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Abstract: This paper presents a new methodology for building decision trees or classification trees (Consolidated 
Trees Construction algorithm) that faces up the problem of unsteadiness appearing in the paradigm when 
small variations in the training set happen. As a consequence, the understanding of the made classification is 
not lost, making this technique different from techniques such as bagging and boosting where the 
explanatory feature of the classification disappears. The presented methodology consists on a new meta-
algorithm for building structurally more steady and less complex trees (consolidated trees), so that they 
maintain the explaining capacity and they are faster, but, without losing the discriminating capacity. The 
meta-algorithm uses C4.5 as base classifier. Besides the meta-algorithm, we propose a measure of the 
structural diversity used to analyse the stability of the structural component. This measure gives an 
estimation of the heterogeneity in a set of trees from the structural point of view. The obtained results have 
been compared with the ones get with C4.5 in some UCI Repository databases and a real application of 
customer fidelisation from a company of electrical appliances.  

1 INTRODUCTION 

Several pattern recognition problems need an 
explanation of the made classification together with 
a good performance of the classifier related to its 
discriminating capacity. Diagnosis in medicine, 
fraud detection in different fields, customer 
fidelization, resource assignation, etc, are examples 
of applications where an explanation of the 
classification made becomes as important as the 
accuracy of the system. Among the set of 
classification techniques that are able to give an 
explanation for the classification made, we can find 
the decision trees [Quinlan 93]. However, 
classification trees have a problem; they are too 
sensitive to the sample used in the induction process. 
This weakness of decision trees is called 
unsteadiness or instability [Dietterich 00a, Chawla el 
al 02]. Due to this behaviour, several algorithms for 
building classification trees with greater 
discriminating capacity and steadiness have been 
developed. 
Bagging [Breiman 96], boosting [Freund et al 96], 
and different variants of them [Chawla el al 02]; are 

examples of techniques used to face the problem. All 
of them use resampling techniques. Bagging uses a 
set of trees induced from different bootstrap 
subsamples, extracted from the initial sample 
(training set). In the multiple classifier built, 
classification is made by simple voting or weighted 
voting [Duin et al 00, Bauer et al 99]. When the used 
technique is boosting, the different trees are built 
sequentially and the patterns are reweigthed 
depending on the error made by the preceding 
classifier. This makes the next tree in the sequence 
concentrate in the hardest zones of the classification 
field, so, in the decision boundaries. The final 
decision is based on a weighted vote that takes into 
account the error estimated during the learning 
process of each one of the trees composing the 
system.  
These techniques obtain improvements in the 
behaviour of the global system but they lose the 
explaining capacity of the classifier, because in 
every case the final classifier is a combination of 
different trees with different structures. Our 
approximation introduces a new methodology that 
brings together both characteristics: stability and 
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explaining capacity. We have developed a new 
algorithm for building trees. We denominate the 
built trees consolidated trees. This methodology 
uses different training subsamples and builds a 
single accorded tree among all of them. Every 
technique mentioned before to make more stable 
classification trees, loses its explanatory component, 
because a set of trees with very different structures is 
used to make the final decision. Our aim has been to 
design a new methodology for building trees that 
maintaining the performance of standard 
classification trees, reduces the complexity and adds 
structural stability to the induced tree. This makes 
the explanation related to classification much more 
robust and steady, so, less sensible to small changes 
in the sample used to build the classifier. In order to 
analyse the structural stability of classification trees, 
we have defined a diversity measure or distance that 
measures how similar or different a set of trees is. 
The paper proceeds with the description of our new 
methodology for building consolidate trees, Section 
2. In Section 3, the structural diversity measure is 
introduced, followed in Section 4 by the description 
of the data sets and the experimental set-up. The 
results of our experimental study are discussed in 
section 5. Finally, Section 6 is devoted to summarise 
the conclusions and future research. 

2 CTC LEARNING ALGORITHM 

The tree building methodology we propose, 
Consolidated Trees Construction (CTC) algorithm, 
is based on resampling techniques. Several training 
subsamples are extracted from the original training 
set and a single tree is built based on consensus 
among the partial trees that are being built from each 
subsample. The main difference with bagging, 
which makes it radically different, is that the 
consensus is achieved in each step of the trees’ 
building process. The decision about which variable 
will be used to make the split in a node is accorded 
among the different proposals coming from the trees 
(using the base classifier: C4.5 in our case) being 
built from the different subsamples. The decision is 
made by a voting process. Once the decision about 
the variable selected to split the trees is made, all the 
trees (each one associated to a different subsample) 
are forced to use that variable to make the split. The 
process is repeated iteratively until no more 
divisions are possible, due to some stop criterion. 
An schema of the algorithm can be found in (Figure 
1) and it proceeds the following way: 

 

Figure 1: Consolidation of a node. 
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1. Extract a set of subsamples (Number_Samples) 
from the original training set using the desired 
resampling technique (Resampling_Mode): size 
of the subsamples (100%, 75%, 50%, etc; with 
regard to the original set’s size), with replacement 
or without replacement, stratified or not, etc. 

2. The final tree is built node by node in preorder. 
Each consolidated node is built the following 
way: 

a. For each subsample, induce the variable that 
would be used to make the split at that level of 
the partial tree; in the example (B, F,…,B). 

b. Analyse the number of partial trees that 
propose to make an split and decide depending 
on the established criteria Crit_Split (ex: 
simple majority, absolute majority, etc.) 
whether to split or not. If the decision is not to 
split (a leaf node is created), jump to the next 
node to consolidate and go to step 2a. 

c. Analyse the number of votes that has the most 
voted variable (votes of variable B in Figure 1). 
If based on Crit_Variable the variable has not 
enough votes, consolidate the node as a leaf 
node and go to step 2a. When the number of 
votes is enough this variable will be the one 
used to split the consolidated node. 

d. Decide the branches the node to split will have, 
depending on Crit_Branches criteria. If the 
variable to split is continuous, determine the 
cutting point (ex: using the mean or the median 
of the values proposed for that variable). If the 
variable to split is discrete, decide the set of 
categories for each branch (ex: a branch for 
each category, using heuristics such as C4.5’s 
subset option, etc.). 

e. Force the accorded split (variable and 
stratification) in every tree asociated to each 
subsample (every partial tree in the example is 
forced to make the split with the consolidated  
variable B). Jump to next node and go to step 
2a. 

The different decisions can be made by voting, 
weighted voting, etc. Once the consolidated tree has 
been built, its behaviour is similar to the one of the 
used base classifier. Section 5 will show that the 
trees built using this methodology, have similar 
discriminating capability (the differences are not 
statistically significant) but they are structurally 
more steady and less complex. In order to analyse 
this second aspect, we have defined the structural 
diversity measure that we present in next section. 

3 STRUCTURAL DIVERSITY 
MEASURE 

We will use this section to define the diversity 
measure or structural distance, that will allow us to 
analyse the stability of the consolidated trees and 
compare them to the standard ones. The aim is to be 
able to measure the heterogeneity existing in sets of 
trees built using each of the methodologies to be 
compared. The estimation of the degree of structural 
diversity in a group, is made analysing the structural 
differences among each possible pair of trees in the 
group, and, calculating average values of the 
differences obtained. 
The defined metric or distance (Structural_Distance, 
SD) is based on a vector (M0, M1, M2) with three 
values used to compare two trees (Ti, Tj). Both trees 
are looked through in preorder, node by node, and 
the corresponding split variables are compared to 
know whether they match or not. The three 
components are calculated the following way: 

• M0: Number of common nodes in Ti and Tj. 
We understand as common nodes the ones that 
being in the same position in both trees, make 
the split based on the same variable.  

• M1: measures the number of times that 
looking through a common branch, a tree 
makes a split in a node and the other does not. 
Each increment is weighted depending on the 
complexity of the subtree beginning in this 
node. 

• M2: measures the number of times that 
looking through a common branch and arriving 
to a common node, the variables chosen to 
make the split in both trees are different. Each 
increment is weighted depending on the 
complexity of both subtrees. 

The pseudo-code of the algorithm used for 
calculating each one of the components of the 
proposed measure is in Appendix. 
The definitions show that to increase the value of 
M0, the same variable has to appear in the same 
node, so that the variable used to make the split has 
been chosen at the same level in both trees. Once a 
different split appears, the remaining subtrees of the 
compared trees have an effect on the value of M1 or 
M2. This is important because in the tree 
construction process (top-down), the variables used 
to split a node are selected depending on their 
statistical importance (entropy, p-value, ...). As a 
consequence, this measure of similarity/diversity 
takes also into account when making the 
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comparison, the statistical importance each tree has 
given to each of the independent variables. 
We have defined two measures, M1 and M2, because 
M2 indicates higher diversity level among the trees 
than M1 does, and we think that it is important to 
differentiate both cases. 
Evidently, when greater is the first component and 
smaller the two others, more homogeneous is the set 
of trees used to calculate the values.  
In order to calculate the diversity in the set of trees 
we estimate the mean of the vector: 
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Once the vector has been obtained, the comparison 
between groups can be done at vector level or at 
scalar level making any combination of the different 
components depending on the importance we want 
to give to each of the measures get. 
In this case we define a scalar measure 
(%Commonmean) based in three percentages 
calculated from the three components normalised in 
respect to the sum of the number of nodes of the two 
trees compared. The scalar is computed with a lineal 
combination of the three percentages with the vector 
of weights (1,-1,-1). In this experimentation we 
don’t take into account the different level of 
importance of the two last components. If the scalar 
measure is positive, the compared trees are more 
similar than different among them, and, when the 
value is negative the common part of the trees is 
smaller than the different one. The range of values 
the scalar can take is between –100 and +100. This 
measure allows the comparison of groups of trees 
with different complexities (at the structural level), 
because the components are normalised in respect to 
the number of nodes of the comparison. 

4 EXPERIMENTATION 

Six databases of real applications have been used for 
the experimentation. Most of them belong to the 
well known UCI Repository benchmark [Blake et al 
98], widely used in the scientific community. Table 
1 shows the characteristics of the databases used in 
the comparison. The last database is a real data 
applications from our environment, and does not 
belong to UCI. The data set called Faithful is centred 
in the electrical appliance’s sector. In this case, we 
try to analyse the profile of the customers during the 
time, so that a classification related to their fidelity 
to the brand can be done. This will allow the 

company to follow different strategies to try to 
increment the number of customers that are faithful 
to the brand, so that the sales increase. In this kind of 
applications is very important to use a system that 
provides information about the factors taking part in 
the classification (the explanation), because it is 
nearly more important to analyse and explain why a 
customer is or is not faithful, than the own 
categorisation of the customer. This is the 
information that will help the corresponding 
department to make good decisions. 
 

Table 1: Description of experimental domains 
Domain N. of patterns N. of features N. of classes 
Breast cancer W 699 10 2 
Heart disease C 303 13 2 
Hypothyroid 3163 25 2 
Lymphography 148 18 4 
Segment 210 19 7 
Faithful 24507 49 2 

 
The CTC methodology has been compared to the 
C4.5 tree building algorithm Release 8 of Quinlan 
[Quinlan 93], using the default parameters’ settings. 
The methodology used for the experimentation 
[Hastie et al 01] is a 10-fold stratified cross 
validation. Cross validation is repeated five times 
using a different random reordering of the examples 
in the data set. This methodology has given us the 
option to compare 5 times groups of 10 trees CTC 
and C4.5 in both senses the structural point of view 
and the discriminating capacity (50 executions for 
each instance of the analysed parameters). In each 
run we have calculated the average error and its 
standard deviation, together with the SDmean (Tset) of 
each of the groups of trees and the values 
Compmean(estimated as the number of internal nodes 
of the tree) and %Commonmean (explained in Section 
3). 
In order to evaluate the structural improvement 
achieved in a given domain by using the algorithm 
CTC compared to the algorithm C4.5, we have 
calculated, (%CommCTC-%CommC4.5)/%CommC4.5, 
the relative improvement. 
For every result we have tested the statistical 
significance [Dietterich 98, Dietterich 00] of the 
differences of the results obtained with the two 
algorithms using the paired t-test (with significance 
level of 95%). 
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5 RESULTS 

We have analysed several parameters of the CTC 
meta-algorithm. The ranges of the different 
parameters analysed are: 
1. Number_Samples: 3, 5, 10, 20, 30, 40, 50, 75, 

100, 125, 150, 200. The obtained results show 
that 10 is the minimum number of samples to 
achieve satisfactory results with CTC. So, the 
average results presented in this section do not 
take into account the values 3 and 5, except for 
Faithful where due to the size of the database the 
study has been done from 3 to 40 subsamples. 

2. Resampling_Mode: due to the importance of the 
diversity of the subsamples used to build a 
classifier [Skurichina et al 00], different options 
have been proved (samples of size 50% and 75% 
of the original training set drawn without 
replacement, and bootstrap samples). The best 
results have been obtained with the 75% (results 
shown in the paper), probably because this is the 
case where each subsample has larger amount of 
information of the original sample.  

3. Crit_Split and Crit_Variable: simple majority 
among the Number_Samples for both. The 
possibility of introducing thresholds to these 

criteria has not been considered in this paper 
because the comparison of our consolidated trees 
(CTC) with the simple classification trees C4.5 
has been done pruning the trees with the pruning 
algorithm of the C4.5 Release 8 software. The 
pruning has been done in order to obtain two 
systems with similar complexity level (the same 
zone in the learning curve) and also to be able to 
make the structural comparison with similar 
development conditions for all trees. We can not 
forget that developing too much a classification 
tree leads to a greater probability of overtraining 
and on the other hand, the fact that a variable 
appears in the tree is less significant because the 
system takes into account very specific details of 
the training set. 

4. Crit_Branches: the selection of the new branches 
to be created when the variables are continuous 
has been made based on the median. 
Experimentation with the mean has also been 
done, but the results were worse, probably 
because this measure has smaller stability. When 
the variables were discrete we have not used the 
subset option of C4.5 and as many branches as 
categories has the variable selected to make the 
split have been proposed. 

 

Table 2: Error and complexity comparison among C4.5 and CTC. The best values related to Number_Samples in each data 
set are shown 

 C4.5 CTC (ERRMIN) CTC (COMPMIN) 
 Err Comp Err R.Dif Comp R.Dif N_S Err R.Dif Comp R.Dif N_S 
Breast-W 5.63 3.16 5.40 -4.12 3.11 -1.41 125 5.49 -2.49 3.04 -3.52 30 
Heart-C 23.96 15.11 22.85 -4.61 13.51 -10.59 20 22.92 -4.35 13.20 -12.65 30 
Hypo 0.71 5.38 0.72 0.56 4.51 -16.12 20 0.72 0.84 4.40 -18.18 30 
Lymph 20.44 8.84 19.65 -3.88 9.24 4.52 30 19.93 -2.51 9.09 2.76 40 
Segment 13.61 11.71 11.52 -15.31 13.82 18.03 50 13.51 -0.75 12.64 7.97 10 
Faithful 1.48 39.47 1.48 -0.13 32.44 -17.79 20 1.50 0.94 28.56 -27.65 05 
Average 10.97 13.94 10.27 -4.58 12.77 -3.89  10.68 -1.38 11.82 -8.54  

 
Table 2 shows the results related to error (Err) and 
complexity (Comp) for the different data sets. The 
comparison among C4.5 and CTC we present in the 
table has been calculated using the best value of the 
parameter Number_Samples (N_S) for CTC in order 
to minimise the error or the complexity of the 
classifier. The relative differences among the two 
algorithms (R.Dif) are also presented, for both 
parameters, the error and the complexity. The last 
row shows the mean of the results obtained with the 
two algorithms, for the different domains. It can be 
observed that in average, the CTC algorithm obtains 
a relative improvement in the error of 4.58%. In this 
case, when talking about the complexity of the 
generated trees, the relative improvement is 3.89%. 
Even when the best Number_Samples for 

minimising the complexity has been selected, the 
CTC has smaller errors than the C4.5, being the 
improvement 1.38%. The relative complexity 
reduction obtained in this case is 8.54%. In the 
larger database we have used (Faithful), where the 
reduction of the complexity becomes more 
important, the obtained improvement is 27.65%. 
This reduction is statistically significant for every 
value of the parameter Number_Samples.  
 
To confirm the robustness of the algorithm when the 
parameter Number_Samples is changed, Table 3 (left 
side) shows the average values of the error and the 
complexity obtained with all the analysed values for 
that parameter. 
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Table 3: Average results of the error and the complexity in CTC taking into account the whole range of N_S (left side) and 
for N_S=30 (right side) 

 

CTC 
(Average N_S=10,20,30,40,50,75,100,125,150,200) 

CTC 
N_S=30 

 Err R.Dif Comp R.Dif Err R.Dif Comp Dif 

Breast-W 5.56 -1.21 3.09 -2.11 5.49 -2.49 3.04 -3.52 
Heart-C 23.43 -2.21 13.84 -8.41 22.92 -4.35 13.20 -12.65 
Hypo 0.73 2.30 4.65 -13.60 0.72 0.84 4.40 -18.18 
Lymph 20.03 -2.01 9.18 3.74 19.65 -3.88 9.24 4.52 
Segment 12.42 -8.70 14.08 20.23 13.13 -3.48 13.47 14.99 
Faithful 1.49 0.84 30.03 -23.92 1.49 0.67 29.53 -25.17 
Average 10.61 -1.83 12.48 -4.01 10.57 -2.11 12.15 -6.67 

 
It can be observed that a relative improvement of 
1.83% in the error is maintained and the complexity 
improves in a 4.01%. If we would like to tune the 
parameter in order to optimise the error/complexity 
trade off in the analysed domains, the results address 
us to N_S=30. The results for N_S=30 appear in 
Table 3 (right side). They do not differ substantially 
from the results obtained finding in each domain the 
best value for Number_Samples. The CTC maintains 
its improvement if compared to C4.5 in both cases. 
If we analyse the statistical significance of the 
differences among the two algorithms, we won’t 
find significant differences in the error parameter for 
none of the values of Number_Samples. However, 
when analysing the complexity significant 

differences in favour of CTC are found in three of 
the six databases (Heart-C, Hypo, Faithful). 
Regarding to the structural stability of the trees 
obtained with each algorithm, and taking into 
account the metric presented in Section 3, Table 4 
shows that except in one of the databases (Lymph), 
the trees built using CTC algorithm, are more similar 
among them than the ones generated with C4.5. This 
means that the induction mechanism is able to 
extract more information about the explanation of 
the classification, and besides, in a more steady way. 
The improvement is in average of 16.82%, and, the 
differences are statistically significant in every case 
where better results are obtained.  
 

 
 

Table 4: Comparison of C4.5 and CTC related to the structural diversity measure, using the best value of Number_Samples 
in each domain 

 C4.5 CTC (%COMMMIN) 
 %Comm Err %Comm R.Dif Err R.Dif N_S 
Breast-W 56.99 5.63 65.89 15.62 5.49 -2.49 30 
Heart-C -59.01 23.96 -57.06 3.30 23.16 -3.32 150 
Hypo 27.99 0.71 41.11 46.90 0.73 2.53 75 
Lymph -27.72 20.44 -35.50 -28.08 20.18 -1.25 75 
Segment -67.09 13.61 -36.19 46.06 12.76 -6.26 20 
Faithful -57.95 1.48 -48.01 17.15 1.50 0.94 05 
Average -21.13 10.97 -11.63 16.82 10.64 -1.64  

 
Table 5: Average results of the structural metric in the 
CTC algorithm. The whole range of N_S is taken into 

account in left side and N_S=30 in right side 
CTC 

(Average N_S=10..200) 
CTC 

N_S=30 
 %Comm R.Dif %Comm R.Dif 
Breast-W 60.51 6.19 65.89 15.62 
Heart-C -61.10 -3.53 -58.57 0.75 
Hypo 35.15 25.60 37.14 32.69 
Lymph -36.71 -32.43 -36.76 -32.62 
Segment -47.16 29.70 -43.33 35.41 
Faithful -50.71 12.49 -50.94 12.09 
Average -16.67 6.33 -14.43 10.66 

 
Table 5 shows in the left side the mean of the 
differences in the structural metric of both 

algorithms, for all the experimented values with 
parameter Number_Samples. The average value 
favours CTC, and, we should not forget that the 
error also favours it. This proves again the stability 
of the meta-algorithm in respect to the tuning of the 
parameter Number_Samples. 
The same table, right side, presents results of the 
structural diversity among both algorithms, when 
N_S=30. The results in this case are near the optimal 
results we found and better than the average results 
obtained (left side). As a consequence we can ensure 
that the influence of the parameter Number_Samples 
in the final result is not critical in any of the 
analysed criteria. 
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6 CONCLUSIONS AND FURTHER 
WORK 

A new algorithm to build classification trees that are 
structurally more steady and with smaller 
complexity level has been presented (Consolidated 
Trees Construction, CTC). This algorithm achieves 
and even improves the discriminating capacity of 
C4.5. The proposed algorithm maintains the 
explanatory feature of the classification and this is 
very important in many real life’s domains. The 
algorithm builds trees that reduce the error rate and 
the complexity of the classifier if compared to the 
C4.5.  
Besides, and to prove the goodness and the stability 
of the explanation related to the classification, a 
measure of the structural diversity of two trees is 
proposed. This measure analyses the stability of the 
variables and their statistical importance (level 
where they appear in the tree). The measure allows 
the analysis of the heterogeneity of a set of trees 
from the structural or explanatory point of view.  
In this paper we have proven that for the analysed 
domains, the CTC is able to extract more 
information about the explanation of the 
classification, and, in a more steady way. The 
differences are statistically significant in most of the 
analysed domains.  
On the other hand, the stability of the meta-
algorithm when varying the parameter 
Number_Samples has been proved; N_S=30 is an 
adequate value for all the databases used in the 
experimentation. 
The first work to do in the future is to enlarge the set 
of domains analysed. We are also thinking on 
experimenting with other possibilities for the 
parameter Resampling_Mode (different amount of 
information or variability of the subsamples) as 
further work.  
Other interesting possibility is to generate new 
subsamples dynamically, during the building process 
of the CTC, where the probability of selecting each 
of the cases is modified based on the error (similar 
to boosting).  
We are also analysing a possibility where the own 
meta-algorithm builds trees that do not need to be 
pruned. With this aim, we would make a tuning of 
the parameters Crit_Split and Crit_Variable, so that 
the generated trees are situated in a better point of 
the learning curve and the computation load of the 
training is minimised. Heuristic techniques for the 
stratification of the discrete variables can also be 

studied in order to build trees with greater 
explaining capacity.  
This methodology can be very useful when 
resampling is compulsory (large databases, class 
imbalance, ...). 

APENDIX 

 

int CalculateSD (Tree Ti, Tree Tj, 

    int VMetric[]) 

{ 

 if ((Ti->NodeType != LEAF) &&  

 (Tj->NodeType != LEAF))  

  if (Ti->Variable == Tj->Variable)  

  {VMetric[0]++;  

   if (Ti->Forks != Tj->Forks)  

   return (–1);  

   ForEach(k,1, Ti->Forks)  

    CalculateSD (Ti->Branch[k], 

    Tj->Branch[k],VMetric); 

  } 

  else //different division variables 

  {Vmetric[2]+= 

  CalcNumberDescendents(Ti); 

   Vmetric[2]+= 

  CalcNumberDescendents(Tj); 

   return (0); 

  } 

 else 

  if ((Ti->NodeType == LEAF) &&  

 (Tj->NodeType == LEAF)) 

      return (0); 

  else 

   if (Ti->NodeType = LEAF) 

   {Vmetric[1]+= 

  CalcNumberDescendents(Tj); 

    return (0); 

   } 

   else 

   {Vmetric[1]+= 

  CalcNumberDescendents(Ti); 

    return (0); 

   } 

 return (–1); 

} 
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