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Abstract: It is shown how an enterprise portal, supporting a community of users discharging roles expressed as 
combinations of plans and constraints, can be usefully guided by a constraint processor. In particular, 
constraint logic programming on finite domains provides the users with useful insights regarding their 
possible work schedules. Constraints assist also in shaping the electronic artefacts created and transmitted 
by the users. The implementation is supported by mechanisms for assigning and updating roles and for 
assisting the search for remedies in the case of constraint failure 

1 INTRODUCTION 

This paper describes recent work in the e-DoC 
Project which investigates the applicability of 
computational logic to enterprise portal 
architectures. Its main testbed exemplar is an 
academic department of computing. It shares some 
aims of the Java Architectures Special Interest 
Group whose open-source uPortal is used in several 
universities (Gleason, 2000). Our interest, however, 
is in exploiting the power of logic programming and 
finite-domain constraints to imbue portals with 
intelligence and flexibility. Portals able to acquire, 
sift and interpret knowledge can construct and self-
embed new tools into the portal interface 
(McCallum, 2000; Hogger, 2003) or re-structure that 
knowledge to suit their users’ interests, as does the 
ontology-driven KA2 system (Staab, 2000). Portals 
able to control the logical cohesion of users’ 
activities enhance the collaborative functions of the 
enterprise (Ahmad, 2001). 

We have built and implemented a conceptual 
model that uses CLP(FD)—constraint logic 
programming over finite domains—to guide and 
regulate the actions of a community of portal users. 
As they follow their various individual plans, the 
constraint processor helps determine their possible 
work schedules and the shaping of the electronic 
artefacts that they create and share. This form of 
constraint processing can contribute significantly to 
the development of predictive and anticipatory 
enterprises, owing to its generality of application 
and the powerful algorithms on which it relies. 

The model employs formulations of user roles 
comprising plans mediated by constraints. It is 
designed to be simple, transparent, of general 
applicability and uncluttered by implementation 
details. It can be used either as a standalone 
application, driving its own web-based portal 
interface, or as a tool embedded in an existing portal. 
It can be operated in various modes according to 
whether constraints are evaluated lazily, on-the-fly 
or eagerly. 

Section 2 describes, with an example, our 
representation of a role. Section 3 explains how the 
implementation interprets plans, manages artefacts 
and evaluates constraints. Section 4 presents a more 
detailed example, in which several users with inter-
dependent roles experience but recover from a 
constraint failure. Section 5 discusses the work 
undertaken so far and the further work required. 

2 ROLE STRUCTURE 

The core construct in the model is a user’s role, 
which has two main components: a procedural 
component — the plan — expresses actions that a 
role-holder (user) intends to perform, whilst the 
declarative component — a constraint set — 
expresses requirements upon the timing and the 
consequences of those actions. Together, they 
capture the essential logic of the role; aggregating 
such components over all users gives the essential 
logic of the enterprise. The procedural commitments 
in the plans can be viewed as compiled outcomes of 
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some portion of that logic, leaving the residual 
portion in the form of declarative constraints. 

The actions can be designed for any purpose, 
but in the e-DoC project they deal chiefly with the 
manipulation of electronic artefacts, such as text 
documents, emails and database tables. These reside 
variously in private (local) user workspaces or in 
public (enterprise-wide) repositories.  

An important species of artefact is the script, 
which describes a role or role update. It enables 
users to create and transmit roles just as they can 
with other kinds of artefact. 

Figure 1 outlines a script for a user ttr working 
as a timetabler, as viewed in the portal interface. 
Written in a logic programming syntax, it is 
arranged into several groups: ontology declarations, 
action declarations, constraint declarations and 
CLP(FD) programs. This particular script describes 
how ttr assembles a timetable artefact named timtab 
from a set of requests and stores it in a database tt_db, 
whilst aiming to satisfy various constraints upon 
timing and attribute values. 

2.1 Ontology Declarations  

The arguments timtab, requests, st1, et1, etc. occurring 
in Figure 1 are examples of ontological variables. 
The script for a role R must declare each such 
variable within some ontology declaration of the 
form 

ontology(R, origin, list_of_variables). 
 

This declares that R makes use of the variables in the 
given list, and also declares their origin. If the origin 
is own then R devised them. If it is public then the 
variables are enterprise-wide, that is, accessible to 

all users. If it is the identifier of some other user R2 
then the variables were devised by R2. Any number 
of such declarations can occur in R’s script. 

Ontological variables mostly denote time-
points, artefacts and artefact attributes. Each one is 
named by a constant, e.g. st1, to ensure that its 
occurrences in separate script statements share the 
same denotation. (By contrast, logical variables in 
separate script statements would be unrelated, 
whether quantified or not.) In the implementation, 
each declared name var is mapped to an underlying 
logical variable Var that is uniformly associated with 
all occurrences of var in any script, so that correct 
referencing is established throughout all scripts. 
Then, if Var is subsequently bound to some value 
val, var also is effectively bound to it by making a 
binding-pair (var, val), as in (et1, 7/6/2004) or (name, 
‘c:/MyDocs/timtabs/timtabs-2004’). Typically, such a 
binding arises either as a direct response to a user 
selection (e.g. from a menu) in the portal interface or 
as a result of constraint evaluation.  

2.2 Plan Structure  

A role typically contains a number of separate, 
though possibly related, tasks, each one consisting of 
action declarations arranged into  blocks. The block 
structure serves only to facilitate the expression of 
some simple control constructs. Given this, we can 
view each task as a program, and the aggregate of all 
these programs as the overall plan for the role. 

 For each task in a role, the script must contain 
a unique task entry-point declaration of the form 

 
entry_point(role_id, task_id, block_id). 

 
 
 

Its purpose is to identify som
that in which execution of the
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Figure 1: Outline view of the timetabler’s script
e particular block as 
 task is to begin. In 

Figure 1 the entry-point for a task task1 is declared to 
be the block b1. All the action declarations appearing 



 

there belong to this block, although one refers to 
some other block b3 not revealed in the figure. 

Each action declaration has the basic form 
  
action(role_id, block_id, index, action_predicate). 

  
which identifies the role to which it belongs, the 
block that contains it, its index within that block and 
its action predicate.  

Every action predicate contains two time-point 
arguments st and et denoting the action’s start-time 
and end-time. The species of action intended is 
determined by the predicate symbol, most often 
create, import or export. These three are used for 
creating and transmitting artefacts. A slightly more 
elaborate form of declaration is 

 
action(role_id, block_id, index, pre, action_predicate). 

  
in which pre is a precondition The action declaration 
having index 2 in Figure 1 contains a precondition 
requiring that the previous action shall have been 
completed by June 15th 2004. Only if this holds will 
the (control) action do_block(...) be executed, in 
which event control will branch to some other block 
b3 within task1. Other kinds of control action are 
available to specify conditional branching and 
while-iteration. 

Although such action-based plans have a 
procedural character, they can be viewed as partial 
solutions of declarative constraints relating their 
start and end times, as explained in the next 
subsection. 

2.3 Constraint Declarations  

Each user’s role is generally subject to constraints 
expressing requirements. Some of these constraints 
may relate his own variables to other users’ 
variables. Communal cohesion therefore requires 
that, however constraints be devised and whatever 
they may constrain, in operation they must be treated 
as applying globally across the enterprise. 

The expression of a constraint consists of two 
parts. One is a call to a relation required on some 
tuple of ontological variables and/or constants. The 
other is a program for evaluating that call. The call is 
declared in a constraint declaration of the form 

 
constraint(origin, call) 

 
where origin identifies the user who devised it. Figure 
1 shows two such declarations, one constraining 
attributes of the timtab artefact and the other 
constraining the completion-time et1 of task1’s first 
action. In the lower region of the script are various 

CLP(FD) programs defining the called relations. In 
practice, many such programs only test inequalities 
of time-point variables, but constraint-supporting 
programs may in principle be arbitrarily complex. 
 Figure 1 is a limited view of the script, revealing 
only the constraints devised by ttr. In the full portal 
interface a user R can apply options to a script 
window to reveal just those constraints devised by R 
or all those that depend upon R’s own variables or 
all constraints in the enterprise. The script itself 
consists, technically, of the ontologies and plans 
used by R together with a pointer to the enterprise’s 
current constraint set. 

Besides the user-declared constraints, the 
system uses further constraints implicit in the 
‘physics’ of the model. Thus, the end-time of an 
action must succeed its start-time; its start-time must 
succeed the end-time of any action with lower index 
in the same block; an artefact cannot be acted upon 
until it has been created. These simple conditions are 
established automatically as constraints whenever a 
plan is created or revised. Expression of intended 
control flow in the plan would be unnecessary if the 
user declared all these constraints explicitly and 
allowed the constraint engine to determine possible 
schedules for the actions. However, expressing some 
control flow avoids the need to declare large 
numbers of these physics-based constraints and 
enables the user to commit a priori to particular sets 
of scheduling solutions.      

3 OPERATIONAL MODEL 

Our implementation deploys two closely-coupled 
engines, one being a plan interpreter and the other a 
constraint evaluator. These, together with the users’ 
interactions through their portal interfaces, 
ultimately determine the bindings made to the 
ontological variables, and hence the character and 
scheduling of the artefacts manipulated. Besides 
this, there are also system components for managing 
artefacts, script assignments and constraint failures.  

3.1 Plan Interpreter  

The function of the Plan Interpreter is to exhibit to 
the users, via selected views in their interfaces, their 
states of progress through their plans. For instance, a 
task view window highlights actions recognized by 
the interpreter as ready to begin or (if begun) waiting 
to be completed. 

Users pursue their tasks concurrently, 
following initiation from the declared entry-points. 
Within any block, actions are required to be 
performed in order of increasing index. A group of 
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actions may, however, have a common index, 
indicating that they can be performed concurrently, 
that is, with no plan-imposed ordering upon their 
time-points. 

Once an action has been indicated as ready to 
begin, the user can begin it at a time of his choosing. 
He commits to this by clicking in a displayed cell for 
the relevant start-time variable; the interpreter then 
binds the action’s start-time argument st to the 
current time on the portal clock, and updates the 
interface accordingly. 

Work entailed in performing the action itself is 
invisible to the interpreter except to the extent that it 
may bind ontological variables; in effect, it is treated 
as off-line activity. For example, activity to create a 
text document may involve the user entering textual 
content, but the details of that content are of no 
concern to the portal; however, activity that binds 
ontological variables denoting the document’s 
attributes is recognized and acted upon by the portal. 

When the user considers that an action has 
been completed, he formally signals this by another 
click in the interface; this binds the action’s end-
time et to the clock value and again updates the 
interface and the state of the interpreter.  

In Section 4 we will present a more detailed 
view of these interface episodes and their 
consequences, using a multi-user example. That 
example will also show how the plan’s execution 
affects, and is affected by, the concurrent operations 
of the constraint evaluator. 

3.2 Artefact Manager  

A new artefact is produced whenever a user 
performs a create action. This takes the form 

 
create(As, A, st, et) 

 
Here, A names the artefact to be created. The 
argument As supplies the names of any other 
artefacts that the user expects to use in preparing A. 
The plan interpreter requires these to be already 
residing in the user’s local workspace when the 
create action is begun; otherwise, it suspends at that 
point in the plan and informs the user of the reason. 

The first action in Figure 1 requires ttr to create 
an artefact named timtab that depends on the 
availability of another named requests. The latter 
could have been imported by an earlier action in this 
task, but our present example assumes it to be 
created or imported by some other task in ttr’s plan. 

The portal’s Artefact Manager constructs 
abstract terms representing such artefacts, and 
maintains pointers between them and their concrete 
instances. Each abstract artefact term has the form 

 
art(Name, Type, CrTool, Owner, Rights, Atts) 
 

whose arguments hold the primary attributes — the 
artefact’s name (with full location), type, creator 
tool, owner, the owner’s rights and a set Atts of any 
secondary attributes appropriate to the type. The 
main types supported in our implementation are 
script, txt (text document), email and dbtable (database 
table). Examples of artefact terms are  

 
art(‘c:/MyDocs/ timtabs/timtabs-2004’, dbtable,  

‘MSExcel’, ttr, [read, write], atts(schema1, view1)) 
 

art(‘c:/MyDocs/ notice’, txt, notepad, ttr, [read], null) 
 

The attribute values are determined, in general, 
partly by the user in the course of creating the 
artefacts and partly by the evaluation of constraints 
upon ontological variables. Knowing these values, 
the artefact manager invokes appropriate 
mechanisms in the host system to store each artefact 
in an appropriate workspace substructure, 
integrating it with the correct infrastructure for its 
use. A text document, for instance, will be stored in 
some standard file-oriented directory, whilst an 
email will be stored in some email-client mailbox.  

Once created, copies of artefacts may be 
transmitted between local workspaces and 
communal repositories. An action import(Rep, A, st, et) 
requires the user to import into his workspace a copy 
of artefact A from repository Rep. An action 
export(Rep, A, st, et) transmits a copy of A in the 
converse direction. The plan interpreter will suspend 
either action if A is not currently available in its 
specified source. 

3.3 Constraint Evaluator  

As users pursue their plans, the Constraint 
Evaluator attempts to solve conjointly the calls cited 
in all constraint declarations, testing or determining 
values for the  ontological variables occurring as 
arguments within them. It behaves effectively as an 
assistant, displaying to the users their future 
possibilities and alerting them to constraint failure.  

The evaluator can be operated under various 
regimes controlling the timing of constraint-
checking. It is possible to simulate, prior to real-time 
user activity, the future performing of plans: eager 
constraint-checking can then compute, for instance, 
feasible schedules (if any) that the users might 
adhere to in practice. Another possibility is that 
users perform their plans but with inessential 
constraint-checking deferred until all plans have 
been completed; in that case they discover only 
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afterwards whether their activities satisfied their 
intentions. The standard regime, however, checks 
constraints incrementally in step with the plan 
interpreter, informing the users of their remaining 
scheduling opportunities and readying those tools 
they will need to manipulate their artefacts. Under 
this regime the evaluation of temporal constraints is 
similar to conventional critical path analysis. 

The CLP(FD) formalism has the flexibility to 
support these various regimes. For an ontological 
variable that is declared (or is by default) a CLP 
domain variable, the evaluator holds at any instant a 
current subset of that domain as the potential 
solution-set for that variable, as determined by the 
given constraint-defining programs and the current 
solution-sets of any other variables upon which it 
depends.  User actions in the portal interface that 
themselves bind any variables cause the algorithms 
to restrict further the solution-sets. Restriction also 
arises from each advance of the portal clock, which 
deletes the previous clock value from the domains of 
all temporal variables. If the domain of any variable 
becomes void this implies that the constraints upon 
that variable have no feasible solution. The 
solvability or otherwise of the constraints is 
independent of when the constraints are checked. 

In our implementation CLP(FD) is applied 
chiefly to the temporal variables, though it is 
applicable in principle to finite domains of artefact 
attribute values. In practice, however, we find it is 
usually more practical to deal with these by a form 
of Query-the-User driven by an interactive 
conventional logic program. This program is 
designed to evaluate a call of the form 

 
assist(A, Given_handles) 

 
which associates with artefact A a set Given_handles 
specifying already-chosen attribute values for A. 
This call may be placed in the body of any user 
constraint program. When it is executed, the user is 
invited by dialogues in the portal interface to choose 
values for any so-far-undetermined attributes. The 
net result of this interaction is to bind A to some 
ground term art(...) that the Artefact Manager then 
associates with the concrete stored artefact.    

 Figure 1 contains an example of this call being 
used to help ttr complete the attribute determination 
for timtab, whose type has been already prescribed in 
the given handles as dbtable. The assist program will 
invite ttr to choose the full path-name, the creator 
application tool and so forth. Although viewable in 
ttr’s script window, this program is not devised by ttr 
but is instead one of many supportive resources 
shared by all users.  

3.4 Script Manager  

Like any other artefact, a script can be created, 
transmitted or modified by a user. A user performing 
a role has a copy of its associated script in his own 
local workspace and can view it in his interface.  

Although some roles may be entirely self-
defined, our system enables a user U1, having 
appropriate authority, to assign a role (or a role-
update) R to another user U2. (We impose a 
simplifying restriction whereby no user has more 
than one role.) This is achieved by U1 performing 
within his own plan an action of the form 

 
assign(R, U2, st, et) 

 
This assumes that R is a script artefact already 
residing in the workspace of U1. If U2 currently has 
no role then the assign action invokes a Script 
Manager to create for U2 a new interface whose 
workspace contains a copy of R. Alternatively, if U2 
already has a role then R is some update to it, in 
which case the Script Manager copies R to U2’s 
existing workspace and alerts U2 to the need to 
incorporate the update into his existing script. 

A key presumption is that U2 cannot reject the 
requirements in any script content assigned to him, 
but may further detail it on his own initiative and 
may later (if suitably authorized) re-assign it to 
someone else. So in general the script for a user may 
contain accumulated contributions from other users 
besides himself. With these arrangements we can 
model the circumstance whereby requirements posed 
by some level of authority can be elaborated but not 
revoked by lower levels of authority. 

3.5 Failure Manager  

It is easy to detect when a constraint violation occurs 
but by no means always easy to determine the best 
way to explain or resolve it. A CLP(FD) failure 
occurs when some domain variable’s feasible 
solution-set is empty. Unless the constraint engine 
holds an accessible history of the internal constraint 
simplifications it has made in the course of reaching 
this situation, there is relatively little information on 
which to isolate a specific cause of the failure. In 
particular, the variable(s) now found to have no 
solution may be common to multiple source 
constraints variously sensitive to multiple roles. 
Thus, the responsibility for the failure may in 
general be communal, rather than individual. 

Sometimes it may be possible to detect that a 
particular individual’s recent activity, such as 
starting an action too soon or choosing an artefact 
attribute inappropriately, is the sole cause of the 
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problem. If they can backtrack on that action and try 
again then the problem may be remedied, 
demanding no revision of plans or constraints. It 
will, however, require garbage-collecting artefact 
operations undertaken by them prior to backtracking.  

Otherwise, the Failure Manager tracks down 
those constraints that impact, directly or indirectly, 
upon the problematic variables, and further identifies 
their originators, that is, those who have the 
authority to revise that material. They are alerted to 
their need to review, in the light of the current 
failure, the requirements they posed and to agree 
upon suitable revisions sufficient to alleviate the 
failure — for instance, by extending deadlines. The 
revisions are conveyed to the affected role-holders 
for assimilation into their scripts. 

4 CASE STUDY 

This example illustrates an episode involving 
academic role-holders in a college’s Computing 

department. The college’s Rector wishes to be 
supplied, by October 10th 2003, with a report on this 
department’s student drop-out rate from its Head 
(hod). The latter requests his Head of Studies (hos) to 
supply that report directly to the Rector. He poses 
this request by assigning to her the role update 
shown in Figure 2a, whose anonymous slots (“_”) 
she instantiates when assimilating this material into 
her role.  

The department runs five degree courses each 
with its own tutor, and hos requests these tutors to 
supply reports on drop-out rates for their courses but 
sets no deadlines for them. She believes it will take 
her just 1 day to consolidate their reports into her 
full report consrep for the Rector. Each tutor 
estimates of how long it will take to produce his 
report. The tutor (tmac) for the MSc in Advanced 
Computing course estimates it will take 2 days to 
create his report rep3. 

 

 
 
Figures 2b and 2c show the scr

tmac after assimilating hos’s requests
hos has put the assigned export acti
task12 and can view its deadline co
script window. She has substituted he
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Figure 2: Role scripts in the computing department
ipts of hos and 
. In her script, 
on into a new 
nstraint in her 
r own variable 

et7 in place of the et variable used in the role-update 
request that hod assigned to her. She has elaborated 
that request with constraints to help set up consrep 
and to restrict the duration of its creation process. 



 

Figure 3a shows snapshots from the interface 
of tmac taken on October 6th, 7th and 8th. Each of 
his variables has a row of cells variously filled grey 
or white. White cells indicate the current domain, 
i.e., the time-points (dates) that the constraint engine 
has calculated as admissible solutions. So on the 6th 
tmac sees that he can start his create action only on 
that day or the next, and complete it only on the 8th 
or 9th. However, his teaching obligations prevent 
him creating his report that day. By the 7th the portal 
clock has advanced one day and so eliminated the 
6th from the domain of st1, whose value tmac can 
now choose only as the 7th. Unfortunately he misses 
that opportunity also, so that by October 8th no 
choice at all remains to him. The domains of st1 and 
et1 are now void, signifying constraint failure. Their 
cells have turned black, signifying that they are 
implicated in that failure. 

The Failure Manager must now locate the 
failure. It identifies the constraint calls referring to 
st1 and et1 and constructs the transitive closure of 
this set under the relation of two calls sharing a 
domain variable. It thereby traces the dependencies 
between variables. It extracts the originators of the 
calls in this closure, being those in whose hands it 
lies to remedy the failure. Here, they are hod, hos, 
tmac and the other tutors. 

tmac may reduce his report-creation’s expected 
duration, or hos may decide she can complete her 
consolidation on the same day she begins it, but her 
deadline is assumed to be rigid. It is decided that 
tmac must create rep3 faster than he had estimated. 
He accordingly revises his own call to  

 
constraint(tmac, duration(st1, et1, 1)). 
 

so that his interface on the 8th changes to that in 
Figure 3b. He clicks in st1’s white cell for the 8th 
and begins working on his report. He finishes it the 
next day and so clicks in et1’s white cell for the 9th, 
then immediately exports the report. This leaves hos 
enough time to consolidate all five reports, provided 
the other tutors supply their reports on time too. 

We showed how the constraint engine presents 
feasible schedules as users commit to time-points. 
However, the interface also supports a “what-if?” 
mode permitting experimentation with non-
committed time-points to further explore the options. 

The episode above need not have entailed a 
constraint failure, as tmac could foresee on October 
6th his scope for completing rep3. The displayed 
domains of his variables enabled him to anticipate 
solutions. Moreover, because all solutions were 
visible, it was predictable that failure would occur if 
he did not begin his report before October 8th.  

5 CONCLUSION 

The model has been applied experimentally in the e-
DoC domain for simulating real roles among college 
staff, as a stand-alone portal. As a prototype under 
development, quantitative evaluation of it in a 
context of serious scale is not yet available. 

 

 
 
 

We employ a Sicstus CLP(F
enough to solve realistic constraint
separating user actions. It uses the P
construct web pages displaying the 
CLP(FD) was chosen for its flexibil
representation, its support of user-de
schemes and, in particular, its sim
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Figure 3: Updated interface for the “tmac”
D) engine fast 
s in the intervals 
illow package to 
users’ interfaces. 
ity in knowledge 
fined evaluation 

plicity compared 

with other proprietary systems such as ILOG Rules 
(ILOG, 2002).  

In our academic domain we use finite-domains 
mainly to compute temporal variables. However, 
actions and artefacts can have attributes measuring 
resources such as diskspace allocations or 
administrative overheads. These can be processed 
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likewise by CLP(FD) if they are discrete-valued. For 
other domains, action and artefact types can be 
implemented without altering the core model. In 
particular, domains concerned with assembling 
industrial artefacts, with constraints upon component 
supply and workflow, can be represented.  

A key priority is to enhance the intelligence of 
the Failure Manager which currently identifies only 
source constraints upon void-domain variables. It 
cannot trace back its evaluation to identify where 
failure-disposing events occurred. Standard logic 
programming engines can deliver traces showing 
which instances of source statements led to a 
computed outcome, so facilitating debugging and 
showing how the computation might be backtracked 
to try other instances. The constraints within a 
CLP(FD) engine, by contrast, are some arbitrary 
transformation of the source ones and may have 
attained that state using a mix of several algorithms. 
Using the record of users’ instantiations in their 
plans could compensate to some degree for these 
difficulties, whilst the treatment of purely temporal 
failures could usefully exploit scheduling analysis. 
Recent development of abductive constraint solvers 
such as A-system (Kakas, 2001), which is itself 
written in Sicstus Prolog, may point to ways of 
enhancing the ability of the Failure Manager to 
further localize the origins of constraint failure and 
to infer and rank suitable constraint revisions for the 
relevant originators, assisting their collaborative 
recovery. These aims share common ground with 
work on constrained workflow management, as in 
(Hwang, 2003) and (Wainer, 2003a) and (Wainer 
2003b) who variously employ procedural constraints 
or standard logic programming integrity constraints 
but not CLP(FD). We also intend partly to re-
implement our model in the multi-agent formalism 
Go! (Clark, 2003) whose multi-threaded 
communication inherently reduces the number of 
temporal constraints required.          
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