
ACME-DB: AN ADAPTIVE CACHING MECHANISM USING
MULTIPLE EXPERTS FOR DATABASE BUFFERS

Faizal Riaz-ud-Din, Markus Kirchberg
 Information Science Research Centre, Department of Information Systems,
Massey University, Private Bag 11-222, Palmerston North, New Zealand.

Keywords: Database caching, adaptive caching, buffer management

Abstract: An adaptive caching algorithm, known as Adaptive Caching with Multiple Experts (ACME), has recently
been presented in the field of web-caching. We explore the migration of ACME to the database caching
environment. By integrating recently proposed database replacement policies into ACME’s existing policy
pool, an attempt is made to gauge ACME’s ability to utilise newer methods of database caching. The results
suggest that ACME is indeed well-suited to the database environment and performs as well as the best
currently caching policy within its policy pool at any particular moment in its request stream. Although
execution time increases by integrating more policies into ACME, the overall processing time improves
drastically with erratic patterns of access, when compared to static policies.

1 INTRODUCTION

One of the key factors affecting a database’s
performance is its ability to effectively and
efficiently cache frequently requested data. Main
memory access is approximately 170,000 times
faster than disk accesses (Ramakrishnan and Gehrke,
2000). The challenge in main memory caching is to
determine which page of data to replace (the
‘victim’) from the buffer pool once it is full, to make
space for future data pages to be read in from
secondary storage. The selection of victims is
performed by a cache replacement algorithm, which
chooses victims according to certain criteria based
on past access patterns.

 This paper attempts to trial and evaluate a
recently presented adaptive cache replacement
algorithm, known as ACME, or Adaptive Caching
with Multiple Experts (Ari et al., 2002). ACME uses
machine learning to dynamically select the cache
victim from a number of policies, or experts, during
the cache replacement process. Whilst ACME was
originally presented for the web-caching
environment, this paper describes the evaluation of
the adaptation of ACME to the database

environment. The rigidity and robustness of ACME
is also tested by its ability to integrate more complex
policies in its policy pool, including optimizations
achieved in terms of overall processing time.

 The remainder of this paper is presented as
follows: Section 2 presents related work, including
adaptive caching algorithms, with a focus on
ACME. Sections 3 and 4 respectively, detail the way
in which ACME has been adapted to the database
environment and the issues concerned with
implementation. Section 5 analyses the results
obtained from driving the database-adapted ACME
(referred to as ACME-DB in this paper) with live
and synthetic traces. Finally, section 6 presents
conclusions.

2 RELATED WORK

The main task of a buffer manager is to retrieve the
data from secondary storage into main memory, thus
allowing the data in the main memory to be accessed
by the transactions that request information from the
database. There are two purposes for accessing data
in this manner: firstly it ensures that subsequent

192
Riaz-ud-Din F. and Kirchberg M. (2004).
ACME-DB: AN ADAPTIVE CACHING MECHANISM USING MULTIPLE EXPERTS FOR DATABASE BUFFERS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 192-201
DOI: 10.5220/0002598101920201
Copyright c© SciTePress

accesses to the same data are much faster in future
references (since they are now in the main memory
and do not need to be accessed from secondary
storage again), and secondly, it ensures that the data
is presented to the database in a synchronous
manner, resulting in data consistency. Any data in
the main memory that has been changed by a
transaction is written back to where it was retrieved
from on the secondary storage device.

 This process of using the main memory area as
an efficient data delivery mechanism is known as
caching, whilst the main memory cache is also
known as the buffer pool. A cache replacement
algorithm is often referred to as a buffer replacement
policy, and its function is to select a victim from the
buffer pool.

 Ideally, secondary storage devices would have
I/O speeds at least as fast as main memory.
However, because there is a latency issue involved
with reading from secondary storage (Sacco and
Schkolnick, 1986), and main memory is far more
costly than secondary storage, the need to find an
optimal practical buffer replacement policy still
exists.

 A number of buffer replacement policies have
been presented in the literature in the quest for that
optimal replacement policy. The more well-known
amongst them have been FIFO (First-In-First-Out),
LIFO (Last-In-First-Out), MRU (Most Recently
Used), LRU (Least Recently Used), and LFU (Least
Frequently Used), as well as others (Effelsberg and
Haerder, 1984).

 More recently, LRFU (Least Recently /
Frequently Used), has been presented, which is a
policy that attempts to combine the benefits of LRU
and LFU (Lee et al., 1999). Whilst LRU-K (O’Neil
et al., 1993) has succeeded in achieving a higher hit-
rate than LRU, implementation is more difficult and
execution time is higher. Even more recently,
policies such as LIRS (Low Inter-reference Recency
Set) (Jiang and Zhang, 2002), 2Q (Johnson and
Shasha, 1994), and W2R (Weighing Room / Waiting
Room) (Jeon and Noh, 1998) have been presented.
Whilst these recent policies suggest a marked
improvement over their predecessors,
implementation is not as simple as for LRU.

 Adaptive caching algorithms go one step
further by using two or more policies, in the attempt
to reap their benefits, whilst avoiding their pitfalls
(Castro et al., 1997).

 Hybrid Adaptive Caching (HAC) is an
adaptive caching algorithm presented by Castro et
al. (Castro et al., 1997) within the environment of
distributed objects. It combines the benefits of both
page and object caching, whilst at the same avoiding
their respective disadvantages. It behaves like a page
caching system when spatial locality is good, and

when spatial locality degrades, it behaves like an
object caching system, thereby adapting to the
different access patterns in the request stream.

 Adaptive Caching with Multiple Experts
(ACME) is another adaptive caching algorithm
presented recently by Ari et al. (Ari et al., 2002)
within the context of the web-caching environment.
ACME makes use of a policy pool that consists of a
number of different static replacement policies
(‘experts’). Each of these experts has its own cache
(known as a Virtual Cache). The request stream is
processed by each of the experts and each performs
its own caching independent of the others. When the
actual cache that holds the data (the Real or Physical
Cache) is full, and a page needs to be replaced, the
experts are queried to see if they would have held
the requested page in their virtual caches. If so, they
are awarded a vote, otherwise they are penalised.
The votes that each expert gains over time are used
to determine its probability in choosing the next
replacement victim.

 ACME also possesses a machine-learning
algorithm and it ‘learns’ to use the current best
policy over time, based on the past successes and
failures of the individual experts in the policy pool
(Ari, 2002). The architecture of ACME is illustrated
in Figure 1 below for clarity.

Figure 1: ACME architecture (Ari, 2002)

ACME is used as the basis of this research
because it readily allows the incorporation of other
policies within its architecture. Not only does this
mean that ACME has the ability to use many
different criteria when selecting a victim, but
importantly, it provides the flexibility required to
adapt it to the database environment (Ari et al.,
2002). However, it should be noted that adding
more policies increases the memory usage, and
increases processing time. For detailed information
on ACME, please refer to (Ari et al., 2002).

ACME-DB: AN ADAPTIVE CACHING MECHANISM USING MULTIPLE EXPERTS FOR DATABASE BUFFERS

193

3 ADAPTING ACME FOR
DATABASE CACHING

ACME was originally designed for use within a
web-cache and as such, it includes certain features
not necessarily required in a database-caching
environment. With regard to the target database
cache simulation in mind, ACME needed to be
modified (Riaz-ud-Din, 2003).

3.1 Required modifications

The original implementation of ACME allows for
objects of different sizes to be cached. This ability is
removed with the assumption that the pages that
exist in memory are of the same size, thereby
removing the need to correlate the sizes of the pages
and freeing buffer space. This makes it easier to
predict the number of I/O operations on the buffer
pool.

 The other modification required was to
remove those policies from the ACME buffer pool
that used the sizes of the objects to determine the
object’s priority in the cache. Since the size of all
objects is the same in the database environment,
these policies are redundant in that one of the criteria
(the object size) used to determine the object’s
priority is no longer an issue. New policies have
been added to the buffer pool, with an emphasis on
using policies applicable to the implemented cache
simulation.

3.2 Additional demands

The additional demands of adapting ACME to the
database environment include adding policies to the
policy pool which are intrinsically dissimilar to the
policies in the original ACME policy pool. The
original ACME policies are based on single priority
queues, and objects are assigned priorities based on
pre-defined functions that use parameters such as
time, size, and so on. However, the new policies that
have been added to the policy pool for ACME-DB
include policies that use more than one priority
queue or divide the main buffer pool into a number
of buffers. Using such policies requires more
sophisticated buffering operations for caching and
uncaching, and requires careful considerations to be
made before integrating them into the ACME-DB
buffer pool.

 In addition, release mechanisms now need to
be defined for each policy using more than a single
queue or stack to manipulate the buffer pool. The
literature that details the multi-buffer policies that
have been added to the policy pool only describe the

caching and uncaching operations of the respective
policies. Consequently, the release mechanisms
(described in Sub-Section 4.2) on arbitrary pages
needed to be designed based on the heuristic
analysis of the intrinsic behaviour of these policies.

4 IMPLEMENTATION

This section discusses issues related to
implementing the additional database policies within
the framework of the original ACME architecture,
after applying the necessary adaptations as described
in the previous section.

4.1 Release Mechanisms

In addition to being able to cache and uncache
pages, each of the policies also needs to know how
to release pages arbitrarily when required. The
release functionality is invoked by each policy when
one of the policies has selected a replacement victim
to expel from the Real Cache. At this point the other
policies would also need to expel the reference to the
replacement victim from their physical caches as
well. However, the replacement victim is not
necessarily the same page that would be selected by
each of the other policies’ uncaching rules.

 This process of releasing an arbitrary page
from the physical cache of each policy requires a
release mechanism that discards the selected page
from cache. Discarding a page with the original
ACME required removing a page from a priority
queue. However, in the ACME-DB implementation,
the release mechanisms are more complex since they
affect more than one queue or stack for the new
policies that have been added to the policy pool.
 The release mechanisms have been determined
based on the way in which the buffers are used by
each of the policies concerned. In the same way that
the caching and uncaching functionality needs to be
separated from each other for the purposes of being
able to integrate them into the overall ACME
architecture, the release mechanism for each policy
needs to be defined separately so that it can be
invoked independent of caching and uncaching.

4.2 Choice of policies

Random, FIFO, LIFO, LRU, LFU, LFUDA, MFU,
and MRU were the only policies that were re-used
from the original ACME implementation, and their
release mechanisms simply evict victim pages from
a priority queue. Six new policies were also added to
the policy pool. These new policies are aimed more

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

194

specifically to work in a database-specific
environment, and have more complex behaviour that
the other existing policies in the policy pool. The
respective release mechanisms for each of the six
policies that have been added as part of ACME-DB
will now be described.

LIRS. This policy is described in (Jiang and

Zhang, 2002). In the case of uncaching a page from
the buffer, the page at the front of the List Q queue
is ejected, creating space for a new page in the
buffer pool. However, when releasing the page
arbitrarily some other factors need to be taken into
account.

 (i) In the case that the page to be released
exists in List Q, that is, the page is a resident HIR
page, the page is released from List Q (wherever in
the queue it may be). This case is identical to the
case of uncaching, except that instead of replacing
the page at the front of the queue, any page in the
queue could be potentially replaced.

 (ii) In the case that the page to be replaced
exists in the LIR page set, that is, the page is an LIR
page, the page is released from the LIR page set.
This creates a space in the LIR page set, which
needs to be filled in before normal caching /
uncaching processes can proceed on the buffers. The
space in the LIR page set is filled by ejecting the
resident HIR page at the tail of List Q, and pushed
onto the top of the LIR page set (the implementation
employs a LIR page set to hold LIR pages). If this
page was not in Stack S, it is pushed onto Stack S,
and flagged as a resident LIR page.

 The release mechanism is designed in this
manner because it is presumed that the HIR page at
the tail of List Q is the HIR page that had the least
recency out of all the other resident HIR pages. In
releasing one of the LIR pages from the LIR page
set, it is considered that the HIR page in List Q with
the least recency should be added to the LIR page
set to fill the space left by the released page. Due to
the fact that a resident HIR page is therefore turned
into an LIR page, it needs to be added to Stack S, if
it is not already there, and flagged as a resident LIR
page. (Note: All pages are flagged as either resident
or non-resident in the implementation).

LRFU. This policy is described in (Lee et al.,
1999). The release mechanism in this case simply
removes the page from the priority queue.

LRU-K. This policy is described in (O’Neil et
al., 1993). The release mechanism in this case
simply removes the page from the priority queue.

SFIFO. This policy is described in (Turner and
Levy, 1981). The release mechanism in this policy
checks the primary buffer for the page to be
released, and releases it from there if found. If not,
then the secondary buffer is checked for the page to

be released, and is released from there. The release
mechanism design in this policy reflects the fact that
pages are not cached to the secondary buffer until
the primary buffer is full, thereby enabling the
arbitrary removal of pages from either buffer.

2Q. This policy is described in (Johnson and
Shasha, 1994). The release mechanism in this policy
checks to see whether the page to be released exists
in the Am buffer, and releases it from there if found.
If not, then the page to be released is searched for in
the A1in buffer, and released from there if found.
The release mechanism was designed in this manner
so that the sizes of each of the A1in and A1out
buffers are checked when uncaching occurs, thereby
enabling the arbitrary release of a page from either
the Am or A1in buffer.

W2R. This policy is described in (Jeon and Noh,
1998). The release mechanism in this policy checks
the Weighing Room buffer for the page to be
released, and releases it from there if found. If not,
the Waiting Room buffer is checked for the page to
be released, and is released from there. The
Weighing Room is implemented as a simple LRU
queue, and the Waiting Room as a FIFO queue,
enabling the simple arbitrary removal of a page from
either queue, without needing any extra queue
adjustments.

5 EVALUATION

This section describes the evaluation environment
for which ACME-DB was implemented, the
methodology used to design the experiments, the
results of those experiments, and an analysis of the
results.

5.1 Evaluation environment and
traces

The ACME-DB simulation was implemented using
C++, compiled and tested on Microsoft Windows
XP, Linux RedHat 6.2 and Linux Debian. The
execution time tests were performed on a Pentium
IV 2GHz PC with 256 MB of RAM.

Two traces were used to simulate request
streams. These traces are the DB2 and OLTP (On-
Line Transaction Processing) traces used by Jeon
and Noh (Jeon and Noh, 1998), Johnson and Sasha
(Johnson and Shasha, 1994) and by O’Neil et al.
(O’Neil et al., 1993). The DB2 trace was originally
obtained by running a DB2 commercial application
and contains 500,000 page requests to 75,514
distinct pages. The OLTP trace contains records of
page requests to a CODASYL database for a

ACME-DB: AN ADAPTIVE CACHING MECHANISM USING MULTIPLE EXPERTS FOR DATABASE BUFFERS

195

window of one hour. It contains 914,145 requests to
186,880 distinct pages.
 Further to these two live traces, five synthetic
traces were also created to simulate well known
susceptibilities in replacement policies, and to
simulate request streams that would not favour any
particular policy in the policy pool.

5.2 Experimental methodology

This sub-section provides details on the experiments
used to test and evaluate ACME-DB. Unless
otherwise stated, all the experiments that tested hit
rates in relation to the request stream were based on
a cache size of 1000 pages. This cache size was
chosen in an attempt to make comparisons with
other experiments that used cache sizes of 1000 as
well.

5.2.1 Combined effect of all policies

This experiment involved running ACME-DB across
the two live traces with all fourteen policies enabled.
This was to determine the combined effect of all the
policies on the Real Cache hit rate, and to show the
hit rates achieved by the virtual caches of the
individual policies.

5.2.2 Real Cache adaptation to the current
best policy

The second part of the experiment involved running
ACME-DB with the best policy and an average-
performing policy to determine the extent to which
the Real Cache adapted to the best policy in terms of
hit rate. The purpose of this test was to examine the
switching of the current best policy and how this
would affect the Real Cache in terms of hit rate.

5.2.3 The adaptive nature of ACME-DB

This experiment involved running ACME-DB with
Synthetic Trace A to determine the behaviour of
ACME when one of the policies switched from one
performance extreme to the other and to illustrate
how the presence of another policy in the policy
pool has a stabilising effect during the performance
degradation of the first policy.

5.2.4 Different cache sizes

ACME-DB was tested with all of its policies in the
policy pool using cache sizes of between 100 and
10000 pages. The objective of this test was to
determine the effect of the cache size on the cache
hit rate.

5.2.5 Average time loss for each additional
policy

It is well known that the different replacement
policies used in ACME-DB vary in performance
with regard to time complexity. It is possible that
the addition of certain policies to the policy pool
could increase the overall time complexity of
ACME-DB, and thus detract from the benefits of
using policies that perform well in terms of hit rate.

5.2.6 Investigation of susceptibilities to well-
known weaknesses

Replacement policies were run using synthetic traces
designed to expose the commonly known
weaknesses of particular policies. This aimed to
expose the susceptibility of other policies in the
policy pool, and observe the effect on the Real
Cache.

5.2.7 The effect of disk reads on the total
execution time

This experiment gauged the effect of disk reads on
total execution time, and whether the ability of the
Real Cache to adapt to the current best policy would
result in improved or poorer performance. The
results of this test would provide the best value
practically, since disk accesses are taken into
account.

5.3 Simulation results

This sub-section presents the main results and
corresponding analyses. For the purposes of this
paper, in most cases, only the results for the DB2
trace have been shown. For more details, please
refer to (Riaz-ud-Din, 2003).

5.3.1 Relative performance of policies.

Figure 2 below shows the hit rates with all policies
in the policy pool using the methodology given in
Sub-Section 5.2.1.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

196

Figure 2: Requests vs. Hit rates

The graph above clearly defines three distinct groups
of policies that are poor, average, and good in their
relative performance. This reflects the relative
strengths and weaknesses inherent in the heuristics
that have been used to drive the victim selection
processes of these policies. MRU and MFU
performed poorly whilst 2Q and LFUDA performed
particularly well.

5.3.2 The performance of the Real Cache

In order to test the desired adaptive behaviour (that
is, the Real Cache always stays closer to the best
policy), only 2Q and FIFO were used in the policy
pool (see Sub-Section 5.2.2 for methodology).

 Experiments in (Riaz-ud-Din, 2003) have
shown that even when only two policies are in the
policy pool, the Real Cache attempts to stay with the
best performing (in terms of its cache hit rate)
expert. Here the Real Cache is using the 2Q policy
to do the majority of its caching, so its hit rates are
similar to 2Q’s hit rates. So if 2Q performs so well,
is there any benefit in having other policies in the
policy pool? Do the policies act synergistically to
improve the Real Cache hit rate?

 Results from tests performed in (Riaz-ud-Din,
2003) show no significant differences between the
Real Cache hit rates where only 2Q and LFUDA are
used, and where all the policies are used. Thus,
having a large number of policies in the policy pool
seems to neither help nor hinder the Real Cache hit
rate. However, this would affect execution time and
memory, which will be examined later in this paper.

 Tests in (Riaz-ud-Din, 2003) also show that
the Real Cache can only perform as well as the
current best performing policy, which may not
always have high hit rates. This shows the
importance of finding the best mix of the minimum
number of policies for inclusion in the policy pool.

5.3.3 The adaptive behaviour of ACME

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

Request Number (thousands)

RealCache

2Q

LIRS

LRFU

SFIFO

WWR

LRU

LFU

RANDOM

LFUDA

MRU

LIFO

FIFO

MFU

LRU2

2Q
Real Cache

FIFO

MRU

LRU
LFUDA

 WWR

RANDOM

LIFO

LRFU

LFU

SFIFO

MFU

LIRS

LRU2

Whilst 2Q has so far performed the best for the live
requests, there may be other request patterns for
which it may not do as well (refer figure 7). The
methodology given in Sub-Section 5.2.3 is used to
highlight this fact and Figure 3 below displays the
results.

Figure 3: Request vs. Hit rate (2Q and LRU only)

It illustrates how LRU starts off with a higher hit

rate than 2Q and at this point in time, the Real Cache
adapts to LRU’s caching behaviour. However, when
the processing reaches the part of the trace that
inhibits the performance of LRU, 2Q continues to
climb the ‘hit rate chart’, while LRU’s performance
starts to degrade significantly. At this point, the Real
Cache does not drop with LRU, but rather adapts to
the new best policy (2Q) to clearly illustrate
ACME’s adaptive nature.

 This is an important point because it indicates
that having other policies should result in a ‘safer’
policy pool. Therefore, if at any particular moment,
the performance of the current best policy degrades
due to a known or un-known weakness, other
policies in the policy pool would ensure that the
Real Cache hit rate would not degrade as well, or at
least not to the same extent.

In all of the relevant figures, it can be seen that

the Real Cache hit rate starts with individual policy
hit rates from one point and then starts to converge
on the best policy as the number of requests
increases. As more requests are made, the machine
learning adjusts the weights until the best
performing policies have a greater probability of
being selected for performing caching and
uncaching actions on the Real Cache, which then
starts resembling the current best policy with respect
to its hit rate.

H
it

R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Request Number (thousands)

RealCache

2Q

LRU

2Q

Real Cache

LRU

H
it

R
at

e
(%

)

ACME-DB: AN ADAPTIVE CACHING MECHANISM USING MULTIPLE EXPERTS FOR DATABASE BUFFERS

197

5.3.4 The effect of having different cache
sizes

Live traces were driven using different cache sizes
to show the effect of cache size on the Real Cache
with Figure 4 below showing hit rate versus the
cache size for the DB2 trace.

Figure 4: Cache Size vs. Hit rate, DB2 Trace

The effect of cache size on the Real Cache hit rate is
summarised for each of the live traces in Table 1
below.

Table 1: Real Cache hit rates for different cache sizes
Real Cache Hit Rates (%) Cache

Size DB2 OLTP
 Value % Increase Value % Increase

100 39.5 -- 7.1 --
200 47.8 20.9 13.9 94.9
300 52.2 9.3 17.1 23.0
400 55.2 5.7 21.7 27.5
500 57.1 3.5 24.9 14.6
800 60.5 5.9 33.7 35.2

1,000 61.6 1.8 33.9 0.7
2,000 67.0 8.7 40.0 17.9
3,000 69.1 3.3 45.8 14.5
5,000 71.11 2.9 50.1 9.5

10,000 73.27 3.0 55.3 10.4

The choice of cache sizes shown above were
determined by the cache sizes that have been used to
test the new policies that have been added to the
policy pool, in their respective papers. Doing so
provides a basis for comparison with the other
policies using similar cache sizes.

 Figure 4 cumulatively shows that increasing
the cache size also increases the individual policies’
hit rates, and therefore the Real Cache hit rate (since
the Real Cache follows the best policy at any time
regardless of cache size). However, the major
sacrifice for achieving better hit rates as a result of
larger cache sizes is that the time required to process

the requests also increases (since there are more
pages to search through). This is largely due to the
fact that processing time is positively correlated to
the number of policies in the policy pool (as each of
the virtual caches also perform their own caching).

5.3.5 Effect of replacement policies on time
performance

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

Cache Size (pages)

RealCache

2Q

LIRS

LRFU

SFIFO

WWR

LRU

LFU

RANDOM

LFUDA

MRU

LIFO

FIFO

MFU

2Q
Real Cache

LIRS

LRFU

SFIFO

WWR
LRU

LFU

RANDOM

LFUDA

MRU

LIFO

FIFO

MFU

Just as replacement policies vary in performance
with regard to hit rates, so too do they vary with
regard to their time complexities. Figure 5 below
illustrates this point by showing the additional time
each policy adds to the total time it takes for ACME-
DB to process a request stream of 50,000 requests as
described in the methodology outlined in Sub-
Section 5.2.5.

Figure 5: The increase in time by adding each policy

In the above figure, all policies (except LRU-2)
increase the total time for ACME to process the
request stream in similar magnitude (around 300 to
500 seconds) for 50,000 requests. Of this subset,
LFUDA increased the time the most - by around 600
seconds (10 minutes). However, to put this in
perspective, LRU-2 increased the total time by over
8000 seconds (more than 2 hours), which is 13 times
slower than LFUDA. Thus, LRU-2’s performance
in this respect does not warrant its inclusion in the
policy pool.

 2Q, which has been shown to perform
relatively on par with LFUDA using the live traces,
only adds half as much time (around 300 seconds) as
LFUDA does to the overall running time and
therefore would arguably make it better for request
streams similar to the DB2 or OLTP traces. Once
again, this shows the importance of reducing the
number of policies, and of finding a good mix of
policies.

H
it

R
at

e
(%

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

LIR
S

LR
FU

SFIFO 2Q
WW

R
LR

U
FIFO

LF
U

LF
UDA

LIF
O

MFU
MRU

RANDOM
LR

U-2

 Replacement Policy

A
dd

iti
on

al
 ti

m
e

to
 e

xe
cu

te
 (s

ec
on

ds
)

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

198

5.3.6 Effect on all policies by introducing
well-known susceptibilities

Figure 6 below shows the effect of sequential
flooding. Specifically, a synthetic trace was used to
highlight the sequential flooding patterns to which
LRU is susceptible.

Figure 6: The effect of sequential flooding

As Figure 6 above shows, the hit rates for all of
the policies dramatically change at 10,000 requests
(this is where the sequential flooding patterns are
introduced into the request stream). As expected, the
hit rates for LRU, and W2R (which is based on LRU
in this implementation) significantly degrade. SFIFO
also shows a similar weakness to this susceptibility,
and this is because the primary and secondary
buffers in SFIFO combine to act in a similar manner
to LRU.

 The remaining policies improve upon
encountering the sequential flooding because most
of them have been designed specifically to avoid this
susceptibility. The erratic behaviour of the FIFO
policy is due to the fact that the partial DB2 Trace
that is included at the start of the synthetic trace used
here has already referenced the same pages that are
referenced in the sequential flooding part of the
trace. Thus, the contents of the buffer pool upon
encountering the sequential flooding includes some
of those pages to be referenced, and when these
pages are referenced during the sequential flooding
part, the hit rates of the FIFO trace increases
temporarily, and when other pages are not found the
hit rates decrease again.

 Introducing sequential scanning patterns in the
request stream shows an immediate degradation of
performance in terms of hits for all policies. Some
policies recover, whilst others continue to degrade,
but the Real Cache stays with the better policies.
Please see (Riaz-ud-Din, 2003) for the details of this
experiment.
 Figure 7 below shows the effect of skewed high
reference frequencies on the policies in the policy
pool. A synthetic trace was designed to highlight the
frequency patterns to which LFU is susceptible.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Request Number (thousands)

RealCache

2Q

LIRS

LRFU

SFIFO

WWR

LRU

LFU

RANDOM

LFUDA

MRU

LIFO

FIFO

MFU

LRU2

2Q

RealCache

FIFO

MRU

LRU
LFUDA

 WWR

RANDOM

LIFO
LRFU
LFU

SFIFO

MFU

LIRS

LRU2

Figure 7: The effect of skewed high reference frequencies

The skewed high reference frequency patterns
were introduced at 15,000 requests, as shown by the
immediate degradation of hit rates for all policies.
Interestingly, 2Q, which has performed the best with
all of the tests so far, is the worst performing policy
for this trace and along with other policies it
continues to decline upon encountering the skewed
high reference frequency patterns. This indicates
that 2Q is susceptible to skewed high frequency
patterns in request streams and once again confirms
that having other policies results in a ‘safer’ policy
pool than if just one policy, such as 2Q, was relied
upon.

 So far, it would seem that a good choice of
policies for the policy pool would include 2Q and
LRU in particular because 2Q performs very well
with most of the request streams, and for those that it
does not, LRU performs very well. Thus, they
complement each other well and neither has a
significant overhead in terms of execution time, in
comparison to other policies such as LFUDA or
LRU2.

 The question of which policies and how many
policies to use, is one that is well worth answering.
However, this cannot be addressed by studying the
effects of running through only two traces, but needs
more in-depth examination across a wide range of
live access patterns. It would depend highly on the
databases expected access patterns.

5.3.7 The effect of misses on the total
processing time

Until now the discussion of processing time with
regard to the time taken to find a victim and the
additional time added per policy has only dealt with
the time taken for ACME-DB to do the processing
required to perform the caching, uncaching, release
and other activities within the scope of the
implementation. The time taken to read from disk,
which occurs in the event of a miss, has until now
been ignored. However, the time that is taken to

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Request Number (thousands)

H
it

R
at

e
(%

)

H
it

R
at

e
(%

)

RealCache

2Q

LIRS

LRFU

SFIFO

WWR

LRU

LFU

RANDOM

LFUDA

MRU

LIFO

FIFO

MFU

LRU2

2Q

RealCache

FIFO

MRU

LRU

LFUDA

 WWR

RANDOM

LIFO

LRFU
LFU

SFIFO

MFU

LIRS

LRU2

ACME-DB: AN ADAPTIVE CACHING MECHANISM USING MULTIPLE EXPERTS FOR DATABASE BUFFERS

199

read from disk is significant, and forms a major part
of the latencies concerned with the overall database
performance. As noted, the time needed to read
from disk is some 170,000 times greater than
reading from memory and each read from disk takes
around 10 milliseconds.
 To gauge the effect on the total time required for
processing requests (including the time for disk
reads), the methodology given in Sub-Section 5.2.7
was used. The trace used was intended to induce the
best and worst behaviour of SFIFO and 2Q at
opposite ends of the spectrum. The results are
presented in Table 2 below.

Table 2: Execution times with and without disk reads

Policies in
Policy Pool

Time to
execute
without
disk
reads
(seconds)

Number
of
misses

Time to
execute
including
disk reads
(seconds)

2Q 12 28,197 293.97
SFIFO 8 58,196 589.96
2Q & SFIFO 18 4,852 66.52

The above table shows the time taken to execute

the trace, the number of misses on the Real Cache,
and the time to execute including disk reads, for the
two policies. The column to note is right-most,
which shows that the performance was significantly
better by introducing two policies in the policy pool,
each of which contributed to the hit rate when the
other was susceptible to the pattern in the request
stream. Overall a gain of 227.45 seconds (almost 4
minutes) over 96,000 requests is made.

 The above experiment has shown that when
ACME-DB encounters a request stream where the
current best policy changes, the overall execution
time (when accounting for the disk reads avoided by
maintaining a higher hit rate) decreases
substantially.
 However, what if the current best policy is the
same policy over a long period of time (or even the
entire request stream), as with the live traces used
here? In this case, what would the eventual loss in
performance be by using ACME-DB, rather than the
policy just by itself? In order to answer this all
important question, the above experiment was run
once again, but this time with the first 100,000
requests from the DB2 trace, which has shown to
favour 2Q over all the other policies. The results are
presented in Table 3 below.

Table 3: Execution times with and without disk reads

Policies in
Policy Pool

Time to
execute
without
disk reads
(seconds)

Number
of
misses

Time to
execute
including
disk reads
(seconds)

2Q 15 367,020 382.02
SFIFO 4 392,900 396.9
2Q & SFIFO 34 371,170 405.17

Running 2Q by itself results in the fastest

execution time overall, whilst the slowest is when
running SFIFO and 2Q together. The loss in time by
adding SFIFO is 23.15 seconds over 100,000
requests, compared to the 227.45 seconds gained in
the previous experiment. This time loss is only a
small fraction of the time that is potentially gained
by using ACME-DB should a request pattern to
which 2Q is susceptible be encountered.
Furthermore, if 2Q continues to be the current best
policy, the Real Cache’s hit rate will continue to
move closer to 2Q’s hit rate. Consequently, the Real
Cache’s misses will be more or less the same as
2Q’s misses, resulting in fewer disk reads, and
ultimately faster execution times.

These experiments confirm that the net gain by
introducing both policies would indeed result in
better overall performance, especially where the
request stream exhibits differing patterns of access
with time.

6 CONCLUSIONS

The work described in this paper examines the
implementation of a recently proposed adaptive
algorithm, known as Adaptive Caching with
Multiple Experts (ACME), within the database
environment. The results indicate that ACME works
well with single-sized page caches and with
replacement policies that are readily applied to the
database buffer pool. It has also been shown that
ACME maintains its adaptive behaviour when
caching database pages, and stays with the current
best policy. Most significantly, it has also been
shown that whilst adding more policies to the policy
pool increases the execution time, the overall
processing time is dramatically reduced due to a
greater number of hits. The results are based on an
implementation that is efficient, can be readily
integrated into the real world environment, and
should provide great incentive for further database
research. The results of this work provide an
excellent platform for further research in the field of
database buffer replacement.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

200

ACKNOWLEDGEMENTS

We would like to thank Ismail Ari for the original
ACME source code and Xiaodong Zhang, Song
Jiang, Sam H. Noh, and Heung Seok Jeon for the
live traces.

REFERENCES

Ari, I. (2002). Storage Embedded Networks (SEN) and
Adaptive Caching using Multiple Experts (ACME),
Ph.D. Proposal.

Ari, I., Amer, A., Miller, E., Brandt, S., and Long, D.
(2002). Who is more adaptive? ACME: Adaptive
Caching using Multiple Experts. Workshop on
Distributed Data and Structures (WDAS 2002).

Castro, M., Adya, A., Liskov, B., and Myers, A. C.
(1997). HAC: Hybrid Adaptive Caching for
Distributed Storage Systems. In Proceedings of the
16th ACM Symposium on Operating Systems
Principles (SOSP), 102–115.

Effelsberg, W. and Haerder, T. (1984). Principles of
Database Buffer Management. In ACM Transactions
on Database Systems, 9 (4), 560 – 595.

Jeon, H. S. and Noh, S. H. (1998). A Database Disk Buffer
Management Algorithm Based on Prefetching. In
Proceedings of the ACM Conference on Information
and Knowledge Management (CIKM '98), 167-174.

Jiang, S. and Zhang, X. (2002). LIRS: An Efficient Low
Inter-Reference Recency Set Replacement Policy to
Improve Buffer Cache Performance. In Proceedings of
the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, 31-42.

Johnson, T. and Shasha, D. (1994). 2Q: A Low Overhead
High Performance Buffer Management Replacement
Algorithm. In Proceedings of the 20th International
Conference on Very Large Databases, 439 - 450.

Lee, D., Choi, J., Kim, J. H., Noh, S. H., Min, S. L., Cho,
Y. and Kim, C. S. (1999). On the Existence of a
Spectrum of Policies that Subsumes the Least
Recently Used (LRU) and Least Frequently Used
(LFU) Policies. In Proceedings of ACM
SIGMETRICS'99 International Conference on
Measurement and Modeling of Computer Systems, 134
- 143.

O’Neil, E. J., O’Neil, P. E., and Weikum, G. (1993). The
LRU-K Page Replacement Algorithm for Database
Disk Buffering. In Proceedings of ACM MOD
International Conference on Management of Data,
297 – 306.

Ramakrishnan, R. and Gehrke, J. (2000). Database
Management Systems, McGraw Hill, USA.

Riaz-ud-din, F. (2003). Adapting ACME to the Database
Caching Environment. Masters Thesis, Massey
University.

Sacco, G. M. and Schkolnick, M. (1986). Buffer
Management in Relational Database Systems. In ACM
Transactions on Database Systems, 11, 473 – 498.

Turner, R. and Levy, H. (1981). Segmented FIFO Page
Replacement. In Proceedings of ACM SIGMETRICS,
48 – 51.

ACME-DB: AN ADAPTIVE CACHING MECHANISM USING MULTIPLE EXPERTS FOR DATABASE BUFFERS

201

