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The increasing interest in telecommunication systems and the wide spreading of computer networks within

commercial and scientific field, are going in the direction of a deep integration of phone and data systems
into a single network infrastructure. We are particular interested in security issues that arise in such context,
thinking, for example, about authentication and billing problems. The available security mechanisms can offer
different guarantees but their introduction greatly affect the whole system performances. To guarantee system
usability and an efficient resource usage, we propose a design methodology and a framework to evaluate
how each security choice affects the whole system performances and help system designers in evaluating the

performance-security trade-off.

1 INTRODUCTION

Traditional telephone systems are based on circuit
switching mechanisms; this necessarily implies that
all needed resources need to be allocated along the en-
tire communication, even during break times; now we
are assisting the first evolution in telecommunication
systems, thanks to digital transmission: in fact, the
real innovation has happened when vocal signals have
begun to be transmitted on Internet. Voice over IP
(VoIP) concept is based on this innovation. Actually
there are two protocols which are considered standard
in the VoIP context: H.323 and SIP. Each standard de-
fines communication rules between the two terminals,
and also provides the definition of complex architec-
tures for managing calls establishment, and holding
on. But while the first one provides for architectural
dedicated solutions, the second one is a textual proto-
col, which places itself at the Application level of the
TCP/IP architecture, and it is more interesting for us.
For this reason in Section 2 a very brief overview on
SIP architecture (components and protocols) is laid;
it will be very brief because the target of this paper
is quite different; we are particularly interested in se-
curity issues that arise in such context, thinking, for
example, of the authentication and billing problems.
The available security mechanisms can offer differ-
ent guarantees but their introduction greatly affects

Casola V., Chianese R., Mazzocca N., Rak M. and Mazzeo A. (2004).

the whole system performances. In order to guaran-
tee system usability and an efficient resource usage,
we propose a security policy (representative of differ-
ent security mechanisms) and a methodology which
could help a VoIP designer in evaluating how each se-
curity choice affects the whole system performances.
The paper is structured as follows: in the next Sec-
tion we will illustrate a brief overview of a SIP-based
VoIP architecture; in Sections 3 and 4 we will de-
scribe the architecture design parameters (both archi-
tectural and security) and all the steps of the design
methodology needed to support system designers in
evaluating the performance-security trade-off and, so,
to help them in choosing system configuration param-
eters to meet performance and security requirements.
In Section 5 we will propose a performance evalu-
ation development framework and we will illustrate
the definition of interesting tests, very suitable to take
in count chosen security mechanisms. Finally, in Sec-
tion 6 a full Case Study will be illustrated and some
conclusion and future works will be discussed.

2 SIP AND SECURITY

In this Section we report an overview on SIP archi-
tecture and some security mechanisms (RFC3329,
2003; Ciscol, 2002 ; Cisco2, 2002) which could
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be found in literature, this section is absolutely not
exhaustive but a lot of useful references will be
provided.

2.1 SIP Architecture Overview

SIP (Session Initiation Protocol) is a protocol able
to set up a session among one or several users; the
definition of session, which we refer to, is given in
(RFC3261, 2002), that is: A multimedia session is a
set of multimedia senders and receivers and the data
streams flowing from senders to receivers. A multi-
media conference is an example of a multimedia ses-
sion”.

For brevity sake, here we just report a number of
entities which take part in SIP communication, the
most important components of the SIP architecture
are:

o SIP User Agent which represents an extremity of
the connection, that is the application used by the
final user in order to take part in the conversation.
It can act as client (User Agent Client - UAC), if it
makes requests, and it can act as server (User Agent
Server - UAS), if it must grant a request.

e SIP Network Server, which manages the signal-
ing to set up the connection. It can be of different
types: a Proxy Server: it is an intermediate appli-
cation which routes received SIP messages; its aim
is putting in touch the calling part with the called
part. A Redirect Server: it has only the task to ac-
cept the SIP requests, making addresses translation
to set up the call. A Registrar is a server which
accepts particular requests of registration by new
SIP users, which give the necessary information to
allow their location; such information are appro-
priately inserted in a database called “’location ser-
vice”.

According to the SIP protocol, the described
entities communicate through SIP suitable messages.
The protocol is of peer-to-peer type, even if the User
Agent interaction is of client-server type. The SIP
element, who takes the initiative in the communica-
tion for settling a session, assumes the role of client,
sending on a request of INVITE type towards a SIP
user, who is invited to the dialogue (SIP request). A
proxy has both client and server functionalities, while
a redirect server simply transmits responses to client
request, by mapping a specified address into actual
addresses.

2.2 Security in SIP

Currently, SIP requirements identify either HTTP Di-
gest or S-MIME as security mechanisms for provid-
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ing selective security at SIP level. Both mechanisms
do not guarantee a high level of security, furthermore,
only the first one provides an authentication mecha-
nism. (radsip, 2001) examines the proposal for a
SIP extension to allow authentication of an user-agent
through a proxy with a RADIUS (RFC2865, 2000)
server; basic RADIUS protocol is not too much se-
cure, especially because all messages are exchanged
in plain text.

Some proposals which face such problems are
based on TLS session between the user-agent and
the proxy (TLS, 1999); with TLS, all SIP mes-
sages are exchanged in a secure environment. TLS
seems to be a good security solution but it requires
overhead and complexity, and the client needs to be
changed ad hoc to support the protocol. In (kerbpki,
2003) is described how to use Kerberos-PKI mech-
anism (RFC1510, 1993) for providing end-to-end
security between SIP clients. Once the client is au-
thenticated, and Kerberos key is generated, SIP client
can use the given key for encrypting and authenticat-
ing each others. Details about these and other secu-
rity mechanisms and protocols are omitted for brevity
sake; however, we are carrying on our analysis on
different mechanisms (diameter, 2003; RFC1994,
1996), trying to let the SIP-architecture support differ-
ent security-levels, because, as explained later, these
could strongly affect the definitive performance of the
architecture.

3 ARCHITECTURE DESIGN
PARAMETERS

The design of systems, which are critical for time and
security, is a very complex task that needs to be faced
in a systematic way to take in count all critical pa-
rameters. Almost all choices, needed from the early
stages of the design process, could heavy influence
the global system security/performance; this suggests
us to consider all the playing parameters and ana-
lyze their possible impact on those critical aspects, as
soon as possible during the design phases. At this
aim, in this paper we propose a ’policy-based and
performance-oriented framework™ to be able to de-
sign a SIP architecture with pre-assigned performance
and security requirements. The framework has been
designed on standard SIP components and specifica-
tions and on a set of security rules about the way these
components must be interconnected to guarantee a
pre-assigned set of functionality and a pre-defined se-
curity level which characterizes the specific security
mechanism. As said, the way to interconnect the ba-
sic elements is one of the most critical aspect, it has
a great impact on system security, on availability and
on performances, too.
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Table 1: Logical Components

Component Name Description
Proxy The SIP proxy
Radius The Radius Server
AS Kerberos Authentication Server
TGS Kerberos Ticket Granting Server

In particular, the defined framework takes in con-
sideration the following elements:

o the logical base components of the SIP architec-
ture,

e a set of security rules (the policy),

o the physical components of the real SIP architec-
ture to implement.

Logical Components

The Logical components are the base components
of a SIP architecture as seen in Section 2, they are
reported in Table 1.

An instance of the Logical architecture will be
represented in this paper by means of a vector V of
4 components whose numerical values represent the
number of logical components really present in the
architecture; for example V=(2,0,0,0) indicates that
there are two Proxies and no one security server.

Security Policy
The security policy rules are reported by means
of tables; as shown in Table 2 (a) the parameters
that we consider critical for security are just four:
the authentication system, the communication type
between UA and Proxy and the communication type
among Proxies and finally the number of domains.
This policy is very simple because we have just
considered security problems related to authen-
tication mechanisms at application and network
levels, indeed, the methodology we are proposing
remains still valid if we add other security parameters
(further authentication server types, authorization
mechanisms, and so on). The security policy adopted,
the description of its parameters and the values they
could actually assume are reported in Table 2 (b,c,d)

Physical Components
The physical components we have located are just
two: the physical nodes on which the logical compo-
nents must be mapped and the network components
(their numbers and performance/features usually rep-
resent an important parameter that designers need to
consider to build the effective infrastructure).

SECURE VOIP INFRASTRUCTURE

Table 2: Security Policy and its Parameters

Parameter Description

Authentication System
UA-Proxy Communication
Proxy-Proxy Communication
Domains Number

Authentication System Values | Description

No Mechanism
Radius
Kerberos

UA-Proxy and Proxy-Proxy

Communication Values Description

Plain text
Encrypted text
SSL Protocol
Kerberos Protocol

Domains Number Values | Description

Integer Value

4 DESIGN METHODOLOGY

In this Section, we will describe the design method-
ology which could help any system builder while tak-
ing in count critical aspects in all design phases. The
methodology we propose here is made of 6 steps
which are described here in details:

Choosing Phase;

Logical Architecture definition;
Physical Architecture definition;
Architecture Evaluation;

Repeat from step 4;

A

Choosing the optimal architecture.

Steps 1-2 The first step of our methodology con-
sists of choosing the security policy; this step in fact
strongly affects the logical architecture as it implies
the presence of a number of minimal specific logical
components and a number of specific functionalities
(for example if we decide to implement SSL proto-
col among Proxies, specific mechanisms must be im-
plemented). According to the defined policy, if we
represent each policy instance by a vector P of four
components (the number of components is represen-
tative of the number of the parameters of the policy),
and if we consider the basic logical elements of the
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Table 3: Policy and Logical Components relation

Policy | Proxy | Radius | AS,TGS
(0,x,x,X) X - -
(1,x,x,X) X X -
(2,3,0,x) X - X
(2,0,3,x) X - X
(2,3,3,x) X - X

architecture, all the possible combinations are illus-
trated in Table 3. To each component of the vector
is associated a numerical value which ordinally cor-
respond to the real semantic value of that parame-
ter (the row index of the corresponding table, start-
ing by row zero) as it appears in Tables 2 (b,c,d);
for example the instance (1,2,0,x) indicates that the 1-
st component (Authentication System="1"") assumes
the value of the 2-nd row: “Radius”’; the 2-nd com-
ponent (UA-Proxy Communication="2") assumes the
value ”SSL Protocol”; the 3-rd component (Proxy-
Proxy Communication="0") assumes the value “Plain
Text”; the 4-rd component (Domains Number="x"")
could assume any value (”x” lower case); an X (up-
per case) in the other columns indicates the presence
of the corresponding logical components in the final
logical architecture.

With one policy instance, it is possible to combine
logical components in different ways but the kind
and the minimal number is defined by choosing
the policy (see for example Table 4 of the case
study); this implies that the functionalities of the
global system, the number of user-domains, user’s
authentication mechanisms and the role that each
logical components will assume in the architecture,
are defined in this phase by properly choosing the
policy.

Step 3 This phase includes the choice of the
real available components on which the logical
components will be mapped. Physical components
do not affect system functionalities (if they permit
the allocation of all minimal logical components)
but global performances and security are certainly
depended on this parameter (for example if the
Radius Server is running on the same physical node
of the Proxy to authenticate, the security involved is
certainly less critical than a distributed approach).

Steps 4-5 These two steps consist in evaluating
the performances of all possible final architectures.
There are in fact more than one way to combine
and map the logical components on the physical
ones (see for example Table 5 of the case study).
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Once we have addressed all possible combination,
we have to repeat the evaluation process for all
corresponding solutions. The evaluation is made
against performance measures for all solutions and
the optimal one is implemented.

Step 6 The optimal architecture derived by the first
steps is implemented.

S PERFORMANCE EVALUATION

The security mechanisms introduced in the proposed
architecture have a side effect on the overall perfor-
mances of the system. In order to compare the differ-
ent proposed solutions a set of performance indexes
are needed. At the state of the art no standard bench-
mark exists for SIP-based architecture, even if the
SIPStone (sipstone, 2002) benchmark is probably the
most appropriate solution; it is very useful to choose
the architecture to deploy in a real environment, but
its metrics are of a too high level to really understand
the performance effects of low level design choice.
These considerations lead us to develop an evaluation
framework that helps in developing dedicated tests.

In the following a brief overview of our perfor-
mance evaluation development framework will be
carried on. We will describe the way in which the
workload will be described, how we organize and de-
velop new tests and the performance indexes that we
can evaluate. A real system evaluation will be given
in the next section (Case Study).

5.1 Workload Modelling

While a common benchmark aims to study the system
performances under real workloads, that usually re-
produce common server usages, our tests aim at point-
ing out performance bottlenecks due to design choice.
This means that instead of pointing out the system
behavior under common user population, we aims to
evaluate many different system working conditions'.
This information can be adopted in future to pre-
dict the server behavior under many different work-
load condition (see future works). Note that many
SIP Server implementations (almost all) create a new
thread each time a new request arrives (this is true if
a thread pool policy is adopted) so the number of the
contemporary requests heavily affects the system per-
formances (as will be shown in the final results). This
consideration leads us to generate the tests as closed
loops, in a closed-loop test, each new request is only
issued after the completion of the previous one. In

' A working condition will represent a system state un-
der which the architecture will show the same performance
behavior to the same requests
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this way, the number of waiting requests on the server
is (almost) constant if we assume that the time spent
in communication is less than the time spent by the
Proxy to complete the requests’. Another important
consideration is that in our tests the client behavior
has to affect as few as possible the tests, so the testing
UAC should be as simple as possible, closed-loops
does not need to maintain and manage information
about the sent requests. Thanks to this approach the
number of parallel clients (N parameters) corresponds
to the waiting requests on the server, and so the server
working condition.

5.2 Tests Description

Our tests aim at pointing out the performance of the
system design proposed for each functionality imple-
mented. Tests can be organized in a hierarchic way
as:

o Transaction Level: These tests aim at measuring
the time spent in a SIP transaction. Different tests
are needed for different transactions.

o Session Level: These tests aim at evaluating the
performances of a complete SIP Session.

e Workload Level: This is the level at which
SIPStone operates: it describes the System perfor-
mances under known workload condition.

It is out of the scope of this paper to point out a
more detailed classification of the tests and point out
the state of our SIP evaluation framework. In this
paper we will focus on a transaction level test for
the REGISTER SIP operation and a simple Session
Level test, because this tests will clearly exploit the
effects of the security mechanism on the system
performance, as we will point out in the following
sections. Each test measures its own index, which
is usually defined as the response time to the given
sequence of SIP services on the client side. It is
important to point out that all the performance index
can be gathered from the client side, so that it is
possible to perform an evaluation of an existing
architecture without changing it.

REGISTER Transaction Level Test This test
simply measures a REGISTER transaction on the
target system, and its response. The result of this test
will be the response time on the client, we will call it
RRT (Register Response Time). Of course, security
mechanisms have heavy impact on performances of
this tests, in fact the response time will be different
for any different authentication process.

The testbed should assure this condition through the
choice of the network
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INVITE-BYE Session Level Test The Session
is simply described as the Sequence INVITE-BYE
from one UAC to another one. This simple test aims
at pointing out the system behavior when managing
many complete sessions. The result index will be
named SRT (Session Response Time). In the test
evaluation we will consider the response time to the
RINGING signal as zero.

Final Considerations The Measurement method-
ology carried on is similar to the one proposed by
SipStone: request rates (and so the number of parallel
clients) are increased until the number of the trans-
action failure reachs an high value (15%). A graph
for each test, reporting its index and the different pro-
posed architectures, will be proposed. The proposed
evaluation approach is oriented to exploit the effects
of the design choice done on the target system, so it is
of great help in building a high performance system;
however, it is not a substitute of a standard bench-
mark, like SIPSTone, but it is proposed to work in
conjunction with it to give a clear idea of the final re-
sult of the proposed architecture.

6 CASE STUDY

The laboratory dedicated to the SIP security architec-
ture is composed by two node (Pentium II, 400Mhz,
512 MB and Peniutm III, 733 Mhz, 256 MB) and a
fast ethernet switch. We adopted a RedHat Linux 7.3
as operating system, SUN Java 1.4.2 and NIST-SIP
(nistsip, 2002; jainsip, 2003)as SIP stack implemen-
tation. A four node, biprocessor cluster is available as
workload generator, this helps us to grant that client
side do not affect heavily the performance indexes. In
the following we will show step by step the analysis
carried on during the system design.

6.1 Choose the Security Policy and
the logical Architecture

Due to space limitations we will evaluate only few of
the available security policies. Note that each policy
can be mapped onto many logical architectures. Table
4 briefly describes the analyzed policies and the logi-
cal architectures that satisfy the policy requirements.

6.2 Choose the Physical Architecture

Each logical architecture can be carried out in many
diverse physical configuration, tables 5 and 6 describe
the analyzed configurations.

The first column of table 5 contains the name of the
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Table 4: Security Policies and Logical Architecture

Policy Logical Architectures
(0,0,0,0) (1,0,0,0)
(0,0,0,1) (2,0,0,0)
(1,0,0,0) (1,1,0,0) (2,1,0,0)
(1,0,0,1) (2,2,0,0) (1,2,0,0)

configuration and the second column the security pol-
icy and the logical chosen architecture, while the sec-
ond and third columns of table 6 contain the logical
components on the available nodes, where P identifies
a Proxy Server Component, and R a Radius Server on
the nodes SipSecl and SipSec?2.

Table 5: Configuration Name and Logical Architecture

Configuration Logical Architecture
C1 [(0,0,0,0) ; (1,0,0,0)]
C2 [¢(0,0,0,0) ;, (1,0,0,0)1
C3 [(1,0,0,0) ; (1,1,0,0)]1
C4 [¢(1,0,0,0) ; (1,1,0,0)1
C5 [(1,0,0,0) ; (1,1,0,0)]1
C6 [(1,0,0,0) ; (1,1,0,0)]
C7 [(1,0,0,0) ; (2,1,0,0)]1
C8 [(1,0,0,0) ; (2,1,0,0)]

Table 6: Logical Architecture Mapped on the physical con-
figuration

Configuration | SipSecl | SipSec2
Cl P -
C2 - P
C3 P R
C4 R P
C5 P+R -
C6 - P+R
C7 P+R P
C8 P P+R

Last two configurations correspond to a unique user
domain (stored in the Radius server) whose users
adopts two different access points (Proxies). For sake
of simplicity we equally subdivide the load between
the proxies.
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6.3 Architectures Evaluation

In this last section we report some considerations to
show the correctness of the approach. An interest-
ing result is presented in Figure 1 which shows RRT
values against the number of parallel clients for each
configuration. In particular, the diagrams C1-reg.dat
and C2-reg.dat respectively refer to REGISTER in a
Register Server on the SipSecl machine and on the
SipSec2 machine, without any authentication mech-
anism. The diagrams C3-reg.dat and C4-reg.dat re-
spectively refer to REGISTER in a Register Server
on the SipSecl machine and on the SipSec2 machine,
with a local Radius Server as authentication mecha-
nism. Finally, the diagrams C5-reg.dat and C6-reg.dat
are different from the previous ones because the Ra-
dius Server is invoked remotely. We explicitly note
that configurations C3 and C5, such as C4 and C6,
have similar behavior; this means that the use of two
nodes for the Radius server and the proxy has no real
positive performance impact whilst it is a more ex-
pensive solution.

7 CONCLUSIONS AND FUTURE
WORKS

Security issues and their effects on the system per-
formances in VoIP architectures is an open research
issue, on which only few work was done. In this pa-
per we have proposed a design methodology to help
in carrying out real SIP-based architectures integrated
with security mechanisms and a framework for per-
formance evaluation of the built systems. We have
applied the proposed approach to a real case study,
showing the effects of different design choices (both
in terms of security mechanisms and of their imple-
mentation) on the target system performances. We
have shown how to apply the methodology on a real
case, building a real system in many different config-
urations and comparing them.

Future evolution of the work will cover both
methodology and framework extensions. The
methodology should be integrated with performance
prediction tools that will help to predict design choice
performance effects before real implementation on
the system. Framework can be used both for testing
existing systems to tune the predicting models and
to validate final results in late development stages.
Framework should be extended with new tests, point-
ing out relationship between tests and design choices.
SIPstone benchmark results could be predicted from
framework measurements and predictive models.
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Figure 1: REGISTER Response Time Results
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