TOWARDS AN AGENT-BASED AND CONTEXT-ORIENTED
APPROACH TO COMPOSE WEB SERVICES

Zakaria Maamar®, Soraya Kouadri Mostéfaoui”, Hamdi Yahyaoui?, and Willem Jan van den Heuvel’

*Zayed University, Dubai, U.A.E

B University of Fribourg, Fribourg, Switzerland

Y Laval University, Quebec, Canada

‘STilburg University, Tilburg, The Netherlands

Keywords:

Abstract:

Web service, software agent, composition, context, conversation.

We present an agent-based and context-oriented approach for the composition of Web services. A Web service

is an accessible application that other applications and humans can discover and trigger to satisfy multiple
needs (e.g., hotel booking). Because of the complexity that characterizes the composition of Web services,
two concepts in this paper are put forward to reduce this complexity namely software agent and context. A
software agent is an autonomous entity that acts on behalf of users, whereas context is any relevant information
that characterizes a situation. During the composition process, software agents engage conversations with their
peers to agree on which Web services will participate in this process. In these conversations, agents take into

account the execution context of the Web services.

1 INTRODUCTION

Web services are nowadays emerging as a major tech-
nology for deploying automated interactions between
distributed and heterogeneous applications. Various
technologies back this deployment such as WSDL,
UDDI, and SOAP (Curbera et al., 2003). The tech-
nologies cited support the definition of Web services,
their advertisement to the community of users, and fi-
nally their binding for triggering purposes.

A Web service is an accessible application that
other applications and humans can automatically dis-
cover and invoke (Benatallah et al., 2003). In gen-
eral, composing multiple Web services (also called
services in the rest of the paper) rather than access-
ing a single service is essential and provides more
benefits to users (Berardi et al., 2003). Discovering
the component services, inserting the services into a
composite service, triggering the composite service
for execution, and monitoring this execution for the
needs of exception handling are among the opera-
tions that users will have to be responsible. Most of
these operations are complex, although repetitive with
a large segment suitable to computer aid and automa-
tion. Therefore, Software Agents (SAs) are deemed
appropriate to assist users in their operations. A SA is
an autonomous entity that acts on user’s behalf, makes
decisions, interacts with other agents, and migrates to
distant hosts if needed (Jennings et al., 1998).

Entrusting the composition of Web services to soft-
ware agents is challenging. Various challenges need

214

to be tackled including which businesses have the ca-
pacity to provision Web services, when and where
the provisioning of Web services occurs, how Web
services from separate businesses are coordinated so
conflicts are avoided, and what back-up strategies
handle execution exceptions of Web services. To
address a part of these issues, agents need to be
aware of the context in which the composition and
execution of the Web services happen. Context is
the information that characterizes the interaction be-
tween humans, applications, and the surrounding en-
vironment (Brézillon, 2003). For instance, before
provisioning a Web service for execution the com-
puting capabilities of the resources vs. the comput-
ing requirements of the Web service needs to be as-
sessed. In addition, before deploying any back-up
strategy an assessment of the type of exception is re-
quired. In this paper, we present our agent-based and
context-oriented approach for Web services compo-
sition. Existing approaches for service composition,
such as WSFL and BPEL4WS, typically facilitate or-
chestration only, while neglecting information about
the context surrounding users and services.

In our agent-based and context-oriented approach,
we leverage the interactions that occur between agents
during the composition of Web services to the level
of conversations. A conversation is a consistent ex-
change of messages between participants involved
in joint operations and thus, have common interests.
Agents engage conversations with their peers when it
comes for example to search for the component ser-

Maamar Z., Kouadri Mostéfaoui S., Yahyaoui H. and Jan van den Heuvel W. (2004).
TOWARDS AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH TO COMPOSE WEB SERVICES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 214-221

DOI: 10.5220/0002600102140221
Copyright © SciTePress

TOWARDS AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH TO COMPOSE WEB SERVICES

vices, to check the availability of these services, and
to trigger these services.

Section 2 defines Web services. Section 3 presents
the agentification of Web services composition. Sec-
tion 4 discusses the implementation of the discussed
approach. Section 5 overviews related work. Finally,
Section 6 draws our conclusions and summarizes our
future work. We note at that level that the mecha-
nisms for discovering the component Web services
of a composite service, while important, do not fall
within the scope of this paper.

2 BACKGROUND - WEB
SERVICES

A Web service is an accessible application that other
applications and humans as well can discover and
trigger. A Web service is (Benatallah et al., 2003):
(1) independent as much as possible from specific
platforms and computing paradigms; (ii) developed
mainly for inter-organizational situations rather than
for intra-organizational situations; and (iii) easily
composable (i.e., its composition with other Web ser-
vices does not require complex adapters).

For the needs of our research on Web services such
as the one we conducted in (Maamar and Mansoor,
2003), we developed Service Chart Diagrams (SCDs)
as a specification means (Maamar et al., 2003). A
SCD leverages the state chart diagram of UML (Harel
and Naamad, 1996), putting the emphasize on the
context surrounding the execution of a Web service
rather than only on the states of a Web service (Fig. 1).

Service

Layers
ly (" Previous Bulibes Next
>r>services (M/O) services (M/O)FK
B E
| (& o) :
e o

3 N Data from Perfor. type N Data to
_previous services (localor remote) | next servicet

Figure 1: Service chart diagram

A SCD wraps the states of a Web service into
five perspectives, each perspective having a set of at-
tributes. The state perspective corresponds by default
to the state chart of the service. The flow perspec-
tive corresponds to the execution chronology of the
composite service in which the service appears (Pre-
vious services/Next services attributes - M/O respec-
tively stands for Mandatory and Optional). The busi-
ness perspective identifies the organizations that are
ready for providing the service (Business attribute).
The information perspective identifies the data that
are exchanged between the services of the compos-
ite service (Data from previous services/Data for next

services attributes). Because these services can be ei-
ther mandatory or optional, the information perspec-
tive is tightly coupled to the flow perspective with re-
gard to the mandatory data and optional data. Finally,
the performance perspective illustrates the ways (re-
motely or locally) the service is invoked for execution
(Performance type attribute).

Because a composite service is made of up of sev-
eral component services, the process model underly-
ing this composite service is specified as a state chart
diagram whose (i) states are associated with the ser-
vice chart diagrams of the component services (Fig. 1)
and (ii) transitions are labelled with events, condi-
tions, and variable assignment operations.

3 AGENTIFICATION OF WEB
SERVICES COMPOSITION

Three types of input sources can contribute to the
development of a context: service, user, or both.
In (Roman and Campbell, 2002), the authors observe
that a user-centric context promotes applications that
(1) move with users, (ii) adapt according to changes
in the available resources, and (iii) provide configu-
ration mechanisms based on users’ preferences. We
advocate that a service-centric context promotes ap-
plications that (i) allow service adaptability, (ii) deal
with service availability, and (iii) support on-the-fly
service composition. In this paper, the focus is on the
context of services.

3.1 Agent-based deployment

The objective of agentifying Web services composi-
tion is to determine the appropriate types and roles
of agents that will deploy this composition. Cur-
rently, we are considering three types of agents:
composite-service-agent, master-service-agent, and
service-agent.

We consider a Web service as a component that is
instantiated each time it participates in a composition.
Before the instantiation happens, several elements re-
lated to the Web service have to be checked. These
elements constitute a part of the context, denoted by
W-context, of the Web service and are as follows:

e The number of service instances currently running
vs. the maximum number of service instances that
simultaneously can be run.

e The execution status and location of each service
instance deployed.

e And, the time of request of the service instance
vs. the time of availability of the service instance.

The role of the master-service-agent is to track the
Web service instances that are obtained from a Web
service. Master-service-agents, Web services, and

215

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

W-contexts are all stored in a pool (Fig. 2). A master-
service-agent processes the requests of instantiation
that are submitted to a Web service. These requests
originate from composite-service-agents of the com-
posite services to set-up. For instance, the master-
service-agent makes decisions on whether a Web ser-
vice is authorized to join a composite service. In case
of approval, a service instance and a context, denoted
by Z-context, are created. An authorization can be
rejected because for example of overloaded status.
To be informed about the running instances of a
Web service so the VW-context is updated, the master-
service-agent associates each instance created with
two components: a service-agent and an Z-context.
The service-agent manages the service chart diagram
(Fig. 1) and the Z-context of the service instance. For
example, the service-agent knows the states that the
service instance will take, and the Web services that
need to join the composite service after the execution
of this service instance is completed.
Master-service-agents and service-agents are in
constant interactions. Indeed, the Z-contexts feed the
W-contexts with various details including:

1. What is the execution status (in-progress, sus-
pended, aborted, ...) of a service instance?

2. When is the execution of a service instance sup-
posed to resume in case it has been suspended?

3. When is the execution of a service instance ex-
pected to complete? What kind of completion is
expected: success or failure?

4. What are the corrective actions that are taken in
case the execution of a service instance fails?

With regard to composite-service-agents, their role
is to trigger the specifications of the composite ser-
vices and monitor the deployment of these specifi-
cations. A composite-service-agent ensures that the
appropriate component services are involved and col-
laborate according to a certain specification. When
a composite-service-agent downloads the specifica-
tion of a composite service, it (i) establishes a context
denoted by C-context for the composite service, and
(ii) identifies the first Web services to be triggered.
For the sake of simplicity, we assume that the Web
services constitute a sequence. It is needless to say
that our description of service deployment is applica-
ble to any type of chronology. When the first Web
service is known, the composite-service-agent inter-
acts with the master-service-agent of this Web service
in the objective to ask for a service instantiation.

If the master-service-agent agrees on this instanti-
ation after checking the YW-context, a service-agent
and an Z-context are set up. Afterwards, the service
chart diagram of the new service-instance is trans-
ferred to the service-agent. The service-agent initiates
the execution of the service instance and notifies the

216

master-service-agent about the execution status. Be-
cause of the regular notifications occurring between
service-agents and master-service-agents, exceptions
are immediately handled. In addition, while the Web
service instance is being performed, the service-agent
defines the next Web services after this service in-
stance (Fig. 1). In case there are Web services, the
service-agent requests from the composite-service-
agent to engage conversations with their respective
master-service-agents.

The aforementioned description of the agentifica-
tion approach presents potential advantages for man-
aging services all along their life-cycle, from prepara-
tion to deployment and recomposition if needed. The
most prominent advantage is the concurrency exist-
ing between the composition and execution of the ser-
vices. While service-agents are in charge of executing
the Web service instances, composite-service-agents
engage at the same time conversations with master-
service-agents to ensure that the next Web services
are got ready for execution.

Store of Access 7 , Interactioys. | Pool of Mas!er
service specifications N/ 3 service- <

Session of composite service,

Update

Update
SCD-Web
service,
SCD-Web
service,

VooV

SCD-Web

service,

Figure 2: Agents deployment for Web services composition

Fig. 2 represents an execution session of the com-
posite service C'S;. It has 4 primitive component ser-
vices. Each service instance is associated with a ser-
vice chart diagram. The clouds in this figure corre-
spond to contexts. Z-context is the core context that
the service-agent uses for updating the C-context and
W-context of the respective composite-service-agent
and master-service-agent. The exchange of informa-
tion occurring between a master-service-agent and a
service-agent has already been discussed. In addition
to a copy (or a part based on the level of details that
needs to be tracked) of that exchange that is sent to
composite-service-agents, these ones receive the fol-
lowing from service-agents: (i) the next services to be
called for execution, and (ii) the type of these services
whether mandatory or optional.

3.2 Value-added of and details on
Z/W/C-contexts

Besides the three types of agents that are identified
during the agentification of Web services composi-

TOWARDS AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH TO COMPOSE WEB SERVICES

tion (Fig. 2), three types of services were considered:
composite service, Web service, and Web service in-
stance. Each service has been attached to a context.
The Z-context is the most-grained one, whereas the C-
context is the least-grained one. The VV-context is in
between the two contexts. Details on an Z-context are
used for updating a VW-context. Furthermore, details
on a YW-context are used for updating a C-context. We
are using Tuple Spaces to implement the update op-
erations between contexts (Ahuja et al., 1986). How-
ever, to keep the paper self-contained these operations
are not discussed'. In what follows, we highlight the
structure of each context and discuss the value-added
of contexts to the composition of Web services.

The Z-context of a Web service instance consists of
the parameters: label, service-agent label, status, pre-
vious service instances, next service instances, reg-
ular actions, begin time, end time (expected and ef-
fective), reasons of failure/suspension, corrective ac-
tions, and date.

The W-context of a Web service is built upon the
T-contexts of its respective Web service instances
and consists of the parameters: label, master-service-
agent label, number of instances allowed, number of
instances running, next service instance availability,
status/service instance, and date.

The C-context of a composite service is built upon
the W-contexts of its respective Web services and
consists of the parameters: label, composite-service-
agent label, previous Web services, current Web ser-
vice, next Web services, begin time, and date.

In the beginning of Section 3 we pointed out that
our focus is on service-centric context. This is shown
with the WW-context of a Web service that connects
Z-contexts and C-contexts. A service-centric context
promotes service adaptability, availability, and on-
the-fly composition. These requirements are met in
our agentification approach. A composite service may
have to adapt its list of component Web services be-
cause of the availability of certain components. Avail-
ability has been illustrated with two cases: (i) a ser-
vice is either mandatory or optional, and (ii) the maxi-
mum number of services instances that can be created
with regard to the current number of service instances
that are running. Since Web services are instantiated
on a request-basis, this means that a composition of
type on-the-fly is supported.

Since a service-centric context is adopted, we see
a W-context of a Web service along three intercon-
nected perspectives (Fig. 3): instance, execution, and

'A sample of a control tuple illustrating an update
between contexts: modified(Z-context i, WebServiceln-
stance wsi)[true]—update()V-context w, WebService ws)
means that if the Z-context i of the Web service instance wsi
has been modified, therefore the respective VV-context w of
the web service ws needs also to be updated after collecting
information from this Z-context i.

time. Rationale of each perspective is as follows.

1. Instance perspective is concerned with creating ser-
vice instances, getting them reading, and finally as-
signing them to composite services.

2. Execution perspective is concerned with meeting

the computing resource requirements of service in-
stances, tracking their execution, and avoiding con-
flicts on these computing resources.

3. Time perspective is concerned with time-related

parameters of and constraints on service instances.

Instance

Execution

Time

Figure 3: Perspective-based representation of context

Fig. 3 shows that instance, execution, and time per-
spectives are all interconnected. First, deployment de-
notes the connection between instance and execution
perspectives, which reflects the instantiation of Web
services for the needs of execution. Second, tracking
denotes the connection between execution and time
perspectives, which reflects the monitoring of the in-
stances of Web services that occurs over a certain pe-
riod of time. Finally, availability denotes the connec-
tion between time and instance perspectives, which
reflects the continuous verification the Web services
perform before these Web services commit additional
service instances for a certain period of time.

The use of context ensures that the requirements
and constraints of the services to participate in a com-
position are considered. While current Web services
composition approaches rely on different selection
criteria such as execution cost, and reliability, we
deem appropriate to integrate the context of services
into this composition. Doulkeridis et al. also back
the importance of including context during Web ser-
vices composition (Doulkeridis et al., 2003). We have
shown that services take part in a composition based
on their availability and the current needs of the com-
posite services in component services. Moreover, the
use of context is suitable for tracing the execution of
Web services during exception handling. It would be
possible at any time to know what happened, what
is happening with a Web service and all its respec-
tive instances. Predicting what will happen to a ser-
vice could also be feasible in case the previous con-
texts (i.e., what happened with a service) are stored.

217

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

In (Kouadri Mostéfaoui, 2003), Kouadri Mostéfaoui
makes a reference to different types of context: user,
computing, time, physical, and history. History con-
text stores details on other contexts for future and fur-
ther use. Applications can make use of not just the
current context, but also past contexts to adapt their
behavior for better actions and interactions with users.

3.3 Conversations and composition

In the following and for the sake of simplicity, a com-
ponent service always refers to a Web service. In
a reactive composition such as the one that features
our agentification approach (Chakraborty and Joshi,
2001), the selection of the component services to con-
stitute a composite service is done on-the-fly. We out-
source the selection operations to composite-service-
agents that engage conversations with the respective
master-service-agent of the Web services. In these
conversations, master-service-agents decide if their
Web service will join the composition process after
checking the C-contexts. In case of a positive deci-
sion, Web service instances, service-agents, and Z-
contexts are deployed.

When a Web service instance is being executed, its
service-agent checks the service chart diagram of this
instance. The purpose is to verify if extra Web ser-
vices are needed. If yes, the service-agent requests
from the composite-service-agent to engage conver-
sations with the master-service-agents of these Web
services. These conversations have two aims: (i) in-
vite master-service-agents and thus their Web service
to participate in the composition process; and (ii) en-
sure that the Web services are got ready for instantia-
tion in case of invitation acceptance.

Fig. 4 depicts a conversation diagram between
a service-agent, a composite-service-agent, and a
master-service-agent. The composite-service-agent is
in charge of a composite service that has n compo-
nent Web services(q, ... s, j, ..., n). In Fig. 4, rounded
rectangles are states (states with underlined labels be-
long to Web service instances, whereas other states
belong to agents), italic sentences are conversations,
and numbers are the chronology of conversations. Ini-
tially, Web service instance; takes an execution state.
Further, service-agent; and the composite-service-
agent take each a conversation state. In these conver-
sation states, activities to ask the participation of the
next Web services (i.e., Web service;) are performed.

Upon receiving a request from service-agent; about
the need to involve Web service; (0), the composite-
service-agent engages conversations with master-
service-agent; (1). This service is an element of
the composite service under preparation. A com-
posite service is decomposed into three parts. The
first part corresponds to the Web service instances
that have already completed their execution (Web

218

servicesy, ..., ;—1). The second part corresponds to the
Web service instance that is now being executed (Web
service instance;). Finally, the third part corresponds
to the rest of the composite service that is due for exe-
cution and hence, has to get ready for execution (Web
services;, ... »). Initially, master-service-agent; is in
a monitoring mode; it tracks the instances of Web
service; that are currently participating in different
composite services. When it receives a request to cre-
ate an additional instance, master-service-agent; en-
ters the assessment state. Based on the WW-context
of Web service;, master-service-agent; evaluates the
request of the composite-service-agent and makes a
decision on one of the options: decline the request,
delay its making decision, or accept the request.

Option a. Master-service-agent; of Web service; de-
clines the request of the composite-service-agent.
A conversation message is sent back from master-
service-agent; to the composite-service-agent for
information (2.1). Because a component service
can be either mandatory or optional in a compos-
ite service, the composite-service-agent has to de-
cide whether it has to pursue with master-service-
agent;. To this end, the composite-service-agent
relies on the specification of Web service; and the
C-context of the composite service. Two exclusive
cases are offered to the composite-service-agent:

e If Web service; is optional, the composite-
service-agent enters again the conversation state,
asking the master-service-agent of another Web
servicey (r » ;) (i.e., a substitute) to join the
composite service (1).

e Otherwise (i.e., Web service; is mandatory), the
composite-service-agent engages further conver-
sations with master-service-agent; asking for ex-
ample for the reasons of rejection or the avail-
ability of the next instance of Web service;.

Option b. Master-service-agent; of Web service;
cannot make a decision before the response
deadline that the composite-service-agent has
fixed. Thus, master-service-agent; requests from
the composite-service-agent to extend the dead-
line (2.2). The composite-service-agent has two al-
ternatives based on the C-context of the composite
service and the fact that a component service can
be either mandatory or optional:

e Refuse to extend the deadline as master-
service-agent; has requested; this means
that the composite-service-agent has to start
again conversing with another master-service-
agenty, (1 - ;) (Option a).

e Accept to extend the deadline as master-service-
agent; has requested; this means that master-
service-agent; will get notified about the ac-
ceptance of the composite-service-agent (2.2.1).

TOWARDS AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH TO COMPOSE WEB SERVICES

Service-agent
Web service

instance; w
(Execution XConversation

PN

(X}
&

Conversation

Composite-service-agent

B emmss

Master-service-agent
©
N

Request
considered

1

Web servicej

1. Request to join
a composite service

Reject to

Executi
Xecution delay/decline

with success

Assessment

Invitation

2.2.1 Accept to delay (Assessment)

Decision made

2.1 Decline to join .
£ Conversation

2.2 Request to delay

accepted

2.3 Accept to join Service to

Conversation

later on

get ready

Deployment

Service-agent;

Web service

Web service .
- Conversation
instance ; done

Invocation Web service inslanceJ instancej

Execution

Figure 4: Conversation diagram between agents

After receiving the acceptance, master-service-
agent; of Web service; enters again the assess-
ment state and checks the VV-context in order to
make a decision on whether to join the composite
service (Option a). A master-service-agent may
request a deadline extension for several reasons
such as additional instances of Web service; can-
not be committed before other instances com-
plete their execution.

Option c. Master-service-agent; of Web service; ac-
cepts to join the composite service. Consequently,
it informs its acceptance to the composite-service-
agent (2.3). This is followed by a Web Ser-
vice Level Agreement (WSLA) between the two
agents (Ludwig et al., 2002). At the same time,
master-service-agent; ensures that Web service; is
getting ready for execution through the preparation
state (i.e., deploy Z-context and service-agent;).

When the execution of Web service instance; is
terminated, service-agent; informs the composite-
service-agent about that. According to the agree-
ment that was established in Option c, the composite-
service-agent interacts with service-agent; so the
newly-created instance of Web service; is triggered.
Therefore, Web service instance; enters the execution
state. At the same time, the composite-service-agent
initiates conversations with the master-service-agents
of the next Web services that follow Web service;. It
should be noted that the content of agreements is be-
yond this paper’s scope.

4 PROTOTYPE
IMPLEMENTATION

Based on the approach introduced in Section 3, we are
in the process of implementing a prototype. Its archi-
tectural overview is depicted in Fig. 5. In what fol-
lows we outline the functionality of the major classes
of the prototype:

e Service chart diagram: is used to specify Web ser-
vices and Web Services instances.

e State chart diagram: is used to specify the compos-
ite services. It is an aggregation of the different
service chart diagrams that correspond to the Web
services participating in the composition.

e Agents: the agents set of classes (service agent,
master service agent, and composite service agent)
is used to specify the agents of the prototype.
The service agent and the composite service agent
classes are associated with the Web service in-
stance and the composite service classes respec-
tively. Each agent has a label, type, and loca-
tion (platform where it resides).

Context: the context set of classes (Z-context, VV-
context, C-context) is responsible for gathering,
processing and parsing contextual information. It
translates the information parsed into XML doc-
uments and attaches each context to its respec-
tive agent (service agent, master service agent, and
composite service agent).

Conversation: is the central unit for managing
and maintaining conversations between the differ-

219

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

Web Service

in w1

Composite Service

+Location
+Instances

specified by B 1.1

+Name
+ID:

+Location
+Services

specified by B 1.1

Service Chart Diargram

1.* < instantiated

State Chart Diargram

“Name in w1 e
Web Service Instance o) +D
+Perspe +Perspectives £
+Name]
+ID; 3
+Location specified by B 1.1 Conversation g
+State g
+Session name 2
= - 8
£ engagesin (> 1. 1.* <K engagesin
5 ¥
8 - :
= -
8 A
8
] B
i @
? 8
5
g
8
: 2
- §
Service Agent Master Service Agent Composite Service Agent
Label +Label +Label
sLocation +Location +Location
+Type +Type +Type
- Contoxt * * [Resouce]
- e e Label
+Label z ‘Agents = +Capabilities
2 +Date 3 g 3 i
3 £ FIPA, Aglets, Jade, Leap £ =
£ s 8 =
S £ £
£ © ° 2
® 3
2
2
§
£
®
I-Context W-Context C—Context Security-Context
+Service-agent label Tabel + gent label +Services
+Status +Number of instances allowed +Previous web services +Calling operations
+Previous service instances +Number of instances running +Current web services
+Next service instances +Next service instance availability | | +Next web services
+Regular actions +Status. +Status
+Time
+Reasons of failure
+Corrective actions
Specifications
XML, RDF, /PP

Figure 5: Class model of agent-based deployment

ent agents of the system. Conversation sessions are
represented as XML documents.

S RELATED WORK

There are several research initiatives in the field of
Web services composition. Besides the traditional se-
lection criteria that are used for composition (e.g., ex-
ecution cost and time), we have shown that context
has a major effect on the Web services in general and
their composition in particular. For example, reaching
the maximum number of instances that can be created
from a Web service definitely delays the development
of a composite service. Furthermore, being aware of
when these instances will become available helps in
adjusting the execution of the composite service. We
have also shown that the context has been part of the
conversations that agents of the Web services engage.

In the service chart diagram of Fig. 1, the flow per-
spective illustrates the pre- and post-component ser-
vices of a composite service. These component ser-
vices can be either optional or mandatory. These
types of service are similar to what Berfield et al. call
in (Berfield et al., 2002) by vital and nonvital services
for a workflow application. Another use of previous
and next services of the flow perspective is related
to pre- and post-conditions. These conditions spec-
ify what must be true before a component service can

220

be executed, and what will be true as a result of the
component service execution.

The Web Services Conversation Lan-
guage (WSCL) is a sample of the initiatives on
conversations in the field of Web services (Beringer
etal.,2001). This language describes the structures of
documents that a Web service expects to receive and
produce, as well as the order in which the interchange
of these documents is supposed to occur. While the
WSCL focuses on the specification of the operations
that Web services support, our conversations focus on
the mechanisms of establishing composite services.

Finally, another use of conversations for Web ser-
vices enables us dealing with the composability issue
of Web services as Medjahed et al. discuss in (Med-
jahed et al., 2003). For instance, mapping opera-
tions of the information exchanged between Web ser-
vices may be required. Ensuring the composability of
Web services can be achieved through conversations.
Agents engage conversations for agreing on what to
exchange, how to exchange, when to exchange, and
what to expect from an exchange.

6 CONCLUSION AND FUTURE
WORK

In this paper, we presented our approach for com-
posing Web services using software agent and con-

TOWARDS AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH TO COMPOSE WEB SERVICES

text. Several types of agents have been considered
namely composite-service-agents for composite ser-
vices, master-service-agents for Web services, and
service-agents for Web service instances. The dif-
ferent agents have been aware of the context of their
respective services in the objective to devise com-
posite services on-the-fly. To reach this objective,
three types of context have been used: Z-context, V-
context, and C-context. Conversations between agents
have also featured the composition of Web services.
Before Web service instances are created, agents en-
gage conversations to decide if service instances can
be created and annexed to a composite service. Such
a decision is based on several factors among them the
maximum number of service instances that can be de-
ployed at the same time and the availability of these
instances for a certain period of time.

Our ongoing work is decomposed into several
thrusts. A security is one them as it is important to
make sure that services do not misuse the comput-
ing resources on which they will be performed. An-
other thrust consists of composite service adaptabil-
ity by allowing composite-service-agents to carry out
some run-time modifications by for instance adding
new component services, removing certain compo-
nent services, or replacing certain component ser-
vices. Therefore, the assessment of the effects of
adaptation is deemed appropriate. Another thrust con-
sists of refining the update operations that occur be-
tween contexts. We already pointed out the support
of Tuple Spaces to such operations.

REFERENCES

Ahuja, S., Carriero, N., and Gelernter, D. (1986). Linda and
Friends. Computer, 19(8).

Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The
Self-Serv Environment for Web Services Composi-
tion. IEEE Internet Computing, 7(1).

Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini,
M., and Mecella, M. (2003). A Foundational Vi-
sion for e-Services. In Proceedings of The Work-
shop on Web Services, e-Business, and the Semantic
Web (WES’2003) held in conjunction with The 15th
Conference On Advanced Information Systems Engi-
neering (CAiSE’2003), Klagenfurt/Velden, Austria.

Berfield, A., Chrysanthis, P. K., Tsamardinos, 1., Pollack,
M. E., and Banerjee, S. (2002). A Scheme for Inte-
gration E-Services in Establishing Virtual Enterprises.
In Proceedings of The Twelfth International Workshop
on Research Issues in Data Engineering: Engineer-
ing e-Commerce/e-Business Systems (RIDE’02), San
Jose, USA.

Beringer, D., Kuno, H., and Lemon, M. (2001).
Using WSCL in a UDDI Registry 1.02.

http://www.uddi.org/pubs/wsclBPforUDDI_5_16_011.doc.

Brézillon, P. (2003). Focusing on Context in Human-
Centered Computing. /[EEE Intelligent Systems, 18(3).

Chakraborty, D. and Joshi, A. (2001). Dynamic Service
Composition: State-of-the-Art and Research Direc-
tions. Technical report, TR-CS-01-19, Department of
Computer Science and Electrical Engineering, Uni-
versity of Maryland, Baltimore County, Maryland,
USA.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weer-
awarana, S. (2003). The Next Step in Web Services.
Communications of the ACM, 46(10).

Doulkeridis, C., Valavanis, E., and Vazirgiannis, M. (2003).
Towards a Context-Aware Service Directory. In Pro-
ceedings of The 4th Workshop on Technologies for
E-Services (TES’03) held in conjunction with The
29th International Conference on Very Large Data
Bases (VLDB’2003), Berlin, Germany.

Harel, D. and Naamad, A. (1996). The STATEMATE Se-
mantics of Statecharts. ACM Transactions on Soft-
ware Engineering and Methodology, 5(4).

Jennings, N., Sycara, K., and Wooldridge, M. (1998). A
Roadmap of Agent Research and Development. Au-
tonomous Agents and Multi-Agent Systems, Kluwer
Academic Publishers, 1(1).

Kouadri Mostéfaoui, S. (2003). Towards a Context-
Oriented Services Discovery and Composition Frame-
work. In Proceedings of Al Moves to IA: Work-
shop on Artificial Intelligence, Information Access,
and Mobile Computing held in conjonction with the
18th International Joint Conference on Artificial In-
telligence (IJCAI’2003), Acapulco, Mexico.

Ludwig, H., Keller, A., Dah, A., and King, R. (2002).
A Service Level Agreement Language for Dynamic
Electronic Services. In Proceedings of the 4th
IEEE International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Sys-
tem (WECWIS’2002), Newport Beach, California,
USA.

Maamar, Z., Benatallah, B., and Mansoor, W. (2003). Ser-
vice Chart Diagrams - Description & Application. In
Proceedings of The Twelfth International World Wide
Web Conference (WWW’2003), Budapest, Hungary.

Maamar, Z. and Mansoor, W. (2003). Design and Develop-
ment of a Software Agent-based and Mobile Service-
oriented Environment. e-Service Journal, Indiana
University Press, 2(3).

Medjahed, B., Rezgui, A., Bouguettaya, A., and Ouzzani,
M. (2003). Infrastructure for E-Government Web Ser-
vices. IEEE Internet Computing, 7(1).

Roman, M. and Campbell, R. H. (2002). A User-
Centric, Resource-Aware, Context-Sensitive, Multi-
Device Application Framework for Ubiquitous Com-
puting Environments. Technical report, UIUCDCS-R-
2002-2282 UILU-ENG-2002-1728, Departement of
Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL, USA.

221

