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Abstract: An adaptive caching algorithm, known as Adaptive Caching with Multiple Experts (ACME), has recently 
been presented in the field of web-caching. We explore the migration of ACME to the database caching 
environment. By integrating recently proposed database replacement policies into ACME’s existing policy 
pool, an attempt is made to gauge ACME’s ability to utilise newer methods of database caching. The results 
suggest that ACME is indeed well-suited to the database environment and performs as well as the best 
currently caching policy within its policy pool at any particular moment in its request stream. Although 
execution time increases by integrating more policies into ACME, the overall processing time improves 
drastically with erratic patterns of access, when compared to static policies. 

1 INTRODUCTION 

One of the key factors affecting a database’s 
performance is its ability to effectively and 
efficiently cache frequently requested data. Main 
memory access is approximately 170,000 times 
faster than disk accesses (Ramakrishnan and Gehrke, 
2000). The challenge in main memory caching is to 
determine which page of data to replace (the 
‘victim’) from the buffer pool once it is full, to make 
space for future data pages to be read in from 
secondary storage.   The selection of victims is 
performed by a cache replacement algorithm, which 
chooses victims according to certain criteria based 
on past access patterns.   

 This paper attempts to trial and evaluate a 
recently presented adaptive cache replacement 
algorithm, known as ACME, or Adaptive Caching 
with Multiple Experts (Ari et al., 2002). ACME uses 
machine learning to dynamically select the cache 
victim from a number of policies, or experts, during 
the cache replacement process.  Whilst ACME was 
originally presented for the web-caching 
environment, this paper describes the evaluation of 
the adaptation of ACME to the database 

environment. The rigidity and robustness of ACME 
is also tested by its ability to integrate more complex 
policies in its policy pool, including optimizations 
achieved in terms of overall processing time. 

 The remainder of this paper is presented as 
follows: Section 2 presents related work, including 
adaptive caching algorithms, with a focus on 
ACME. Sections 3 and 4 respectively, detail the way 
in which ACME has been adapted to the database 
environment and the issues concerned with 
implementation. Section 5 analyses the results 
obtained from driving the database-adapted ACME 
(referred to as ACME-DB in this paper) with live 
and synthetic traces. Finally, section 6 presents 
conclusions.  

2 RELATED WORK 

The main task of a buffer manager is to retrieve the 
data from secondary storage into main memory, thus 
allowing the data in the main memory to be accessed 
by the transactions that request information from the 
database.  There are two purposes for accessing data 
in this manner: firstly it ensures that subsequent 
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accesses to the same data are much faster in future 
references (since they are now in the main memory 
and do not need to be accessed from secondary 
storage again), and secondly, it ensures that the data 
is presented to the database in a synchronous 
manner, resulting in data consistency. Any data in 
the main memory that has been changed by a 
transaction is written back to where it was retrieved 
from on the secondary storage device.  

 This process of using the main memory area as 
an efficient data delivery mechanism is known as 
caching, whilst the main memory cache is also 
known as the buffer pool. A cache replacement 
algorithm is often referred to as a buffer replacement 
policy, and its function is to select a victim from the 
buffer pool.  

 Ideally, secondary storage devices would have 
I/O speeds at least as fast as main memory. 
However, because there is a latency issue involved 
with reading from secondary storage (Sacco and 
Schkolnick, 1986), and main memory is far more 
costly than secondary storage, the need to find an 
optimal practical buffer replacement policy still 
exists.  

 A number of buffer replacement policies have 
been presented in the literature in the quest for that 
optimal replacement policy. The more well-known 
amongst them have been FIFO (First-In-First-Out), 
LIFO (Last-In-First-Out), MRU (Most Recently 
Used), LRU (Least Recently Used), and LFU (Least 
Frequently Used), as well as others (Effelsberg and 
Haerder, 1984). 

 More recently, LRFU (Least Recently / 
Frequently Used), has been presented, which is a 
policy that attempts to combine the benefits of LRU 
and LFU (Lee et al., 1999). Whilst LRU-K (O’Neil 
et al., 1993) has succeeded in achieving a higher hit-
rate than LRU, implementation is more difficult and 
execution time is higher. Even more recently, 
policies such as LIRS (Low Inter-reference Recency 
Set) (Jiang and Zhang, 2002), 2Q (Johnson and 
Shasha, 1994), and W2R (Weighing Room / Waiting 
Room) (Jeon and Noh, 1998) have been presented. 
Whilst these recent policies suggest a marked 
improvement over their predecessors, 
implementation is not as simple as for LRU. 

 Adaptive caching algorithms go one step 
further by  using two or more policies, in the attempt 
to reap their benefits, whilst avoiding their pitfalls 
(Castro et al., 1997). 

 Hybrid Adaptive Caching (HAC) is an 
adaptive caching algorithm presented by Castro et 
al. (Castro et al., 1997) within the environment of 
distributed objects.  It combines the benefits of both 
page and object caching, whilst at the same avoiding 
their respective disadvantages. It behaves like a page 
caching system when spatial locality is good, and 

when spatial locality degrades, it behaves like an 
object caching system, thereby adapting to the 
different access patterns in the request stream.  

 Adaptive Caching with Multiple Experts 
(ACME) is another adaptive caching algorithm 
presented recently by Ari et al. (Ari et al., 2002) 
within the context of the web-caching environment.  
ACME makes use of a policy pool that consists of a 
number of different static replacement policies 
(‘experts’). Each of these experts has its own cache 
(known as a Virtual Cache). The request stream is 
processed by each of the experts and each performs 
its own caching independent of the others. When the 
actual cache that holds the data (the Real or Physical 
Cache) is full, and a page needs to be replaced, the 
experts are queried to see if they would have held 
the requested page in their virtual caches. If so, they 
are awarded a vote, otherwise they are penalised. 
The votes that each expert gains over time are used 
to determine its probability in choosing the next 
replacement victim.   

 ACME also possesses a machine-learning 
algorithm and it ‘learns’ to use the current best 
policy over time, based on the past successes and 
failures of the individual experts in the policy pool 
(Ari, 2002). The architecture of ACME is illustrated 
in Figure 1 below for clarity. 

Figure 1: ACME architecture (Ari, 2002) 
 

ACME is used as the basis of this research 
because it readily allows the incorporation of other 
policies within its architecture.  Not only does this 
mean that ACME has the ability to use many 
different criteria when selecting a victim, but 
importantly, it provides the flexibility required to 
adapt it to the database environment (Ari et al., 
2002).  However, it should be noted that adding 
more policies increases the memory usage, and 
increases processing time. For detailed information 
on ACME, please refer to (Ari et al., 2002). 
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3 ADAPTING ACME FOR 
DATABASE CACHING 

ACME was originally designed for use within a 
web-cache and as such, it includes certain features 
not necessarily required in a database-caching 
environment. With regard to the target database 
cache simulation in mind, ACME needed to be 
modified (Riaz-ud-Din, 2003). 

3.1 Required modifications  

The original implementation of ACME allows for 
objects of different sizes to be cached. This ability is 
removed with the assumption that the pages that 
exist in memory are of the same size, thereby 
removing the need to correlate the sizes of the pages 
and freeing buffer space. This makes it easier to 
predict the number of I/O operations on the buffer 
pool. 

 The other modification required was to 
remove those policies from the ACME buffer pool 
that used the sizes of the objects to determine the 
object’s priority in the cache. Since the size of all 
objects is the same in the database environment, 
these policies are redundant in that one of the criteria 
(the object size) used to determine the object’s 
priority is no longer an issue. New policies have 
been added to the buffer pool, with an emphasis on 
using policies applicable to the implemented cache 
simulation.  

3.2 Additional demands 

The additional demands of adapting ACME to the 
database environment include adding policies to the 
policy pool which are intrinsically dissimilar to the 
policies in the original ACME policy pool. The 
original ACME policies are based on single priority 
queues, and objects are assigned priorities based on 
pre-defined functions that use parameters such as 
time, size, and so on. However, the new policies that 
have been added to the policy pool for ACME-DB 
include policies that use more than one priority 
queue or divide the main buffer pool into a number 
of buffers. Using such policies requires more 
sophisticated buffering operations for caching and 
uncaching, and requires careful considerations to be 
made before integrating them into the ACME-DB 
buffer pool. 

 In addition, release mechanisms now need to 
be defined for each policy using more than a single 
queue or stack to manipulate the buffer pool. The 
literature that details the multi-buffer policies that 
have been added to the policy pool only describe the 

caching and uncaching operations of the respective 
policies.  Consequently, the release mechanisms 
(described in Sub-Section 4.2) on arbitrary pages 
needed to be designed based on the heuristic 
analysis of the intrinsic behaviour of these policies.  

4 IMPLEMENTATION 

This section discusses issues related to 
implementing the additional database policies within 
the framework of the original ACME architecture, 
after applying the necessary adaptations as described 
in the previous section. 

4.1 Release Mechanisms  

In addition to being able to cache and uncache 
pages, each of the policies also needs to know how 
to release pages arbitrarily when required. The 
release functionality is invoked by each policy when 
one of the policies has selected a replacement victim 
to expel from the Real Cache. At this point the other 
policies would also need to expel the reference to the 
replacement victim from their physical caches as 
well. However, the replacement victim is not 
necessarily the same page that would be selected by 
each of the other policies’ uncaching rules.  

 This process of releasing an arbitrary page 
from the physical cache of each policy requires a 
release mechanism that discards the selected page 
from cache. Discarding a page with the original 
ACME required removing a page from a priority 
queue. However, in the ACME-DB implementation, 
the release mechanisms are more complex since they 
affect more than one queue or stack for the new 
policies that have been added to the policy pool. 
 The release mechanisms have been determined 
based on the way in which the buffers are used by 
each of the policies concerned. In the same way that 
the caching and uncaching functionality needs to be 
separated from each other for the purposes of being 
able to integrate them into the overall ACME 
architecture, the release mechanism for each policy 
needs to be defined separately so that it can be 
invoked independent of caching and uncaching. 

4.2 Choice of policies 

Random, FIFO, LIFO, LRU, LFU, LFUDA, MFU, 
and MRU were the only policies that were re-used 
from the original ACME implementation, and their 
release mechanisms simply evict victim pages from 
a priority queue. Six new policies were also added to 
the policy pool. These new policies are aimed more 
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specifically to work in a database-specific 
environment, and have more complex behaviour that 
the other existing policies in the policy pool. The 
respective release mechanisms for each of the six 
policies that have been added as part of ACME-DB 
will now be described.  

 
LIRS. This policy is described in (Jiang and 

Zhang, 2002). In the case of uncaching a page from 
the buffer, the page at the front of the List Q queue 
is ejected, creating space for a new page in the 
buffer pool. However, when releasing the page 
arbitrarily some other factors need to be taken into 
account.  

 (i) In the case that the page to be released 
exists in List Q, that is, the page is a resident HIR 
page, the page is released from List Q (wherever in 
the queue it may be). This case is identical to the 
case of uncaching, except that instead of replacing 
the page at the front of the queue, any page in the 
queue could be potentially replaced. 

 (ii) In the case that the page to be replaced 
exists in the LIR page set, that is, the page is an LIR 
page, the page is released from the LIR page set. 
This creates a space in the LIR page set, which 
needs to be filled in before normal caching / 
uncaching processes can proceed on the buffers. The 
space in the LIR page set is filled by ejecting the 
resident HIR page at the tail of List Q, and pushed 
onto the top of the LIR page set (the implementation 
employs a LIR page set to hold LIR pages). If this 
page was not in Stack S, it is pushed onto Stack S, 
and flagged as a resident LIR page. 

 The release mechanism is designed in this 
manner because it is presumed that the HIR page at 
the tail of List Q is the HIR page that had the least 
recency out of all the other resident HIR pages. In 
releasing one of the LIR pages from the LIR page 
set, it is considered that the HIR page in List Q with 
the least recency should be added to the LIR page 
set to fill the space left by the released page. Due to 
the fact that a resident HIR page is therefore turned 
into an LIR page, it needs to be added to Stack S, if 
it is not already there, and flagged as a resident LIR 
page. (Note: All pages are flagged as either resident 
or non-resident in the implementation). 

LRFU. This policy is described in (Lee et al., 
1999). The release mechanism in this case simply 
removes the page from the priority queue. 

LRU-K. This policy is described in (O’Neil et 
al., 1993). The release mechanism in this case 
simply removes the page from the priority queue. 

SFIFO. This policy is described in (Turner and 
Levy, 1981). The release mechanism in this policy 
checks the primary buffer for the page to be 
released, and releases it from there if found. If not, 
then the secondary buffer is checked for the page to 

be released, and is released from there. The release 
mechanism design in this policy reflects the fact that 
pages are not cached to the secondary buffer until 
the primary buffer is full, thereby enabling the 
arbitrary removal of pages from either buffer. 

2Q. This policy is described in (Johnson and 
Shasha, 1994). The release mechanism in this policy 
checks to see whether the page to be released exists 
in the Am buffer, and releases it from there if found. 
If not, then the page to be released is searched for in 
the A1in buffer, and released from there if found.  
The  release mechanism was designed in this manner 
so that the sizes of each of the A1in and A1out 
buffers are checked when uncaching occurs, thereby 
enabling the arbitrary release of a page from either 
the Am or A1in buffer. 

W2R.  This policy is described in (Jeon and Noh, 
1998). The release mechanism in this policy checks 
the Weighing Room buffer for the page to be 
released, and releases it from there if found. If not, 
the Waiting Room buffer is checked for the page to 
be released, and is released from there.  The 
Weighing Room is implemented as a simple LRU 
queue, and the Waiting Room as a FIFO queue, 
enabling the simple arbitrary removal of a page from 
either queue, without needing any extra queue 
adjustments. 

5 EVALUATION 

This section describes the evaluation environment 
for which ACME-DB was implemented, the 
methodology used to design the experiments, the 
results of those experiments, and an analysis of the 
results. 

5.1 Evaluation environment and 
traces 

The ACME-DB simulation was implemented using 
C++, compiled and tested on Microsoft Windows 
XP, Linux RedHat 6.2 and Linux Debian. The 
execution time tests were performed on a Pentium 
IV 2GHz PC with 256 MB of RAM. 

Two traces were used to simulate request 
streams. These traces are the DB2 and OLTP (On-
Line Transaction Processing) traces used by Jeon 
and Noh (Jeon and Noh, 1998), Johnson and Sasha 
(Johnson and Shasha, 1994) and by O’Neil et al. 
(O’Neil et al., 1993). The DB2 trace was originally 
obtained by running a DB2 commercial application 
and contains 500,000 page requests to 75,514 
distinct pages. The OLTP trace contains records of 
page requests to a CODASYL database for a 
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window of one hour. It contains 914,145 requests to 
186,880 distinct pages. 
 Further to these two live traces, five synthetic 
traces were also created to simulate well known 
susceptibilities in replacement policies, and to 
simulate request streams that would not favour any 
particular policy in the policy pool.  

5.2 Experimental methodology 

This sub-section provides details on the experiments  
used to test and evaluate ACME-DB. Unless 
otherwise stated, all the experiments that tested hit 
rates in relation to the request stream were based on 
a cache size of 1000 pages. This cache size was 
chosen in an attempt to make comparisons with 
other experiments that used cache sizes of 1000 as 
well. 

5.2.1 Combined effect of all policies 

This experiment involved running ACME-DB across 
the two live traces with all fourteen policies enabled. 
This was to determine the combined effect of all the 
policies on the Real Cache hit rate, and to show the 
hit rates achieved by the virtual caches of the 
individual policies. 

5.2.2 Real Cache adaptation to the current 
best policy 

The second part of the experiment involved running 
ACME-DB with the best policy and an average-
performing policy to determine the extent to which 
the Real Cache adapted to the best policy in terms of 
hit rate. The purpose of this test was to examine the 
switching of the current best policy and how this 
would affect the Real Cache in terms of hit rate.  

5.2.3 The adaptive nature of ACME-DB 

This experiment involved running ACME-DB with 
Synthetic Trace A to determine the behaviour of 
ACME when one of the policies switched from one 
performance extreme to the other and to illustrate 
how the presence of another policy in the policy 
pool has a stabilising effect during the performance 
degradation of the first policy.  

5.2.4 Different cache sizes 

ACME-DB was tested with all of its policies in the 
policy pool using cache sizes of between 100 and 
10000 pages.  The objective of this test was to 
determine the effect of the cache size on the cache 
hit rate.  

5.2.5 Average time loss for each additional 
policy 

It is well known that the different replacement 
policies used in ACME-DB vary in performance 
with regard to time complexity.  It is possible that 
the addition of certain policies to the policy pool 
could increase the overall time complexity of 
ACME-DB, and thus detract from the benefits of 
using policies that perform well in terms of hit rate.  

5.2.6 Investigation of susceptibilities to well-
known weaknesses 

Replacement policies were run using synthetic traces 
designed to expose the commonly known 
weaknesses of particular policies.  This aimed to 
expose the susceptibility of other policies in the 
policy pool, and observe the effect on the Real 
Cache.  

5.2.7 The effect of disk reads on the total 
execution time  

This experiment gauged the effect of disk reads on 
total execution time, and whether the ability of the 
Real Cache to adapt to the current best policy would 
result in improved or poorer performance. The 
results of this test would provide the best value 
practically, since disk accesses are taken into 
account. 

5.3 Simulation results 

This sub-section presents the main results and 
corresponding analyses. For the purposes of this 
paper, in most cases, only the results for the DB2 
trace have been shown. For more details, please 
refer to (Riaz-ud-Din, 2003). 

5.3.1 Relative performance of policies.   

Figure 2 below shows the hit rates with all policies 
in the policy pool using the methodology given in 
Sub-Section 5.2.1. 
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Figure 2: Requests vs. Hit rates 
 
The graph above clearly defines three distinct groups 
of policies that are poor, average, and good in their 
relative performance. This reflects the relative 
strengths and weaknesses inherent in the heuristics 
that have been used to drive the victim selection 
processes of these policies. MRU and MFU 
performed poorly whilst 2Q and LFUDA performed 
particularly well. 

5.3.2 The performance of the Real Cache 

In order to test the desired adaptive behaviour (that 
is, the Real Cache always stays closer to the best 
policy), only 2Q and FIFO were used in the policy 
pool (see Sub-Section 5.2.2 for methodology).  

 Experiments in (Riaz-ud-Din, 2003) have 
shown that even when only two policies are in the 
policy pool, the Real Cache attempts to stay with the 
best performing (in terms of its cache hit rate) 
expert.  Here the Real Cache is using the 2Q policy 
to do the majority of its caching, so its hit rates are 
similar to 2Q’s hit rates.  So if 2Q performs so well, 
is there any benefit in having other policies in the 
policy pool?  Do the policies act synergistically to 
improve the Real Cache hit rate?  

 Results from tests performed in (Riaz-ud-Din, 
2003) show no significant differences between the 
Real Cache hit rates where only 2Q and LFUDA are 
used, and where all the policies are used. Thus, 
having a large number of policies in the policy pool 
seems to neither help nor hinder the Real Cache hit 
rate. However, this would affect execution time and 
memory, which will be examined later in this paper. 

 Tests in (Riaz-ud-Din, 2003) also show that 
the Real Cache can only perform as well as the 
current best performing policy, which may not 
always have high hit rates. This shows the 
importance of finding the best mix of the minimum 
number of policies for inclusion in the policy pool. 

 

 

5.3.3 The adaptive behaviour of ACME 

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

Request Number (thousands)

RealCache

2Q

LIRS

LRFU

SFIFO

WWR

LRU

LFU

RANDOM

LFUDA

MRU

LIFO

FIFO

MFU

LRU2

2Q
Real Cache

FIFO

MRU

LRU
LFUDA

 WWR

RANDOM

LIFO

LRFU

LFU

SFIFO

MFU

LIRS

LRU2

Whilst 2Q has so far performed the best for the live 
requests, there may be other request patterns for 
which it may not do as well (refer figure 7). The 
methodology given in Sub-Section 5.2.3 is used to 
highlight this fact and Figure 3 below displays the 
results. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Request vs. Hit rate (2Q and LRU only) 
 
It illustrates how LRU starts off with a higher hit 

rate than 2Q and at this point in time, the Real Cache 
adapts to LRU’s caching behaviour. However, when 
the processing reaches the part of the trace that 
inhibits the performance of LRU, 2Q continues to 
climb the ‘hit rate chart’, while LRU’s performance 
starts to degrade significantly. At this point, the Real 
Cache does not drop with LRU, but rather adapts to 
the new best policy (2Q) to clearly illustrate 
ACME’s adaptive nature. 

 This is an important point because it indicates 
that having other policies should result in a ‘safer’ 
policy pool.  Therefore,  if at any particular moment, 
the performance of the current best policy degrades 
due to a known or un-known weakness, other 
policies in the policy pool would ensure that the 
Real Cache hit rate would not degrade as well, or at 
least not to the same extent.  

 
In all of the relevant figures, it can be seen that 

the Real Cache hit rate starts with individual policy 
hit rates from one point and then starts to converge 
on the best policy as the number of requests 
increases. As more requests are made, the machine 
learning adjusts the weights until the best 
performing policies have a greater probability of 
being selected for performing caching and 
uncaching actions on the Real Cache, which then 
starts resembling the current best policy with respect 
to its hit rate. 
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5.3.4 The effect of having different cache 
sizes 

Live traces were driven using different cache sizes 
to show the effect of cache size on the Real Cache 
with Figure 4 below showing hit rate versus the 
cache size for the DB2 trace. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Cache Size vs. Hit rate, DB2 Trace 
 
The effect of cache size on the Real Cache hit rate is 
summarised for each of the live traces in Table 1 
below. 
 

Table 1: Real Cache hit rates for different cache sizes 
Real Cache Hit Rates (%) Cache 

Size DB2 OLTP 
 Value % Increase Value % Increase 

100 39.5 -- 7.1 -- 
200 47.8 20.9 13.9 94.9 
300 52.2 9.3 17.1 23.0 
400 55.2 5.7 21.7 27.5 
500 57.1 3.5 24.9 14.6 
800 60.5 5.9 33.7 35.2 

1,000 61.6 1.8 33.9 0.7 
2,000 67.0 8.7 40.0 17.9 
3,000 69.1 3.3 45.8 14.5 
5,000 71.11 2.9 50.1 9.5 

10,000 73.27 3.0 55.3 10.4 
 

The choice of cache sizes shown above were 
determined by the cache sizes that have been used to 
test the new policies that have been added to the 
policy pool, in their respective papers.  Doing so 
provides a basis for comparison with the other 
policies using similar cache sizes.  

 Figure 4 cumulatively shows that increasing 
the cache size also increases the individual policies’ 
hit rates, and therefore the Real Cache hit rate (since 
the Real Cache follows the best policy at any time 
regardless of cache size). However, the major 
sacrifice for achieving better hit rates as a result of 
larger cache sizes is that the time required to process 

the requests also increases (since there are more 
pages to search through). This is largely due to the 
fact that processing time is positively correlated to 
the number of policies in the policy pool (as each of 
the virtual caches also perform their own caching).  

5.3.5 Effect of replacement policies on time 
performance 
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Just as replacement policies vary in performance 
with regard to hit rates, so too do they vary with 
regard to their time complexities.  Figure 5 below 
illustrates this point by showing the additional time 
each policy adds to the total time it takes for ACME-
DB to process a request stream of 50,000 requests as 
described in the methodology outlined in Sub-
Section 5.2.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: The increase in time by adding each policy  
 

In the above figure, all policies (except LRU-2) 
increase the total time for ACME to process the 
request stream in similar magnitude (around 300 to 
500 seconds) for 50,000 requests.  Of this subset, 
LFUDA increased the time the most - by around 600 
seconds (10 minutes).  However, to put this in 
perspective, LRU-2 increased the total time by over 
8000 seconds (more than 2 hours), which is 13 times 
slower than LFUDA.  Thus, LRU-2’s performance 
in this respect does not warrant its inclusion in the 
policy pool. 

 2Q, which has been shown to perform 
relatively on par with LFUDA using the live traces, 
only adds half as much time (around 300 seconds) as 
LFUDA does to the overall running time and 
therefore would arguably make it better for request 
streams similar to the DB2 or OLTP traces. Once 
again, this shows the importance of reducing the 
number of policies, and of finding a good mix of 
policies. 
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5.3.6 Effect on all policies by introducing 
well-known susceptibilities  

Figure 6 below shows the effect of sequential 
flooding. Specifically, a synthetic trace was used to 
highlight the sequential flooding patterns to which 
LRU is susceptible. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The effect of sequential flooding 
 

As Figure 6 above shows, the hit rates for all of 
the policies dramatically change at 10,000 requests 
(this is where the sequential flooding patterns are 
introduced into the request stream). As expected, the 
hit rates for LRU, and W2R (which is based on LRU 
in this implementation) significantly degrade. SFIFO 
also shows a similar weakness to this susceptibility, 
and this is because the primary and secondary 
buffers in SFIFO combine to act in a similar manner 
to LRU. 

 The remaining policies improve upon 
encountering the sequential flooding because most 
of them have been designed specifically to avoid this 
susceptibility. The erratic behaviour of the FIFO 
policy is due to the fact that the partial DB2 Trace 
that is included at the start of the synthetic trace used 
here has already referenced the same pages that are 
referenced in the sequential flooding part of the 
trace. Thus, the contents of the buffer pool upon 
encountering the sequential flooding includes some 
of those pages to be referenced,  and when these 
pages are referenced during the sequential flooding 
part, the hit rates of the FIFO trace increases 
temporarily, and when other pages are not found the 
hit rates decrease again.  

 Introducing sequential scanning patterns in the 
request stream shows an immediate degradation of 
performance in terms of hits for all policies. Some 
policies recover, whilst others continue to degrade, 
but the Real Cache stays with the better policies. 
Please see (Riaz-ud-Din, 2003) for the details of this 
experiment. 
 Figure 7 below shows the effect of skewed high 
reference frequencies on the policies in the policy 
pool. A synthetic trace was designed to highlight the 
frequency patterns to which LFU is susceptible. 
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Figure 7: The effect of skewed high reference frequencies 
 

The skewed high reference frequency patterns 
were introduced at 15,000 requests, as shown by the 
immediate degradation of hit rates for all policies.  
Interestingly, 2Q, which has performed the best with 
all of the tests so far, is the worst performing policy 
for this trace and along with other policies it 
continues to decline upon encountering the skewed 
high reference frequency patterns.  This indicates 
that 2Q is susceptible to skewed high frequency 
patterns in request streams and once again confirms 
that having other policies results in a ‘safer’ policy 
pool than if just one policy, such as 2Q, was relied 
upon. 

 So far, it would seem that a good choice of 
policies for the policy pool would include 2Q and 
LRU in particular because 2Q performs very well 
with most of the request streams, and for those that it 
does not, LRU performs very well. Thus, they 
complement each other well and neither has a 
significant overhead in terms of execution time, in 
comparison to other policies such as LFUDA or 
LRU2. 

 The question of which policies and how many 
policies to use, is one that is well worth answering. 
However, this cannot be addressed by studying the 
effects of running through only two traces, but needs 
more in-depth examination across a wide range of 
live access patterns. It would depend highly on the 
databases expected access patterns. 

 

5.3.7 The effect of misses on the total 
processing time  

Until now the discussion of processing time with 
regard to the time taken to find a victim and the 
additional time added per policy has only dealt with 
the time taken for ACME-DB to do the processing 
required to perform the caching, uncaching, release 
and other activities within the scope of the 
implementation.  The time taken to read from disk, 
which occurs in the event of a miss, has until now 
been ignored.  However, the time that is taken to 
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read from disk is significant, and forms a major part 
of the latencies concerned with the overall database 
performance.  As noted, the time needed to read 
from disk is some 170,000 times greater than 
reading from memory and each read from disk takes 
around 10 milliseconds. 
 To gauge the effect on the total time required for 
processing requests (including the time for disk 
reads), the methodology given in Sub-Section 5.2.7 
was used.  The trace used was intended to induce the 
best and worst behaviour of SFIFO and 2Q at 
opposite ends of the spectrum. The results are 
presented in Table 2 below. 
 

Table 2: Execution times with and without disk reads  

Policies in 
Policy Pool 

Time to 
execute 
without 
disk 
reads 
(seconds) 

Number 
of 
misses 

Time to 
execute 
including 
disk reads 
(seconds) 

2Q 12 28,197 293.97
SFIFO 8 58,196 589.96
2Q & SFIFO 18 4,852 66.52

 
The above table shows the time taken to execute 

the trace, the number of misses on the Real Cache, 
and the time to execute including disk reads, for the 
two policies. The column to note is right-most, 
which shows that the performance was significantly 
better by introducing two policies in the policy pool, 
each of which contributed to the hit rate when the 
other was susceptible to the pattern in the request 
stream. Overall a gain of 227.45 seconds (almost 4 
minutes) over 96,000 requests is made. 

 The above experiment has shown that when 
ACME-DB encounters a request stream where the 
current best policy changes, the overall execution 
time (when accounting for the disk reads avoided by 
maintaining a higher hit rate) decreases 
substantially.  
 However, what if the current best policy is the 
same policy over a long period of time (or even the 
entire request stream), as with the live traces used 
here? In this case, what would the eventual loss in 
performance be by using ACME-DB, rather than the 
policy just by itself? In order to answer this all 
important question, the above experiment was run 
once again, but this time with the first 100,000 
requests from the DB2 trace, which has shown to 
favour 2Q over all the other policies. The results are 
presented in Table 3 below. 
 
 

 

Table 3: Execution times with and without disk reads  

Policies in 
Policy Pool 

Time to 
execute 
without 
disk reads 
(seconds) 

Number 
of 
misses 

Time to 
execute 
including 
disk reads 
(seconds) 

2Q 15 367,020 382.02
SFIFO 4 392,900 396.9
2Q & SFIFO 34 371,170 405.17

 
Running 2Q by itself results in the fastest 

execution time overall, whilst the slowest is when 
running SFIFO and 2Q together. The loss in time by 
adding SFIFO is 23.15 seconds over 100,000 
requests, compared to the 227.45 seconds gained in 
the previous experiment.  This time loss is only a 
small fraction of the time that is potentially gained 
by using ACME-DB should a request pattern to 
which 2Q is susceptible be encountered. 
Furthermore, if 2Q continues to be the current best 
policy, the Real Cache’s hit rate will continue to 
move closer to 2Q’s hit rate.  Consequently, the Real 
Cache’s misses will be more or less the same as 
2Q’s misses, resulting in fewer disk reads, and 
ultimately faster execution times. 

These experiments confirm that the net gain by 
introducing both policies would indeed result in 
better overall performance, especially where the 
request stream exhibits differing patterns of access 
with time. 

6 CONCLUSIONS 

The work described in this paper examines the 
implementation of a recently proposed adaptive 
algorithm, known as Adaptive Caching with 
Multiple Experts (ACME), within the database 
environment. The results indicate that ACME works 
well with single-sized page caches and with 
replacement policies that are readily applied to the 
database buffer pool. It has also been shown that 
ACME maintains its adaptive behaviour when 
caching database pages, and stays with the current 
best policy. Most significantly, it has also been 
shown that whilst adding more policies to the policy 
pool increases the execution time, the overall 
processing time is dramatically reduced due to a 
greater number of hits. The results are based on an 
implementation that is efficient, can be readily 
integrated into the real world environment, and 
should provide great incentive for further database 
research. The results of this work provide an 
excellent platform for further research in the field of 
database buffer replacement. 
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