
CONSTRAINT-GUIDED ENTERPRISE PORTALS

Christopher J. Hogger, Frank R. Kriwaczek
Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom

Keywords: enterprise portal, finite-domain constraints, multi-agent system, plan revision, role management.

Abstract: It is shown how an enterprise portal, supporting a community of users discharging roles expressed as
combinations of plans and constraints, can be usefully guided by a constraint processor. In particular,
constraint logic programming on finite domains provides the users with useful insights regarding their
possible work schedules. Constraints assist also in shaping the electronic artefacts created and transmitted
by the users. The implementation is supported by mechanisms for assigning and updating roles and for
assisting the search for remedies in the case of constraint failure

1 INTRODUCTION

This paper describes recent work in the e-DoC
Project which investigates the applicability of
computational logic to enterprise portal
architectures. Its main testbed exemplar is an
academic department of computing. It shares some
aims of the Java Architectures Special Interest
Group whose open-source uPortal is used in several
universities (Gleason, 2000). Our interest, however,
is in exploiting the power of logic programming and
finite-domain constraints to imbue portals with
intelligence and flexibility. Portals able to acquire,
sift and interpret knowledge can construct and self-
embed new tools into the portal interface
(McCallum, 2000; Hogger, 2003) or re-structure that
knowledge to suit their users’ interests, as does the
ontology-driven KA2 system (Staab, 2000). Portals
able to control the logical cohesion of users’
activities enhance the collaborative functions of the
enterprise (Ahmad, 2001).

We have built and implemented a conceptual
model that uses CLP(FD)—constraint logic
programming over finite domains—to guide and
regulate the actions of a community of portal users.
As they follow their various individual plans, the
constraint processor helps determine their possible
work schedules and the shaping of the electronic
artefacts that they create and share. This form of
constraint processing can contribute significantly to
the development of predictive and anticipatory
enterprises, owing to its generality of application
and the powerful algorithms on which it relies.

The model employs formulations of user roles
comprising plans mediated by constraints. It is
designed to be simple, transparent, of general
applicability and uncluttered by implementation
details. It can be used either as a standalone
application, driving its own web-based portal
interface, or as a tool embedded in an existing portal.
It can be operated in various modes according to
whether constraints are evaluated lazily, on-the-fly
or eagerly.

Section 2 describes, with an example, our
representation of a role. Section 3 explains how the
implementation interprets plans, manages artefacts
and evaluates constraints. Section 4 presents a more
detailed example, in which several users with inter-
dependent roles experience but recover from a
constraint failure. Section 5 discusses the work
undertaken so far and the further work required.

2 ROLE STRUCTURE

The core construct in the model is a user’s role,
which has two main components: a procedural
component — the plan — expresses actions that a
role-holder (user) intends to perform, whilst the
declarative component — a constraint set —
expresses requirements upon the timing and the
consequences of those actions. Together, they
capture the essential logic of the role; aggregating
such components over all users gives the essential
logic of the enterprise. The procedural commitments
in the plans can be viewed as compiled outcomes of

411
J. Hogger C. and R. Kriwaczek F. (2004).
CONSTRAINT-GUIDED ENTERPRISE PORTALS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 411-418
DOI: 10.5220/0002599804110418
Copyright c© SciTePress

some portion of that logic, leaving the residual
portion in the form of declarative constraints.

The actions can be designed for any purpose,
but in the e-DoC project they deal chiefly with the
manipulation of electronic artefacts, such as text
documents, emails and database tables. These reside
variously in private (local) user workspaces or in
public (enterprise-wide) repositories.

An important species of artefact is the script,
which describes a role or role update. It enables
users to create and transmit roles just as they can
with other kinds of artefact.

Figure 1 outlines a script for a user ttr working
as a timetabler, as viewed in the portal interface.
Written in a logic programming syntax, it is
arranged into several groups: ontology declarations,
action declarations, constraint declarations and
CLP(FD) programs. This particular script describes
how ttr assembles a timetable artefact named timtab
from a set of requests and stores it in a database tt_db,
whilst aiming to satisfy various constraints upon
timing and attribute values.

2.1 Ontology Declarations

The arguments timtab, requests, st1, et1, etc. occurring
in Figure 1 are examples of ontological variables.
The script for a role R must declare each such
variable within some ontology declaration of the
form

ontology(R, origin, list_of_variables).

This declares that R makes use of the variables in the
given list, and also declares their origin. If the origin
is own then R devised them. If it is public then the
variables are enterprise-wide, that is, accessible to

all users. If it is the identifier of some other user R2
then the variables were devised by R2. Any number
of such declarations can occur in R’s script.

Ontological variables mostly denote time-
points, artefacts and artefact attributes. Each one is
named by a constant, e.g. st1, to ensure that its
occurrences in separate script statements share the
same denotation. (By contrast, logical variables in
separate script statements would be unrelated,
whether quantified or not.) In the implementation,
each declared name var is mapped to an underlying
logical variable Var that is uniformly associated with
all occurrences of var in any script, so that correct
referencing is established throughout all scripts.
Then, if Var is subsequently bound to some value
val, var also is effectively bound to it by making a
binding-pair (var, val), as in (et1, 7/6/2004) or (name,
‘c:/MyDocs/timtabs/timtabs-2004’). Typically, such a
binding arises either as a direct response to a user
selection (e.g. from a menu) in the portal interface or
as a result of constraint evaluation.

2.2 Plan Structure

A role typically contains a number of separate,
though possibly related, tasks, each one consisting of
action declarations arranged into blocks. The block
structure serves only to facilitate the expression of
some simple control constructs. Given this, we can
view each task as a program, and the aggregate of all
these programs as the overall plan for the role.

 For each task in a role, the script must contain
a unique task entry-point declaration of the form

entry_point(role_id, task_id, block_id).

Its purpose is to identify som
that in which execution of the

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

412
Figure 1: Outline view of the timetabler’s script
e particular block as
 task is to begin. In

Figure 1 the entry-point for a task task1 is declared to
be the block b1. All the action declarations appearing

there belong to this block, although one refers to
some other block b3 not revealed in the figure.

Each action declaration has the basic form

action(role_id, block_id, index, action_predicate).

which identifies the role to which it belongs, the
block that contains it, its index within that block and
its action predicate.

Every action predicate contains two time-point
arguments st and et denoting the action’s start-time
and end-time. The species of action intended is
determined by the predicate symbol, most often
create, import or export. These three are used for
creating and transmitting artefacts. A slightly more
elaborate form of declaration is

action(role_id, block_id, index, pre, action_predicate).

in which pre is a precondition The action declaration
having index 2 in Figure 1 contains a precondition
requiring that the previous action shall have been
completed by June 15th 2004. Only if this holds will
the (control) action do_block(...) be executed, in
which event control will branch to some other block
b3 within task1. Other kinds of control action are
available to specify conditional branching and
while-iteration.

Although such action-based plans have a
procedural character, they can be viewed as partial
solutions of declarative constraints relating their
start and end times, as explained in the next
subsection.

2.3 Constraint Declarations

Each user’s role is generally subject to constraints
expressing requirements. Some of these constraints
may relate his own variables to other users’
variables. Communal cohesion therefore requires
that, however constraints be devised and whatever
they may constrain, in operation they must be treated
as applying globally across the enterprise.

The expression of a constraint consists of two
parts. One is a call to a relation required on some
tuple of ontological variables and/or constants. The
other is a program for evaluating that call. The call is
declared in a constraint declaration of the form

constraint(origin, call)

where origin identifies the user who devised it. Figure
1 shows two such declarations, one constraining
attributes of the timtab artefact and the other
constraining the completion-time et1 of task1’s first
action. In the lower region of the script are various

CLP(FD) programs defining the called relations. In
practice, many such programs only test inequalities
of time-point variables, but constraint-supporting
programs may in principle be arbitrarily complex.
 Figure 1 is a limited view of the script, revealing
only the constraints devised by ttr. In the full portal
interface a user R can apply options to a script
window to reveal just those constraints devised by R
or all those that depend upon R’s own variables or
all constraints in the enterprise. The script itself
consists, technically, of the ontologies and plans
used by R together with a pointer to the enterprise’s
current constraint set.

Besides the user-declared constraints, the
system uses further constraints implicit in the
‘physics’ of the model. Thus, the end-time of an
action must succeed its start-time; its start-time must
succeed the end-time of any action with lower index
in the same block; an artefact cannot be acted upon
until it has been created. These simple conditions are
established automatically as constraints whenever a
plan is created or revised. Expression of intended
control flow in the plan would be unnecessary if the
user declared all these constraints explicitly and
allowed the constraint engine to determine possible
schedules for the actions. However, expressing some
control flow avoids the need to declare large
numbers of these physics-based constraints and
enables the user to commit a priori to particular sets
of scheduling solutions.

3 OPERATIONAL MODEL

Our implementation deploys two closely-coupled
engines, one being a plan interpreter and the other a
constraint evaluator. These, together with the users’
interactions through their portal interfaces,
ultimately determine the bindings made to the
ontological variables, and hence the character and
scheduling of the artefacts manipulated. Besides
this, there are also system components for managing
artefacts, script assignments and constraint failures.

3.1 Plan Interpreter

The function of the Plan Interpreter is to exhibit to
the users, via selected views in their interfaces, their
states of progress through their plans. For instance, a
task view window highlights actions recognized by
the interpreter as ready to begin or (if begun) waiting
to be completed.

Users pursue their tasks concurrently,
following initiation from the declared entry-points.
Within any block, actions are required to be
performed in order of increasing index. A group of

CONSTRAINT-GUIDED ENTERPRISE PORTALS

413

actions may, however, have a common index,
indicating that they can be performed concurrently,
that is, with no plan-imposed ordering upon their
time-points.

Once an action has been indicated as ready to
begin, the user can begin it at a time of his choosing.
He commits to this by clicking in a displayed cell for
the relevant start-time variable; the interpreter then
binds the action’s start-time argument st to the
current time on the portal clock, and updates the
interface accordingly.

Work entailed in performing the action itself is
invisible to the interpreter except to the extent that it
may bind ontological variables; in effect, it is treated
as off-line activity. For example, activity to create a
text document may involve the user entering textual
content, but the details of that content are of no
concern to the portal; however, activity that binds
ontological variables denoting the document’s
attributes is recognized and acted upon by the portal.

When the user considers that an action has
been completed, he formally signals this by another
click in the interface; this binds the action’s end-
time et to the clock value and again updates the
interface and the state of the interpreter.

In Section 4 we will present a more detailed
view of these interface episodes and their
consequences, using a multi-user example. That
example will also show how the plan’s execution
affects, and is affected by, the concurrent operations
of the constraint evaluator.

3.2 Artefact Manager

A new artefact is produced whenever a user
performs a create action. This takes the form

create(As, A, st, et)

Here, A names the artefact to be created. The
argument As supplies the names of any other
artefacts that the user expects to use in preparing A.
The plan interpreter requires these to be already
residing in the user’s local workspace when the
create action is begun; otherwise, it suspends at that
point in the plan and informs the user of the reason.

The first action in Figure 1 requires ttr to create
an artefact named timtab that depends on the
availability of another named requests. The latter
could have been imported by an earlier action in this
task, but our present example assumes it to be
created or imported by some other task in ttr’s plan.

The portal’s Artefact Manager constructs
abstract terms representing such artefacts, and
maintains pointers between them and their concrete
instances. Each abstract artefact term has the form

art(Name, Type, CrTool, Owner, Rights, Atts)

whose arguments hold the primary attributes — the
artefact’s name (with full location), type, creator
tool, owner, the owner’s rights and a set Atts of any
secondary attributes appropriate to the type. The
main types supported in our implementation are
script, txt (text document), email and dbtable (database
table). Examples of artefact terms are

art(‘c:/MyDocs/ timtabs/timtabs-2004’, dbtable,

‘MSExcel’, ttr, [read, write], atts(schema1, view1))

art(‘c:/MyDocs/ notice’, txt, notepad, ttr, [read], null)

The attribute values are determined, in general,
partly by the user in the course of creating the
artefacts and partly by the evaluation of constraints
upon ontological variables. Knowing these values,
the artefact manager invokes appropriate
mechanisms in the host system to store each artefact
in an appropriate workspace substructure,
integrating it with the correct infrastructure for its
use. A text document, for instance, will be stored in
some standard file-oriented directory, whilst an
email will be stored in some email-client mailbox.

Once created, copies of artefacts may be
transmitted between local workspaces and
communal repositories. An action import(Rep, A, st, et)
requires the user to import into his workspace a copy
of artefact A from repository Rep. An action
export(Rep, A, st, et) transmits a copy of A in the
converse direction. The plan interpreter will suspend
either action if A is not currently available in its
specified source.

3.3 Constraint Evaluator

As users pursue their plans, the Constraint
Evaluator attempts to solve conjointly the calls cited
in all constraint declarations, testing or determining
values for the ontological variables occurring as
arguments within them. It behaves effectively as an
assistant, displaying to the users their future
possibilities and alerting them to constraint failure.

The evaluator can be operated under various
regimes controlling the timing of constraint-
checking. It is possible to simulate, prior to real-time
user activity, the future performing of plans: eager
constraint-checking can then compute, for instance,
feasible schedules (if any) that the users might
adhere to in practice. Another possibility is that
users perform their plans but with inessential
constraint-checking deferred until all plans have
been completed; in that case they discover only

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

414

afterwards whether their activities satisfied their
intentions. The standard regime, however, checks
constraints incrementally in step with the plan
interpreter, informing the users of their remaining
scheduling opportunities and readying those tools
they will need to manipulate their artefacts. Under
this regime the evaluation of temporal constraints is
similar to conventional critical path analysis.

The CLP(FD) formalism has the flexibility to
support these various regimes. For an ontological
variable that is declared (or is by default) a CLP
domain variable, the evaluator holds at any instant a
current subset of that domain as the potential
solution-set for that variable, as determined by the
given constraint-defining programs and the current
solution-sets of any other variables upon which it
depends. User actions in the portal interface that
themselves bind any variables cause the algorithms
to restrict further the solution-sets. Restriction also
arises from each advance of the portal clock, which
deletes the previous clock value from the domains of
all temporal variables. If the domain of any variable
becomes void this implies that the constraints upon
that variable have no feasible solution. The
solvability or otherwise of the constraints is
independent of when the constraints are checked.

In our implementation CLP(FD) is applied
chiefly to the temporal variables, though it is
applicable in principle to finite domains of artefact
attribute values. In practice, however, we find it is
usually more practical to deal with these by a form
of Query-the-User driven by an interactive
conventional logic program. This program is
designed to evaluate a call of the form

assist(A, Given_handles)

which associates with artefact A a set Given_handles
specifying already-chosen attribute values for A.
This call may be placed in the body of any user
constraint program. When it is executed, the user is
invited by dialogues in the portal interface to choose
values for any so-far-undetermined attributes. The
net result of this interaction is to bind A to some
ground term art(...) that the Artefact Manager then
associates with the concrete stored artefact.

 Figure 1 contains an example of this call being
used to help ttr complete the attribute determination
for timtab, whose type has been already prescribed in
the given handles as dbtable. The assist program will
invite ttr to choose the full path-name, the creator
application tool and so forth. Although viewable in
ttr’s script window, this program is not devised by ttr
but is instead one of many supportive resources
shared by all users.

3.4 Script Manager

Like any other artefact, a script can be created,
transmitted or modified by a user. A user performing
a role has a copy of its associated script in his own
local workspace and can view it in his interface.

Although some roles may be entirely self-
defined, our system enables a user U1, having
appropriate authority, to assign a role (or a role-
update) R to another user U2. (We impose a
simplifying restriction whereby no user has more
than one role.) This is achieved by U1 performing
within his own plan an action of the form

assign(R, U2, st, et)

This assumes that R is a script artefact already
residing in the workspace of U1. If U2 currently has
no role then the assign action invokes a Script
Manager to create for U2 a new interface whose
workspace contains a copy of R. Alternatively, if U2
already has a role then R is some update to it, in
which case the Script Manager copies R to U2’s
existing workspace and alerts U2 to the need to
incorporate the update into his existing script.

A key presumption is that U2 cannot reject the
requirements in any script content assigned to him,
but may further detail it on his own initiative and
may later (if suitably authorized) re-assign it to
someone else. So in general the script for a user may
contain accumulated contributions from other users
besides himself. With these arrangements we can
model the circumstance whereby requirements posed
by some level of authority can be elaborated but not
revoked by lower levels of authority.

3.5 Failure Manager

It is easy to detect when a constraint violation occurs
but by no means always easy to determine the best
way to explain or resolve it. A CLP(FD) failure
occurs when some domain variable’s feasible
solution-set is empty. Unless the constraint engine
holds an accessible history of the internal constraint
simplifications it has made in the course of reaching
this situation, there is relatively little information on
which to isolate a specific cause of the failure. In
particular, the variable(s) now found to have no
solution may be common to multiple source
constraints variously sensitive to multiple roles.
Thus, the responsibility for the failure may in
general be communal, rather than individual.

Sometimes it may be possible to detect that a
particular individual’s recent activity, such as
starting an action too soon or choosing an artefact
attribute inappropriately, is the sole cause of the

CONSTRAINT-GUIDED ENTERPRISE PORTALS

415

problem. If they can backtrack on that action and try
again then the problem may be remedied,
demanding no revision of plans or constraints. It
will, however, require garbage-collecting artefact
operations undertaken by them prior to backtracking.

Otherwise, the Failure Manager tracks down
those constraints that impact, directly or indirectly,
upon the problematic variables, and further identifies
their originators, that is, those who have the
authority to revise that material. They are alerted to
their need to review, in the light of the current
failure, the requirements they posed and to agree
upon suitable revisions sufficient to alleviate the
failure — for instance, by extending deadlines. The
revisions are conveyed to the affected role-holders
for assimilation into their scripts.

4 CASE STUDY

This example illustrates an episode involving
academic role-holders in a college’s Computing

department. The college’s Rector wishes to be
supplied, by October 10th 2003, with a report on this
department’s student drop-out rate from its Head
(hod). The latter requests his Head of Studies (hos) to
supply that report directly to the Rector. He poses
this request by assigning to her the role update
shown in Figure 2a, whose anonymous slots (“_”)
she instantiates when assimilating this material into
her role.

The department runs five degree courses each
with its own tutor, and hos requests these tutors to
supply reports on drop-out rates for their courses but
sets no deadlines for them. She believes it will take
her just 1 day to consolidate their reports into her
full report consrep for the Rector. Each tutor
estimates of how long it will take to produce his
report. The tutor (tmac) for the MSc in Advanced
Computing course estimates it will take 2 days to
create his report rep3.

Figures 2b and 2c show the scr

tmac after assimilating hos’s requests
hos has put the assigned export acti
task12 and can view its deadline co
script window. She has substituted he

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

416
Figure 2: Role scripts in the computing department
ipts of hos and
. In her script,
on into a new
nstraint in her
r own variable

et7 in place of the et variable used in the role-update
request that hod assigned to her. She has elaborated
that request with constraints to help set up consrep
and to restrict the duration of its creation process.

Figure 3a shows snapshots from the interface
of tmac taken on October 6th, 7th and 8th. Each of
his variables has a row of cells variously filled grey
or white. White cells indicate the current domain,
i.e., the time-points (dates) that the constraint engine
has calculated as admissible solutions. So on the 6th
tmac sees that he can start his create action only on
that day or the next, and complete it only on the 8th
or 9th. However, his teaching obligations prevent
him creating his report that day. By the 7th the portal
clock has advanced one day and so eliminated the
6th from the domain of st1, whose value tmac can
now choose only as the 7th. Unfortunately he misses
that opportunity also, so that by October 8th no
choice at all remains to him. The domains of st1 and
et1 are now void, signifying constraint failure. Their
cells have turned black, signifying that they are
implicated in that failure.

The Failure Manager must now locate the
failure. It identifies the constraint calls referring to
st1 and et1 and constructs the transitive closure of
this set under the relation of two calls sharing a
domain variable. It thereby traces the dependencies
between variables. It extracts the originators of the
calls in this closure, being those in whose hands it
lies to remedy the failure. Here, they are hod, hos,
tmac and the other tutors.

tmac may reduce his report-creation’s expected
duration, or hos may decide she can complete her
consolidation on the same day she begins it, but her
deadline is assumed to be rigid. It is decided that
tmac must create rep3 faster than he had estimated.
He accordingly revises his own call to

constraint(tmac, duration(st1, et1, 1)).

so that his interface on the 8th changes to that in
Figure 3b. He clicks in st1’s white cell for the 8th
and begins working on his report. He finishes it the
next day and so clicks in et1’s white cell for the 9th,
then immediately exports the report. This leaves hos
enough time to consolidate all five reports, provided
the other tutors supply their reports on time too.

We showed how the constraint engine presents
feasible schedules as users commit to time-points.
However, the interface also supports a “what-if?”
mode permitting experimentation with non-
committed time-points to further explore the options.

The episode above need not have entailed a
constraint failure, as tmac could foresee on October
6th his scope for completing rep3. The displayed
domains of his variables enabled him to anticipate
solutions. Moreover, because all solutions were
visible, it was predictable that failure would occur if
he did not begin his report before October 8th.

5 CONCLUSION

The model has been applied experimentally in the e-
DoC domain for simulating real roles among college
staff, as a stand-alone portal. As a prototype under
development, quantitative evaluation of it in a
context of serious scale is not yet available.

We employ a Sicstus CLP(F
enough to solve realistic constraint
separating user actions. It uses the P
construct web pages displaying the
CLP(FD) was chosen for its flexibil
representation, its support of user-de
schemes and, in particular, its sim

CONSTRAINT-GUIDED ENTERPRISE PORTALS
Figure 3: Updated interface for the “tmac”
D) engine fast
s in the intervals
illow package to
users’ interfaces.
ity in knowledge
fined evaluation

plicity compared

with other proprietary systems such as ILOG Rules
(ILOG, 2002).

In our academic domain we use finite-domains
mainly to compute temporal variables. However,
actions and artefacts can have attributes measuring
resources such as diskspace allocations or
administrative overheads. These can be processed

417

likewise by CLP(FD) if they are discrete-valued. For
other domains, action and artefact types can be
implemented without altering the core model. In
particular, domains concerned with assembling
industrial artefacts, with constraints upon component
supply and workflow, can be represented.

A key priority is to enhance the intelligence of
the Failure Manager which currently identifies only
source constraints upon void-domain variables. It
cannot trace back its evaluation to identify where
failure-disposing events occurred. Standard logic
programming engines can deliver traces showing
which instances of source statements led to a
computed outcome, so facilitating debugging and
showing how the computation might be backtracked
to try other instances. The constraints within a
CLP(FD) engine, by contrast, are some arbitrary
transformation of the source ones and may have
attained that state using a mix of several algorithms.
Using the record of users’ instantiations in their
plans could compensate to some degree for these
difficulties, whilst the treatment of purely temporal
failures could usefully exploit scheduling analysis.
Recent development of abductive constraint solvers
such as A-system (Kakas, 2001), which is itself
written in Sicstus Prolog, may point to ways of
enhancing the ability of the Failure Manager to
further localize the origins of constraint failure and
to infer and rank suitable constraint revisions for the
relevant originators, assisting their collaborative
recovery. These aims share common ground with
work on constrained workflow management, as in
(Hwang, 2003) and (Wainer, 2003a) and (Wainer
2003b) who variously employ procedural constraints
or standard logic programming integrity constraints
but not CLP(FD). We also intend partly to re-
implement our model in the multi-agent formalism
Go! (Clark, 2003) whose multi-threaded
communication inherently reduces the number of
temporal constraints required.

REFERENCES

Ahmad M.S., Hogger C.J. and Kriwaczek F.R., 2001.
Implementing a Collaborative Agent System using
Prolog. In ICIMu-2001, Int. Conf. on Information
Technology and Multimedia, Kuala Lumpur.

Gleason B.W., 2000. Boston College University-Wide
Information Portal — Concepts and Recommended
Course of Action. JA-SIG Portal Framework Project
White Paper.

Hogger C.J. and Kriwaczek F.R., 2003. Abstracting
Wizards from Portal Observations. In WITSE-2003,
Workshop on Intelligent Technologies for Software
Engineering, 9th European Software Engineering

Conference and 11th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Helsinki.

McCallum A.K., Nigam K., Rennie J. and Seymore K.,
2000. Automating the Construction of Internet Portals
with Machine Learning. Information Retrieval, Vol. 3,
Issue 2.

Staab S., Angele J., Decker S., Erdmann M., Hotho A.,
Maedche A., Schnurr H.-P., Studer R. and Sure Y.,
2000. Semantic Community Web Portals. Computer
Networks, Vol. 33.

Hwang G.-H., Lee Y.C. and Wu B.-Y., 2003. A New
Language to Support Flexible Failure Recovery for
Workflow Management Systems. In CRIWG-2003, 9th
International Conference on Groupware, Grenoble.

Wainer J. and Bezerra F., 2003a. Constraint-based
Flexible Workflows. In CRIWG-2003, 9th
International Conference on Groupware, Grenoble.

Wainer J., Barthelmess P. and Kumar A., 2003b. W-R-
BAC - A Workflow Security Model Incorporating
Controlled Overriding of Constraints. To appear in Int.
Journal of Cooperative Information Systems.

Clark K.L. and McCabe F.G., 2003. Go! for Multi-
Threaded Deliberative Agents. In DALT-03, AAMAS
Workshop on Declarative Agent Languages and
Technologies, Melbourne.

ILOG, Inc., 2002. Business Rules: ILOG Technical White
Paper. At www.ilog.com.

Kakas, A.C. and Van Nuffelen, B., 2001. A-system:
Programming with Abduction. In Logic Programming
and Nonmonotonic Reasoning. Lecture Notes in
Artificial Intelligence, Vol. 2173, Springer Verlag.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

418

http://www.ilog.com/

