
ON VULNERABILITY TESTING OF VOIP SOFTWARE
The Megaco/H.248 System as an Example

Son Vuong, Xiaojuan Cai, Ling Yun, Wing Keong Woo
Department of Computer Science, University of British Columbia

 2366 main mall, Vancouver Canada

Keywords: VoIP, Megaco, Vulnerability, Mutation, Syntax Testing, Vulnerability testing

Abstract: The ever increasing quantity of newly discovered computer security holes makes many network-based
service including especially Voice over IP (VoIP) system vulnerable, hence impose a heavy impact on
business development. Megaco or H.248 is a recent emerging VoIP protocol which will promote carriers to
move into VoIP applications. In this paper, we present the vulnerability testing of Megaco protocol, with a
focus on the mutation-based syntax testing approach. We discuss the process of vulnerability test suite
generation for Megaco, which is based on parameter variation and a TTCN-3 based framework. The result
of a demonstrated testing of a commercial Megaco product is also presented

1 INTRODUCTION

Computer or software vulnerability can be defined
as a weakness or flaw in a system that can be
exploited to violate its intended behavior. With the
fast developing of the internet, the number of newly
discovered vulnerabilities reported to CERT
continues to more than double each year, and the
existence of vulnerabilities is quickly becoming a
fact of life for many network-based services, among
which Voice over IP (VoIP) system is a typical
example.

VoIP systems – as they operate on top of
standard IP technology – are susceptible to the same
problems as all other IP-based services. These
problems include the unverifiability of the origin of
data packets, the ability for third parties to capture
and modify data packets by intercepting them en
route, and the general inability to guarantee timely
delivery of data.

The trend of ever increasing quantity of newly
discovered vulnerabilities, the rise in frequency of
major Internet-based attacks, and VoIP's
fundamental exposure to these attacks, are causes for
concern as VoIP technology begins to replace
traditional phone systems while attempting to
provide the same privacy, performance, and
reliability characteristics. Hence the vulnerability
testing of VoIP system is a very important issue in
the way to promote the VoIP business.

Vulnerabilities can be categorized into two
perspectives: at application (high) level, including
both the protocol’s design and implementation, and
at the underlying system environment (low) level.
Vulnerability testing is a process of identifying the
security holes and weaknesses in the networked
systems by various techniques such as injecting
faults into the software, analyzing the current state
of the system and searching for anomalies. In this
paper we focus on the vulnerability testing of the
protocol implementation and we choose Megaco
protocol as an example for testing since this is a
VoIP protocol that will promote carriers to move
into VoIP applications. We employ the vulnerability
testing methodology in which the test generation is
based on a parameter variation scheme and the
testing process is based on testing tools applied to
TTCN-3 test specification.

Not including this section, the paper is organized
as follows. Section 2 provides a brief introduction to
the Megaco protocol and the potential vulnerabilities
that may exist in the Megaco system. Mutation
based vulnerability testing methodology, being the
core of the paper, is presented in Section 3. In
Section 4, we discuss the vulnerability test suite
generation for Megaco and the result of its
application to a sample Megaco product. Finally, in
Section 5 we present concluding remarks and offers
suggestions for future work.

216
Vuong S., Cai X., Yun L. and Keong Woo W. (2004).
ON VULNERABILITY TESTING OF VOIP SOFTWARE - The Megaco/H.248 System as an Example.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 216-222
DOI: 10.5220/0001406102160222
Copyright c© SciTePress

MGC MGC

Figure 1: Megaco Protocol between the MG and MGC

2 MEGACO/H.248 SYSTEM AND
POTENTIALVULNERABILITIES

Before discussing the vulnerability testing
methodology and the testing of Megaco, a brief
introduction of the Megaco protocol would be in
order.

2.1 Brief Introduction of Megaco

Media gateway control protocols were born out of
the need for IP networks to interwork with
traditional telephony systems and enable support of
large-scale phone-to-phone deployments. Media
gateway control protocol decomposes signaling part
from the media connection so that the media
gateways can work more efficiently. Megaco stands
for “Media Gateway Control”. Megaco/H.248 is a
collaborative effort of the ITU and IETF. Reference
for Megaco is available in RFC 3015 (Rfc3015,
2000). Megaco/H248 addresses the relationship
between Media Gateways (MG) and Media Gateway
Controllers (MGC) as shown in Figure 1. This
relationship has a master/slave structure where
masters are MGCs (sometimes called call agents or
softswitches) and slave devices are MGs which
execute commands sent by master devices.

2.2 Megaco Security Features and
Potential Vulnerabilities

The Megaco specification requires that the control
connection between MG and MGC be protected by
IPSec, or in case the underlying operating system
does not support IPSec, an interim AH solution
should be employed. Despite this protection, if there
exists software bugs in the implementation, it is still
possible for an attacker to break into a MG from the
user end and exploits the software bugs to bring the
MGC down. There also exist some insider attacks.
Furthermore, infrastructure vulnerabilities that cause
the DoS attacks on MGs or misbehaving MGCs are
unavoidable. For example, a DoS attack to a MGC

could occur when the attacker sends a large amount
of UDP packets to the protocol’s default port 2944
or 2945, thereby keeping the target MGC busy
processing illegal messages, and thus preventing it
from using its resources to offer normal service.

Aside from the aforementioned security
problems in signalling control, media security is
another issue which refers to the prevention of
eavesdropping or the altering of a voice stream
between caller. In this paper, we only focus on the
testing of the software implementation bugs.

3 VULNERABILITY TESTING
METHODOLOGY

Our purpose of vulnerability testing is to identify
software bugs that may cause security problems,
such as buffer overflow, that an intruder could
exploit by carefully crafting the input data in an
attempt to compromise the security of the system.
We are taking a black box testing approach based on
syntax testing. The errors to be injected are
generated based on parameter mutation. Details are
described in the subsequent sections.

3.1 The Testing Methodology

Our testing methodology is shown in Figure 2. The
general idea is to use syntax testing with parameter
variation (mutation) to create error sentences.

We start from the specification of the protocol,
then model the protocol in a formal description
language such as SDL or use formal grammar
notation such as BNF to describe the protocol
exchange. The abstract test cases for vulnerability
testing are derived from the formal description, but
with the parameter mutation to generate errors as in
the syntax testing. This will be detailed in the next
section. We describe the abstract vulnerability test
suite (VTS) in Testing and Test Control Notation
version 3 (TTCN-3).

MEGACO

MG

H 323, SIP, Q. BICC

MG
RTP, AAL 1/2/5

ON VULNERABILITY TESTING OF VOIP SOFTWARE - The Megaco/H.248 System as an Example

217

Figure 2: Vulnerability Testing Process

The reason we choose TTCN-3 for vulnerability
test specification is that, unlike TTCN-2 which is
specifically designed for conformance testing,
TTCN-3 has been developed with the objective of
being a flexible and powerful test specification
language applicable for all types of testing,
including robustness testing. Although TTCN-3 is
conceptually extended from TTCN-2, it is
syntactically very different from TTCN-2, and is
therefore named differently. Being a standard, the
use of TTCN-3 will ensure wide portability and
understandability, and the generated test suite will
be shared with the community for verification
without any modification required.

After the vulnerable test suite (VTS) is specified,
we need to use TTCN-3 tools to convert the VTS to
Executable Test Suite (ETS). Then we can feed the
ETS into the test tool (test execution module) to
execute against the implementation under test (IUT),
and finally we obtain the test verdicts. The process
of ETS translation and execution using a toolset (e.g.
TTthree and µTTman) is illustrated in Figure 3. This
process was applied to a real-life Megaco product
IUT. First, the VTS is generated via some creative
parameter variation heuristics and specified in
TTCN-3, and the VTS specification is stored in the
file megacoTest.ttcn3. The abstract VTS
specification in TTCN-3 is then transformed into an
ETS (via the TTthree tool) for actual application in
the vulnerability testing of the IUT (via µTTman
tool).

First, the VTS specification in TTCN-3 is
compiled into a programming language, e.g. Java or
C/C++. We are using the TTthree tool developed by
Testing Technologies™ to compile the VTS into
Java, specifically from megacoTest.ttcn3 to
megacoTest.jar. Next, we develop a test adapter,
written in Java, to map the abstract test system
interface referred to in TTCN-3 into a real test
system connected to the IUT. An example is the
mapping of an abstract port in TTCN-3 into a real
TCP or UDP port opening. In addition, we develop
an encoder, also written in Java, to map TTCN-3
data structures into real messages for injecting the
test messages, and a decoder to map real messages
into TTCN-3 data structures for receiving the
responses. For convenience, the above three java

programs are compiled into a single file:
megacoTestAdapter.jar.

To facilitate the testing, it is desirable to have a
test manager to inject the test cases in sequences,
receive the responses, and display the results. We
are using the µTTman tool, also developed by
Testing Technologies. The µTTman tool uses a
Module Loader File written in XML to reference the
test suite, the test adapter and the codec (voice
encoder/decoder) to be used, which in our case, are
the megacoTest.jar and megacoTestAdapter.jar.

3.2 VTS Generation – Mutation
Method

We adopt syntax testing method to identify software
bugs. Syntax testing is a way to test system
robustness. In a sense, if a system is very robust,
then it is really hard to be broken into, hence more
secure. In syntax testing, the test cases, i.e. the input
to the software, are created based on the
specifications in languages understood by the
interface software (Beizer, 1990). The motivation
for syntax testing springs from the fact that each
interface has a language, whether it is hidden or
open, from which effective tests can be created with
a relatively small effort (Kaksonen, 2000). The
communication protocol between two entities is a
perfect interface language.

The syntax for the interface language is usually
represented by formal grammars such as "Backus
Naur Form" (BNF). Following the rules of the
grammar, the defined formal language will produce
a right sentence which is basically sequences of
bytes. The selection of test cases in syntax testing
could start with single-error sentences that follow
the defined syntax. By single-error, we mean only
one grammar element in the right sentence is
replaced with some error or exceptional value. An
exceptional element value is an input that has been
designed to provoke undesired behavior in the
implementation, and we regard these as parameter
mutation (or parameter variation) from the normal
valid value. An example would be to replace a valid
integer value by a float number in the sentence. The
exceptional input is usually not considered seriously

Protocol Spec VTS
Generation

VTS ETS Test
Execution

Verdict

IUT

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

218

Figure 3: Tools for VTS-to-ETS Translation and ETS Execution

by most software developers during the developing
process, thus easily leading to havoc when being
exploited. The provocation knowledge is often
acquired by experience and may be protocol
specific. Single-error testing is likely to reveal most
faults assuming the faults are mutually independent
and a fault is triggered by one error in a sentence.
After all the sentences with one error are tried, the
testing proceeds to pairs of errors, three error
combinations, and so on. The number of test cases
grows exponentially by the number of combined
errors (Beizer, 1990).

4 VULNERABILITY TESTING OF
EXAMPLE MEGACO/H.248
SOFTWARE

Based on the mutation concept and syntax testing
approach, we design test suite and test a sample
Megaco system in this section. At the current stage
of the testing process, we have not covered the test
suite generation for the whole protocol yet and our
test focuses only on the Megaco command
“ServiceChange”.

4.1 VTS Generation for Megaco

To perform vulnerability testing using the syntax
testing approach, first we need to obtain the formal
grammar that defines the protocol syntax. We can
find the complete augmented BNF (ABNF)
specification for Megaco in RFC 3015. A sample
excerpt of the ABNF specification for

“ServiceChangeRequest” that we employ in the
vulnerability testing is shown below:

megacoMessage = LWSP [authenHeader SEP] message
message = MegacopToken SLASH Version SEP mId SEP
messageBody
mId = (((domainAddress / domainName)[":"
portNumber]) / mtpAddress / deviceName)
messageBody = (errorDescriptor / transactionList)
transactionList = 1 * (transactionRequest /
transactionReply /transactionPending /
transactionResponseAck)
transactionRequest = TransToken EQUAL TransactionID
LBRKT actionRequest *(COMMA actionRequest) RBRKT
serviceChangeRequest = ServiceChangeToken EQUAL
TerminationID LBRKT serviceChangeDescriptor RBRKT

An example of a valid and typical

“ServiceChange” Megaco message that the protocol
grammar should be able to generate is given below:

MEGACO/1 [192.168.1.101]
Transaction = 9998 { Context = - {
 ServiceChange = ROOT {Services {
 Method=Restart,
 ServiceChangeAddress=44445,
Profile=ResGW/1}}}}

We choose the command “ServiceChange”

sending from MG to MGC for registration as our
starting point of the vulnerability testing process. By
analyzing the grammar component in this command
and following the guideline of the PROTOS project
(PROTOS, 1999), we designed the exceptional
element categories, partially shown in Table 1.

ON VULNERABILITY TESTING OF VOIP SOFTWARE - The Megaco/H.248 System as an Example

219

Table 1: Exceptional element categories

Name Description

ipv4-ascii Malformed IPv4 addresses in ASCII
and special purpose addresses

overflow-general “a“ (0x61) character overflows up to
128KB

utf-8 Malformed UTF-8 sequences
overflow-space Overflows of “ “ up to 128KB

fmtstring Format strings

megaco-version Malformed ”MEGACO/1”

 Injector InjectorIUT IUT

Figure 4: Vulnerability Test Sequence Diagram

Our test cases can be categorized in groups

according to which element (parameter) in the
sentence (command) that we want to fill it with the
exceptional value. A total of 1771 test cases are
generated with some groups listed in Table 2.

Table 2: Megaco Vulnerability Test Groups

Name Exceptional Elements Test
Cases

MegacopToken
Empty, overflow-general,
overflow-space, fmtstring,
utf-8, ansi-escape

193

Version megaco-version 75
DomainName ipv4-ascii 106

TransToken
Empty, overflow-general,
overflow-space, fmtstring,
utf-8, ansi-escape

193

An example test case in the test group

“TransToken” with the exceptional element category
of “overflow-general” will replace the valid value in
the “TransactionToken” field with a string
containing variable length of character ‘a’ so that we

can use it to test whether the IUT will have buffer
overflow problem.

4.2 Test Execution on an Example
IUT

We have compared the implementations available to
us that include the Megaco Erlang toolkit, a test
equipment that has Megaco function implemented
and an evaluation version of a viable commercial
Megaco software. In the initial stage of our testing
development, the evaluation version of the
commercial software was chosen as a sample
implementation to help us create a test suite for
vulnerability testing.

The vulnerability test sequence diagrams are
shown in Figure 4 with the left side being for passed
cases and the right side for failed ones. Forced
command in the chart serves the purpose of tearing
down the Megaco connection. For the passed cases,
the test packet is first sent to the IUT. Then, if a
reply is returned by the IUT, it is treated as a passed

Test Case N

Injector

Forced

(b) Failed case - causing IUT crash

Restart
Restart

X

Forced

Restart

Forced

 Reply

Reply

Reply

Reply

 Test Case N

(a) Passed case with connection teardown

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

220

case and it is the reply is disregarded by the tester.
After a certain period of time, a valid case is sent to
the IUT to verify if the IUT still functions normally.
On the other hand, when a failed test case is
applied, we expect that it will crash the IUT or make
the IUT non-functional. This can be verified by three
consecutive retries without receiving a response,
thus indicating that the service is no longer
available. All the test results are logged in a log file
for further analysis or visualization. A failed test
case is shown in the appendix.

All the 1771 of test cases have been tested with
the sample MGC via UDP and TCP transport. The
partial result is summarized in Table 3. Altogether,
we found 10 failed test cases when conducting test
over TCP and 5 over UDP transport, both in the test
group of “DomainName”.

Table 3: Vulnerability Test Result

Test Group UDP Result TCP Result
MegacopToken Passed Passed
Version Passed Passed
DomainName Failed Failed
TransToken Passed Passed

5 CONCLUSION AND FUTURE
WORK

We generated vulnerability test suite for the Megaco
protocol based on the method of robustness testing
in which heuristically derived exceptional elements
are used to produce mutations of the correct
behaviour to create the vulnerability test suite. Since
TTCN-3 is a standard test specification language for
various types of testing, including robustness testing,
the generated vulnerability test suite (VTS) for the
Megaco protocol is specified in TTCN-3 and TTCN-
3-based tools (e.g. TTthree and µTTman) are used in
the vulnerability testing process. The result of
applying the generated VTS to a sample IUT
demonstrated well the effectiveness of the testing
approach.

What we have done so far is simply to test a
single command (Service) with a single error (a
single parameter variation) while the program (IUT)
is at a certain state. It is reasonable to expect that the
protocol behaviour and thus IUT behaviour in
response to a certain input is state sensitive even
from a vulnerability point of view. Not all sentences
are acceptable in every possible state of a software
component. A state-dependent error can be
generated by inputting a correct sentence in an
incorrect state. Therefore, the next step of our plan
will be to consider the protocol Finite State Machine
(FSM) and perform a state-dependent mutation for

vulnerability test suite generation, and to consider
multiple errors (i.e. muti-mutations) in a single
vulnerability test case.

ACKNOWLEDGEMENTS

This research is supported in part by Industry
Canada - Directorate of Telecom Engineering and
Certification. We would like express our gratitude to
Peter Chau, Colman Ho, Os Monkewich, Jinmei
Yang, Ardashir Bahi, Yan Bai and Sergio Gonzalez
for the fruitful discussions and comments that led to
the improvement of earlier drafts of the paper.

REFERENCES

RFC3015, 2000: http://www.ietf.org/rfc/rfc3015.txt
Kaksonen, R., Laakso, M., Takanen, A., 2000,

Vulnerability Analysis of Software through Syntax
Testing, Available:
http://www.ee.oulu.fi/research/ouspg/protos/analysis/
WP2000-robustness/index.html

Beizer B., 1990, Software Testing Techniques, Second
Edition, ISBN 0-442-20672-0

PROTOS, 1999-2003, "PROTOS - Security Testing of
Protocol Implementations". University of Oulu.
http://www.ee.oulu.fi/research/ouspg/protos.

APPENDIX

Sample Vulnerability Test Cases for Megaco

A passed test case:

MEGACO/1 [aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa]
Transaction = 9998 {
Context = - {ServiceChange = ROOT
 {Services { Method=Restart}
 }
 }
}

Failed test case: long string of “a” IP_addr

MEGACO/1
[aa
aaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa]
Transaction = 9998 {

ON VULNERABILITY TESTING OF VOIP SOFTWARE - The Megaco/H.248 System as an Example

221

Context = - {ServiceChange = ROOT
 {Services {Method=Restart}
 }
 }
}

Reply received from MGC
MEGACO/1 [142.103.10.92]
Reply=9998{
Context=-{ServiceChange = ROOT
 {Services{ServiceChangeAddress=2944}
 }
 }
}

Forced command message to disconnect

MEGACO/1 [192.168.1.101]
Transaction = 9998 {
Context = - {ServiceChange = line/1
 {Services {Method=Forced, Reason="905
Termination taken out of service"}
 }
 }
}

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

222

