance Experiments

For emulating the satellite link characteristics we
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used a satellite emulator platform provided by Alca-
tel Space. The Network Emulation Platform (NEP)
is representative of a DVB-S/DVB-RCS satellite sys-
tem. In this study, we used the following three DAMA
classes of traffic assignment defined in the DVB-RCS
standard.

In the Constant Rate Assignment (CRA) class the
allocated bandwidth is guaranteed and requires no dy-
namic signaling. The traffic is not subjected to any
scheduling delay.

In the Rate Based Dynamic Capacity (RBDC)
class the bandwidth allocation is based on instanta-
neous rate requests sent by the ST. The ST can re-
quest bandwidth up to a pre-fixed ceiling value that
the ST is guaranteed to get. The request remains ef-
fective until it is updated by ST or until it is timed
out. During the time that a bandwidth request re-
mains effective, the ST traffic is not subjected to any
additional bandwidth allocation delay. In contrast to
CRA, RBDC strategy allows for statistical multiplex-
ing among many terminals, resulting in a more effi-
cient use of the satellite bandwidth.

In the Volume Based Dynamic Capacity (VBDC)
class the bandwidth is assigned in response to a re-
quest by the ST. The bandwidth request is based on
the amount of data waiting in the MAC buffer. The
scheduler assigns capacity from a queue of requests
among all STs it serves, within the constraint of the
remaining capacity after CRA and RBDC assign-
ments. As bandwidth is shared by a number of termi-
nals there is no guarantee on capacity availability for a
specific bandwidth request. This strategy provides an
efficient use of the network resources but traffic may
experience a significant delay.

The DAMA bandwidth allocation scheme is ap-
plied on the Return Link and accurately emulated by
the NEP emulator. The emulated bandwidth on the
satellite Forward link is 512 kbps and on the Re-
turn link 128 kbps. The Maximum Transmission Unit
(MTU) size is 1450 bytes and the one-way propaga-
tion delay is set to 250ms. The connection between
H1 and ST as well as H2 and BAS is 100 Mbps fixed
LAN.

The satellite MAC buffer size has been tuned ex-
perimentally to allow the maximum utilization of the
bandwidth in the case of VBDC. Test results showed
that a MAC buffer size of 14400 bytes is enough.
As discussed earlier, a typical IP-to-satellite inter-
face does not provide flow control between the IP
and MAC layer and therefore all buffering occurs at
the MAC layer. However, a certain amount of buffer
space is needed to allow the TCP congestion win-
dow to grow up and correctly estimate the available
link bandwidth. Therefore, when SLACP is not used
the MAC buffer size is set to 28800 bytes, which
is roughly the Return Link bandwidth-delay prod-
uct with an RTT of 2 seconds (typical RTT values

with VBDC are between 1.3 and 2 sec). When us-
ing SLACP with flow control between the layers, we
were able to reduce the MAC buffer to 14400 bytes.
The SLACP accepts only one unsent packet to its send
buffer. The IP queue size is 40 kbytes.

When modeling the satellite errors, we wanted to
experiment with several error levels having the em-
phasis on bursty error behavior. This is modeled with
a two-state Markov model with an error-free good
state and a bad state where an error burst corrupts all
packets. In order to achieve better control over the
state lengths, we use uniform distributions for both
burst inter-arrival time (good state duration) and error
burst length. The burst inter-arrival time is selected
such that several error bursts occur during a single
transfer. The parameter values of the six error models
used in this study are shown in Table 1. The error-
free link model (None) is used as a baseline. In the
”Low” error model, error burst length is static 60 ms
representing error behavior in which only one or two
full-sized packets are lost during the error burst. In the
”Medium” (Med) and ”High” error models, the error
burst occurs more frequently, but the burst length is
not very long; from 2 to 5 packets are lost. In the
”Very High” (VHigh) and ”Huge” models adjacent or
close-to-each-other error bursts are possible, resulting
in an error behavior that is challenging for the SLACP
protocol as a latter error burst is likely to affect the re-
transmitted SLACP frames. We had to limit the error
burst length with the ”Huge” model to static 100 ms
as otherwise TCP started to experience serious prob-
lems in completing the transfer in too many test cases.

Table 1: Satellite error models
Error model None Low Medium High VHigh Huge
Burst interval (s) - 10-30 5-15 2-10 0-10 0-7
Burst length (ms) - 60 100-300 100-300 100-300 100

We modified the TCP implementation in Linux to
implement two TCP variants: Reference TCP and En-
hanced TCP. The Reference TCP modifies the default
Linux TCP behavior to use the initial window size
of one segment, disable Limited Transmit and rate-
halving, and set delayed ack threshold to 200ms. TCP
SACK and Window Scaling options are disabled. We
consider the Reference TCP to implement a behavior
that is typical for a regular TCP today.

The Enhanced TCP enables the enhancements dis-
cussed in Section 3, that is, the initial window of
4 segments, Window Scaling, TCP SACK, Limited
Transmit, DAASS, and F-RTO. Using the initial win-
dow of 4 segments with the Maximum Segment Size
(MSS) of 1410 bytes is not exactly allowed (Allman
et al., 2002). Therefore, we repeated a large number
of the tests also with the initial window of 3 segments
but there were no notable differences in the results.
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Table 2: TCP performance results (32 replications)

 
 

 Transfer time for 1 flow 1x1MB (sec) Transfer time for 4 flows 4x250KB (sec) 

 NOSLACP SLACP NOSLACP SLACP DAMA Error 
Model 

TCP 25perc Median 75perc 25perc Median 75perc 25perc Median 75perc 25perc Median 75perc 
None Ref 90,20 90,21 90,22 86,69 86,71 86,76 80,02 80,04 80,05 84,81 85,17 85,97 
None Enh 85,07 85,09 85,10 86,92 86,97 87,04 83,44 83,47 83,48 86,05 86,19 86,29 
Low Ref 94,61 98,35 104,62 91,02 91,84 92,36 81,59 83,32 84,98 86,91 87,54 87,98 
Low Enh 86,52 86,95 88,13 88,51 88,88 90,74 84,24 84,60 85,08 86,28 87,70 88,60 
Med Ref 154,80 169,68 183,68 96,26 98,25 100,36 87,09 90,60 93,67 90,50 91,59 92,96 
Med Enh 105,07 113,96 123,85 92,20 93,24 95,33 86,47 89,42 95,01 90,62 92,44 94,08 
High Ref 228,59 239,93 256,75 102,04 103,74 108,62 98,70 102,59 110,63 95,60 97,33 98,48 
High Enh 145,62 153,12 174,69 96,45 98,21 101,12 89,83 95,27 99,56 93,24 96,12 98,15 

VHigh Ref  231,66  105,40 107,41 110,40 103,77 112,61 137,83 97,61 98,84 101,83 
VHigh Enh  163,30  101,3 102,22 105,21 93,20 100,49 102,34 96,89 98,59 100,73 
Huge Ref  490,37  117,25 122,71 130,80 176,85 211,47 302,74 112,32 115,47 119,27 

C
R

A
 

Huge Enh  279,14  112,49 120,17 146,96 125,05 165,10 223,66 109,56 112,00 115,94 
None Ref 103,98 104,04 104,06 89,97 90,20 90,67 83,54 83,61 84,70 87,88 88,29 89,02 
None Enh 93,67 93,69 93,70 89,32 90,17 91,41 82,68 89,36 89,46 87,35 89,45 90,12 
Low Ref 113,84 123,25 137,85 96,58 97,19 98,80 85,06 86,78 89,64 89,44 90,48 91,65 
Low Enh 90,94 97,37 110,05 91,33 93,16 95,86 85,63 91,13 93,83 87,37 89,20 92,43 
Med Ref 368,25 422,91 463,37 103,73 106,47 108,25 95,33 101,19 107,00 94,05 95,04 96,65 
Med Enh 151,92 172,40 201,63 95,72 99,40 106,15 92,60 95,30 106,36 91,11 93,19 96,72 
High Ref 1019,10 1125,12 1454,49 109,84 113,79 117,05 119,00 135,85 188,21 99,30 101,53 105,91 
High Enh 309,15 359,58 456,51 102,35 106,34 110,98 100,92 114,94 129,95 96,33 97,36 102,14 

VHigh Ref  1420,18  115,89 118,50 124,96 140,97 162,23 245,02 101,59 103,58 107,82 
VHigh Enh  453,21  102,66 106,40 112,48 102,47 136,64 228,25 99,19 101,83 107,27 
Huge Ref  >3hours  138,11 152,00 169,80  >3hours  119,21 123,27 131,07 

R
B

D
C

 

Huge Enh  >3hours  118,54 131,73 146,86  >3hours  112,94 118,20 122,66 
None Ref 126,65 126,68 126,69 95,39 96,31 97,34 110,53 110,54 110,55 97,36 98,78 100,05 
None Enh 100,14 100,15 100,17 105,55 108,62 114,82 87,62 88,29 90,48 92,97 96,83 103,98 
Low Ref 200,18 229,06 253,26 108,07 110,37 114,52 103,69 108,49 115,01 101,13 103,56 105,41 
Low Enh 137,92 147,77 156,14 109,92 112,50 118,67 91,83 96,13 99,55 95,06 99,31 103,62 
Med Ref 351,65 400,74 428,87 120,86 124,98 138,97 118,82 135,19 147,22 106,45 109,85 116,19 
Med Enh 234,82 256,29 291,03 109,04 114,78 127,31 101,51 109,74 120,35 99,84 103,45 111,82 
High Ref 451,97 493,56 551,65 128,68 134,23 149,69 149,80 162,77 195,18 113,13 118,94 124,66 
High Enh 340,80 369,50 402,14 113,75 121,87 132,38 109,56 125,76 140,68 105,17 108,52 117,27 

VHigh Ref  557,26  136,04 139,76 166,18 158,32 178,98 201,33 119,74 125,71 131,12 
VHigh Enh  419,87  118,01 124,43 132,76 120,63 130,57 143,41 108,49 112,79 119,72 
Huge Ref  1559,18  158,78 178,67 226,87 245,52 270,51 347,66 137,71 144,94 163,53 

V
B

D
C

 

Huge Enh  675,34  144,07 162,19 177,96 153,38 172,85 213,58 121,78 130,54 135,76 

 

The DAASS mechanism is implemented by enabling
the Quick ACKs in Linux. With Quick ACKs, Linux
TCP receiver acknowledges every segment in the be-
ginning of the connection until the threshold equaling
a half of the receiver advertised window is reached. In
addition, a subset of tests is repeated using the TCP-
CBI with the ssthresh reuse.

A single TCP connection is used for a bulk data
transfer of 1 MB from H1 to H2 (Return Link). We
choose the Return Link direction as it is more chal-
lenging to TCP due to the DAMA mechanism. We
repeated the same tests transferring the same amount
of data with four parallel TCP connections (4x250
kbytes) to verify the results in presence of competing
TCP flows. Each test case is replicated 32 times.

5 RESULTS

Table 2 presents the TCP performance results for one
TCP flow and for four competing TCP flows. We re-
port the median elapsed time as well as lower and
upper quartiles (25th and 75th percentiles) over 32
replications. The test cases with the ”Very High” and
”Huge” error models and without SLACP have been
executed only with a reduced amount of replications
as the resulting performance turned out to be very

poor and the time needed to complete the tests be-
came very long. Only the median values over 5 repli-
cations are reported. With RBCD we were not even
able to complete the transfers within 3 hours when the
”Huge” error model is in use without SLACP.

When a single TCP flow is used without SLACP,
the Enhanced TCP performs better than the Refer-
ence TCP for all error models and for all DAMA
schemes. When the error rate becomes higher, the
performance gain with the Enhanced TCP clearly in-
creases. When the DAMA allocation delay increases,
the elapsed time increases for both TCP variants, indi-
cating that the TCP performance is strongly affected
by the increasing delay; the long RTT slows down
TCP loss recovery and the congestion window in-
crease. However, the Enhanced TCP suffers less from
the increased delay as it is able to fill up the available
bandwidth faster and is able to recover from multiple
losses within a few round trips.

Even on an error-free link the Enhanced TCP is
slightly more efficient than the Reference TCP as it
is able to inflate the congestion window faster due
to the larger initial window and the DAASS mech-
anism. This difference is more significant when the
transfer size is small, like in most Web transfers. Ta-
ble 3 shows the median elapsed times for transferring
the first 50 kbytes with a single TCP connection and
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employing VBDC. The elapsed time of the Reference
TCP is roughly 50 % longer in all cases.

Table 3: Median elapsed times for short transfers using a
single TCP flow (with VBDC, 32 replications) 

 Error model 
 

Transfer 
Size TCP 

None Low Med High 
Ref 16,58 16,63 18,75 26,03 NOSLACP 50KB 
Enh 10,51 10,73 11,66 14,66 
Ref 15,83 16,57 18,89 19,00 SLACP 50KB 
Enh 10,48 11,40 11,42 12,78 

 
When a single TCP flow is used, employing the

SLACP protocol improves TCP performance consid-
erably, especially at high error rates. This is true
for both Reference and Enhanced TCP. When the er-
ror rate increases to high values, it becomes obvious
that Enhanced TCP alone is not able to provide ade-
quate performance; the Reference TCP with SLACP
is able to provide significantly better performance
compared to Enhanced TCP without SLACP. Even on
an error-free link and at low error rate (error mod-
els ”None” and ”Low”), employing SLACP with the
Reference TCP is beneficial. This is because of flow
control between the IP and the MAC layer. Without
SLACP, IP packets flow directly to the MAC buffer.
This prevents from utilizing the IP level buffering and
the slow-start overshoot occurs earlier. In addition,
packets are frequently dropped also in later phases of
the connection due to MAC buffer congestion. With
SLACP, the new arriving packets are kept in the IP
buffer if no space is available in the MAC buffer. This
does not avoid packet drops in the case of congestion
(IP buffer may also overflow) but allows TCP to keep
up larger congestion window with the help of the ad-
ditional IP-level buffering capacity.

Table 2 shows that without the SLACP and with the
RBDC allocation scheme the elapsed time of a single
TCP flow grows steeply when the error rate increases,
resulting in very poor performance. The resulting per-
formance is even lower than with VBDC. This is be-
cause the TCP congestion window remains small due
to the high error rate. With RBDC, the amount of
bandwidth allocated is based on the instantaneous rate
requests. As the TCP sender is sending only an occa-
sional burst with a small number of packets that arrive
at the MAC buffer one by one, the resulting RBDC
allocation request is made for the data in the MAC
buffer comprising of a few packets only. The amount
of data in the MAC buffer is less than the ceiling value
and a single RBDC allocation cycle is not enough to
flush the MAC buffer once all packets in the burst
have arrived. Furthermore, since the allocated band-
width is low the packets arrive at the TCP receiver at
very low rate, triggering TCP ACKs at low rate too.
The problematic behavior continues as the low rate
of TCP ACKs is not able to trigger new data packets
fast enough so that more packets could accumulate in

the MAC buffer and result in an RBDC allocation re-
quest with more bandwidth. The Enhanced TCP is
able to keep up larger congestion window and recover
from the error losses more efficiently than the Refer-
ence TCP. Hence, it suffers little of this phenomenon.
When SLACP is used, TCP performance with RBDC
is not adversely affected since the SLACP drastically
reduces the residual packet error rate as seen by TCP.

In the case of multiple competing flows the TCP
performance is better than in case of single TCP flow
since the four parallel TCP connections act more ag-
gressively and the TCP loss recovery performs sig-
nificantly better than with a single TCP flow. The
TCP loss recovery works efficiently because usually
not all simultaneous TCP flows suffer from packet
losses at the same time and therefore some of the TCP
flows may continue utilizing the link while the other
flows are recovering from losses and proceed slowly.
Consequently, the performance gain with the SLACP
protocol is not as significant as for one TCP flow.
The usefulness of SLACP becomes evident when er-
ror rate is high. With CRA, the Reference TCP with
SLACP starts yielding shorter elapsed times than the
Enhanced TCP without SLACP when the error rate
becomes very high (the error models ”Very High” and
”Huge”). With lower error rates the Enhanced TCP
alone performs better than either of the TCP variants
with SLACP bacause the SLACP overhead slightly
degrades performance and the SLACP recovery does
not provide additional benefit over the TCP recovery.
On the other hand, with RBDC and VBDC that intro-
duce longer RTTs, the TCP loss recovery is less ef-
ficient and using SLACP with multiple simultaneous
connections becomes useful already with the ”High”
error model.

Combining Enhanced TCP with SLACP yields ad-
ditional performance gain for a single TCP flow com-
pared to the other cases, except in the case of error-
free link. In the presence of errors, the combined ap-
proach (Enhanced TCP with SLACP) performs dras-
tically better than the baseline approach (Reference
TCP without SLACP). A single TCP flow on an
error-free link and at low error rates with SLACP
starts to suffer from the slow-start overshoot prob-
lem (Dawkins et al., 2001a). For example, the Ref-
erence TCP performs slightly better than Enhanced
TCP when SLACP is used as the latter experiences
a larger number of congestion-related losses during
the slow-start overshoot. This problem is more seri-
ous with the Enhanced TCP as it uses a larger initial
window and the DAASS mechanism being more ag-
gressive during the initial slow-start phase and there-
fore having larger number of outstanding packets at
the time when the router buffer at the ST overflows.
The recovery from the large number of lost packets
in a single TCP window lasts very long as there are
not enough duplicate ACKs with SACK information
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arriving at the TCP sender.
The slow-start overshoot occurs also with the four

simultaneous TCP flows. Now it affects the Enhanced
TCP also when used without SLACP. The Enhanced
TCP yields longer elapsed time than the Reference
TCP when using an error-free link or the ”Low” er-
ror model with CRA and RBDC. On the other hand,
with VBDC the Enhanced TCP performs better than
the Reference TCP also at low error conditions. This
happens because the Enhanced TCP does not expe-
rience the VBDC bandwidth allocation delay as it is
able to fill up the available satellite link bandwidth al-
ready during the initial RTT with the four connections
injecting 16 segments to the network. The total num-
ber of the outstanding packets remains high enough
to avoid the VBDC allocation delay for entire dura-
tion of the transfer. The Reference TCP starts with
four segments only and it takes several RTTs with the
VBDC allocation delay on each RTT before it is able
utilize the available bandwidth. In addition, the Ref-
erence TCP suffers heavily from the VBDC allocation
delay towards the end of the transfer. Typically one of
the four TCP flows is proceeding very slowly with a
very small congestion window. When the other flows
complete, the last flow continues alone with the small
window and is forced to experience the VBDC allo-
cation delay on each of its remaining RTTs.

In the case of four TCP flows with SLACP the
slow-start overshoot is the other dominating factor
in addition to the SLACP overhead that keeps the
elapsed times fairly long with both TCP variants when
the error rates are not high. At higher error rates the
first packet losses occur already during the initial slow
start, terminating the slow start and preventing the
slow start overshoot.

Figure 3 shows an example trace for the slow-start
overshoot with the Enhanced TCP over an error-free
link using the VBDC DAMA scheme. The graph in-
dicates the packet trace of a single TCP flow from
the sender point of view. The sequence numbers of
the sent packets, acknowledgements and retransmis-
sions are shown. The overshoot starts roughly at t =
10 sec. The first loss is detected with the three dupli-
cate ACKs arriving roughly at t = 15 sec, when the
sender has transmitted approximately 250 Kbytes. A
large number of packets are lost between t = 10 sec
and t = 15 sec and the recovery phase lasts over 30
seconds.

It turned out that the slow-start overshoot remained
the only major problem with the combined approach
of using SLACP and Enhanced TCP. In order to at-
tack the slow-start overshoot problem, we used two
modified versions of Enhanced TCP. The first version
uses the TCP Control Block Interdependence (CBI),
which allows the TCP sender to reuse the ssthresh of
the previous connection. The use of CBI can be better
justified when there are little or no uncorrected link
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Figure 3: Example of slow-start overshoot
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Figure 4: Comparison of Enhanced TCP variants

errors (which is the case when SLACP is used). The
second version disables the DAASS mechanism, so
that it is less aggressive during the initial slow-start
phase. Figure 4 compares the median elapsed times
of a single TCP flow with these two Enhanced TCP
versions included and when SLACP is employed over
the satellite link with VBDC DAMA scheme. Table 4
summarizes the medians as well the lower and upper
quartiles for the elapsed times.

In general, the two new Enhanced TCP versions
outperform the original Enhanced TCP as well as the
Reference TCP with all error models. The two new
Enhanced TCP versions perform the best because dis-
abling DAASS in the Enhanced TCP mitigates the
slow-start overshoot problem whereas the Enhanced
TCP with CBI prevents the overshoot problem from
occurring even though DAASS mechanism is enabled
with this TCP version. On the other hand, Enhanced
TCP with CBI misbehaves in the presence of error re-
lated losses as the initial ssthresh value derived from
the previous connection tends to have too low value,
forcing the TCP sender to enter congestion avoidance
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Table 4: Comparison of Enhanced TCP variants (with
SLACP and VBDC, 32 replications) 

Transfer Time for 1MB Error 
Model 

TCP 
25perc Median 75perc 

Ref 95,39 96,31 97,34 
Enh 105,55 108,62 114,82 

Enh w/ CBI 89,93 90,43 92,01 None 

Enh w/o DAASS 93,37 94,69 95,74 
Ref 108,07 110,37 114,52 
Enh 109,92 112,50 118,67 

Enh w/ CBI 92,17 92,87 94,31 
Low 

Enh w/o DAASS 95,41 97,45 98,81 
Ref 120,86 124,98 138,97 
Enh 109,04 114,78 127,31 

Enh w/ CBI 96,71 99,36 102,89 Med 

Enh w/o DAASS 101,96 104,94 107,49 
Ref 128,68 134,23 149,69 
Enh 113,75 121,87 132,38 

Enh w/ CBI 104,63 108,82 112,80 High 

Enh w/o DAASS 107,65 110,11 117,78 
Ref 136,04 139,76 166,18 
Enh 118,01 124,43 132,76 

Enh w/ CBI 107,8 110,17 111,73 
VHigh 

Enh w/o DAASS 109,89 113,01 120,05 
Ref 158,78 178,67 226,87 
Enh 144,07 162,19 177,96 

Enh w/ CBI 131,68 141,25 166,65 Huge 

Enh w/o DAASS 130,18 133,22 146,23 

 
 

too early. Therefore, the Enhanced TCP with CBI
is performing worse than the Enhanced TCP with-
out DAASS in the ”Huge” error model case, where
the SLACP protocol is not able to recover from all
frame losses. One additional reason for the subopti-
mal performance of the Reference TCP with SLACP
is spurious TCP RTOs. The Reference TCP is suf-
fering from the spurious TCP RTOs in all error mod-
els except with the ”None” and ”Low” error models.
The additional delay due to the link-level error recov-
ery introduces an occasional delay spike, resulting in
unnecessary retransmission of the last TCP window.
The F-RTO algorithm employed with the Enhanced
TCP variant is able to detect the most of the spurious
RTOs and thereby avoid the unnecessary retransmis-
sions.

The results suggest that either of the Enhanced TCP
variants should be selected for use in order to re-
ceive the best TCP performance. The fact that it is
very hard in general for a TCP sender to gauge in ad-
vance whether a new TCP connection would experi-
ence error-related losses on the end-to-end path and
therefore possibly incur suboptimal behavior with the
TCP CBI is likely to elevate the Enhanced TCP with-
out DAASS to the recommended Enhanced TCP vari-
ant.

6 CONCLUDING REMARKS AND
FUTURE WORK

This paper proposes the use of a TCP/IP-friendly link-
level error recovery mechanism in conjunction with a

number of the state-of-the-art TCP enhancements to
improve TCP performance over W-WAN links. While
the proposed link-level error recovery mechanism for
W-WAN links allows efficient TCP operation over
error-prone wireless links it minimizes the additional
delay due to the ARQ by adding FEC-encoded redun-
dancy in the retransmitted frames in a novel way. A
TCP/IP-friendly link layer implementation also incor-
porates flow control between IP and MAC layer which
limits the amount of the link buffering and allows the
use of queue management at IP layer.

We ran an extensive set of experiments to eval-
uate the performance of a selected set of TCP en-
hancements together with our implementation of the
TCP/IP-friendly link layer, called SLACP. We com-
pared the performance of a regular version and en-
hanced version of TCP over a satellite link, with
and without SLACP. In the experiments we used real
TCP implementations on Linux end hosts and a satel-
lite emulator platform representative of a DVB-RCS
satellite system.

The results show that both SLACP and TCP en-
hancements are beneficial on their own. However,
the TCP enhancements alone cannot cope with high
error rates efficiently, especially in case of one TCP
flow. On the other hand, employing SLACP over the
error prone satellite link yields very significant perfor-
mance gain. The combined approach of the TCP en-
hancements and SLACP yields the best performance.
We also found that Enhanced TCP performance suf-
fers from the slow-start overshoot phenomenon when
the residual link-error rate is zero. Introducing TCP
CBI mechanism for sharing the slow start threshold
from previous TCP connection is helpful to attack the
problem in most cases. Alternatively, disabling the
DAASS mechanism from the set of the selected TCP
enhancements turned out to be equally worthwhile so-
lution.

In the future we intend to study the performance
of the SLACP approach with different levels of FEC
as well as with different ARQ persistency levels. We
also intend to seek for alternative approaches to the
TCP slow-start overshoot problem. In addition, in-
corporating an explicit loss notification to the SLACP
seems a promising approach as with a novel design
in the SLACP we avoid the common problem of not
being able to reliably infer the TCP sender to notify
when a frame is corrupted on the link. This is not
a problem with the SLACP as the link sender keeps
the original copy of each TCP segment and the link
receiver informs it whether or not the corresponding
frame was successfully delivered.
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