
METHOD-IN-ACTION AND METHOD-IN-TOOL
Some implications for CASE

Brian Lings
School of Engineering, Computer Science and Matehmatics, University of Exeter, Exeter EX4 4PT, England

Björn Lundell
Department of Computer Science, University of Skövde, P.O. Box 408, SE-521 28 Skövde, Sweden

Keywords: IS development method, Method use, CASE tools, Automated support for methods, Stakeholder triangle.

Abstract: Tool support for Information Systems development can be considered from many perspectives, and it is not
surprising that different stakeholders perceive such tools very differently. This can contribute on one side to
poor selection processes and ineffective deployment of CASE, and on another to inappropriate tool
development. In this paper we consider the relationship between CASE tools and Information Systems
development methods from three stakeholder perspectives: concept developer, Information Systems
developer and product developer. These perspectives, and the tensions between them, are represented within
a ‘stakeholder triangle’, which we use to consider how the concept of method-in-action affects and is
affected by the concept of method-in-tool. We believe that the triangle helps when interpreting seemingly
conflicting views about CASE adoption and development.

1 INTRODUCTION

Much effort has been expended in the development
and analysis of methods within the Information
Systems (IS) community. Whatever stance is taken
within the ongoing debate about the value and nature
of methods (see Avison and Fitzgerald, 2003;
Tolvanen et al., 1997; Wastell, 1996), there remains
a broad consensus on the need for methods at least
as a guide to assist thinking and acting within IS
development (ISD). This has important
consequences when considering ISD tools,
particularly if, as stated by Iivari and Lyytinen
(1999), one accepts that “ISD without CASE is not a
realistic option.” (p. 68)

Fitzgerald et al. (2002) claim that ISD “is always
situated” (p. 178) and “every project is unique” (p.
178). Their interest has been in methods-in-action,
reflecting ISD contextual factors, and how these
differ from ISD methods as documented (or
methods-in-concept).

At the same time, we are faced with the complex
relationship between CASE tools and ISD methods.
For example, Jankowski (1997) concludes that one

of the primary purposes of CASE “is to serve as a
companion to the systems development
methodology used during the development process.”
(p. 35) In fact, Hickman and Longman (1994, p.
206) see a CASE Method as a structured approach
that will “lead you through all steps in the life cycle
of a system”, and that use of such a CASE Method
“can be automated by a combination of CASE
tools.”

 However, evidence of the value of CASE tools
in supporting methods has been variable (Kollman et
al., 2002). This has been put down to a lack of fit
between tool support actually provided and the
systems method employed by individual
organisations (Post and Kagan, 2001) – in other
words, there is a mismatch between method-in-
action and method-in-tool.

The potential value of a CASE tool to an ISD
organisation is not only an issue of the technical
quality of the product itself (Lundell and Lings,
2003). A prerequisite for a CASE tool to become
effectively used in an IS lifecycle process is that it
fulfils the specific needs, expectations, value
systems and working practices of the relevant
stakeholders in the organisation involved.

623
Lings B. and Lundell B. (2004).
METHOD-IN-ACTION AND METHOD-IN-TOOL - Some implications for CASE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 623-628
DOI: 10.5220/0002609906230628
Copyright c© SciTePress

It is our purpose in this paper to reflect on
method-in-tool from the perspective of method-in-
action, and thereby contribute to the debate on how
best to support information systems development.
We therefore introduce a framework through which
method-in-tool and method-in-action can be
considered.

2 ON ISD METHODS

By method-in-concept, we refer to a method as
understood by its stakeholders. In this sense,
method-in-concept is a social construction; a shared
set of values and assumptions identified with a
method within a professional community of method
developers and users.

Successful method-in-action may not be
achieved simply by adapting a method-in-concept.
Viller and Sommerville (2000, p. 169) comment that
methods “are unlikely to be adopted in industry
unless they can be integrated with existing practice.”

Of course, method-in-concept is not itself an
objective phenomenon, but is open to interpretation.
In this respect, Floyd (1986) distinguishes between
methods as perceived by method users (which we
will refer to as an IS developer perspective) and as
perceived by method developers (concept developer
perspective):

“We consider methods not so much as static,
well-defined objects, but as dynamic sources of
ideas to be tailored to a given situation and
transformed by use ... there is a subtle interplay
between the system development process as it is (in
our view), as it should be (in our view), and as it
should be (according to the method’s view).” (p. 30,
31)

It is apparent from the literature that there is a
range of views on method-in-concept, and one can
detect an even broader range of views on how
methods-in-concept might relate to methods-in-
action. However, there is a lack of relevant research
into this issue, despite its importance to the whole
debate on support for ISD. As observed by Moody
(2002, p. 393), one explanation may be that it is very
difficult to get new methods used in practice, so
researching different versions of a method is even
more problematic because of the number of people
and contexts involved.

3 THE STAKEHOLDER
TRIANGLE

The stakeholder triangle (Figure 1) is an analytic
device to aid in interpreting a diversity of
stakeholder perspectives on CASE support for ISD.
It has one of three identified perspectives at each
apex. The first apex is that of an ISD organisation
and represents an IS developer perspective. The
second is that of a CASE product developer, and
represents a product developer perspective. The
third is that of a researcher and developer of the
underlying methods, techniques, notations,
languages, etc., and represents the concept developer
perspective.

Stakeholders in an ISD role have existing
practice at least informed by IS methods. There will
be at least a tacit concept of method-in-action, for
which CASE support will be expected. Different
stakeholders will place different organisational
requirements on CASE technology.

Figure 1: The Stakeholder Triangle (stakeholder
perspectives are at each apex).

Stakeholders in a product development role are

likely to view their role as supporting IS developers
in their use of a method. The developers of a product
compete for market share in a fluid market by
offering attractive solutions which fulfil their
customers’ demands. This involves offering
functionality within supported CASE tools to
support users of a given method (or methods). This
will necessarily involve interpretation of one or
more methods, and this interpretation will implicitly
be reflected in supported tool usage. This

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

624

interpretation of a method we refer to as method-in-
tool.

Stakeholders in a concept development role will
take responsibility for developing and expounding
IS methods according to perceived best practice. The
outcome from stakeholders taking this role will be
proposals in the form of aspects of ISD and software
engineering practice, for which it would be
potentially useful to provide support in CASE tools
– namely, methods-in-concept.

Of equal importance is an understanding of the
tensions which exist between the different roles.

The first tension is that between the concept
developer perspective and the IS developer
perspective, which we refer to as the concept usage
tension. This is characterised by a discrepancy
between methods as prescribed and methods as used.

The second tension is between the concept
developer perspective and the product developer
perspective, which we refer to as the concept
implementation tension. This is characterised by a
discrepancy between proposals for new concepts
(including methods) and their embodiment in tools
as delivered (e.g. Jankowski, 1997; Wieringa, 1998).
For example, Wieringa (1998) cites the problem of
different vendors offering inconsistent execution
algorithms but each claiming correct semantics.
These are issues related to method-in-tool.

The third tension is the main focus of interest in
this paper. It exists between the product developer
and IS developer perspectives, and we refer to it is
as the product usage tension. It is characterised by a
discrepancy between tools as delivered and user
expectations of those tools, and may result in mixed
experience of tool effectiveness (e.g. Senn and
Wynekoop, 1995; Maccaria and Riva, 2000). It
relates strongly to the first two tensions, which in
effect are transitively included in it.

4 ON METHOD-IN-ACTION AND
METHOD-IN-TOOL

The basic problem for IS researchers has been well
put by Brinkkemper et al. (1996) as

“How can proper methodical guidance and
corresponding tool support be provided to system
developers?” (p. 277)

The stakeholder triangle is an attempt to make
explicit the different dimensions of this problem, in
order to throw more light on the different ways in
which IS researchers have attempted to address this
problem. In effect, we would characterise these
approaches as focussing ones effort on reducing one
of the identified tensions – perhaps only implicitly

acknowledging the intrinsic presence of the other
two.

For example, Lyytinen et al. (1998) conjecture
the need in current CASE environments for a user

“to choose between efficient computerized
support using a fixed methodical framework which
may not fit his situation, or the freedom to do what
seems appropriate in the given circumstance, but at
the cost of losing efficient technological support.”

This is a characterisation of the problem of
addressing the product usage tension; in the first
case by adopting method-in-tool and thereby
equating method-in-tool with method-in action; in
the second case by not using an automated tool,
thereby removing method-in-tool and its associated
tension. As acknowledged in the paper, neither
approach is effective.

Method Engineering (ME) is central to many
researchers’ approaches to addressing the concept
usage tension. Truex and Avison (2003, p. 508-510)
characterise method engineering as effectively
taking a concept developer perspective, aiming to
address the concept usage tension by widening the
scope of methods. Early approaches (which they
categorise as Types I and II) acknowledge method-
in-action through abstracting “best practice” – but
remain “perhaps bureaucratic”. Most later
approaches increase flexibility but retain “a very
technical view of the development of IS”, still
addressing method-in-action through method-in-
concept. These they categorise as Type III
approaches. This type of Method Engineering has
been labelled as “methodism” by Introna and
Whitely (1997, p. 31). They argue that the belief
amongst method engineers that “it is possible to
incorporate all necessary knowledge” is wrong,
instead arguing that successful use of a method
“depends on a broader, already present, tacit
understanding of the world” which is not to be found
in any one particular method. Following this line,
Truex and Avison (2003) stress the advantages of
what they categorise as Type IV approaches,
characterised by recognising organisations as social
constructs and resulting in highly situated methods-
in-action. However, they highlight the complexities
of such a contingent approach to method
development. In particular, they highlight potential
problems with respect to method congruence and
selection, and “the control and application of
standards”. Such complexity can be seen to extend
in the product dimension, where they see CASE
support for ME as enforcing method-in-tool – “the
sequence and the description of design” – on
developers. Finally, Rossi et al. (2000, p. 3) note
that where all ME approaches “fall short” is in
maintenance, as “only the products of the design

METHOD-IN-ACTION AND METHOD-IN-TOOL: SOME IMPLICATIONS FOR CASE

625

process are ‘documented’, not the process of
arriving at design solutions.”

4.1 On expectations of CASE support
for Method-in-Action

In offering a framework for classifying CASE
method support, Jankowski (1997) notes that support
does not have to mean restrictive enforcement of
process.

It is not uncommon for ISD organisations to
adopt a variety of different types of CASE tool
throughout a project life-cycle, putting demands on
the integration and exchange of development data
between tools. Unfortunately, as different tools are
usually equipped with proprietary solutions, such
practice makes it very difficult to facilitate seamless
integration throughout the life-cycle. In fact,
Kollmann et al. (2002), reporting on experiences of
CASE tool support for reverse engineering, claim
that “it is difficult, or even impossible, to ensure that
model semantics remains unambiguous when
working with different tools at the same time.” (p.
22). Such issues can undermine expectations of
“increased productivity, improved product quality,
easier maintenance, and making software
development a more enjoyable task.” (Jarzabek and
Huang, 1998, p. 93)

The situation is further complicated by the fact
that many versions of the same documented method
can be used at the same time within an organisation
through (perhaps dynamic) tailoring (Fitzgerald et
al., 2003). Rossi et al. (2000, p. 3) see the
maintenance and analysis of different method
versions as a major weakness in current ME
approaches. Further, because a method-in-tool may
differ from both the method-in-concept (which will
itself evolve) and the method’s variants as used
within the organisation (methods-in-action), later
phases of development may therefore be within very
changed environments. Hence, stakeholders may
well be using different sets of tools within the
lifecycle of a single IS, and it is important to
managers not to be locked in to any integrated
environment. Such environments are unlikely to
outlive the IS under development; there are many
systems still being maintained after 30 years, but the
same cannot be said yet of any CASE product on the
market (Lundell and Lings, 2004).

4.2 On developing CASE support for
Method-in-Action

With recent observations amongst researchers (e.g.
Glass, 1999) that CASE tools become shelfware and

“unused by practitioners” (p. 76), it seems necessary
for vendors to adopt a critical perspective when
analysing potential reasons for limited usage of
CASE tools. One explanation may be that current
tools do not adequately support preferred work
practices amongst IS developers. For example, Van
Der Straete et al. (2003, p. 326) claim that “State-of-
the-art UML CASE tools provide poor support for
consistency maintenance”, and propose an extension
to the UML metamodel to resolve this. In other
words, a ‘better’ method-in-concept (which is to be
implemented in a tool) is proposed as a way to better
support an existing method-in-action.

More fundamental are the opposing views on
whether tools should in fact be primarily method
centred. Jarzabek and Huang (1998) observe that
“method-centred CASE tools are not attractive
enough to users.” (p. 93) Rather paradoxically,
however, the realisation of methods in tools can be
“seen as beneficial to the wider acceptance of” the
method (Gray, 1997, p. 235). These are clear
symptoms of the tensions resulting from
discrepancies between method-in-action and
method-in-tool, tensions which some see as
irresolvable without a more radical approach to tools
which places “the stakeholder centre stage” (King,
1997, p. 329)

A good method-in-tool should ideally support a
designer’s creative activities in ISD. One aspect of
this is the way by which tools limit the design space
by enforcing constraints in CASE tools. As noted by
Scott et al. (2000), constraint enforcement in tools
may have both positive and negative implications.
On the positive side, constraint enforcement may
“guide designers toward good solutions” (p. 232),
but such enforcement “may also frustrate designers,
who may relegate CASE tool to simple design
capture rather than creative design development” (p.
232). As observed by Lending and Chervary (2002,
p. 81), systems developers who “perceive their tool
as restrictive” think their tool is less useful than
those who find their tool flexible.

Clearly it is important for vendors to find an
appropriate balance, as the way by which they
design their tools will have consequences for how
users may perceive the tools. For example, Brooks
and Scott (2001) report on individual variation
amongst different developers, and note that vendor’s
strategies for implementation of constraints on
methods in their tools often seems “quite arbitrary”
(p. 285). Similarly, Fowler (2003, p. 325) observes
that “the priorities of those who develop the UML
are not the same as all the UML’s users.” In other
words, there is a different between method-in-
concept and method-in-action which, of course, has
a ripple effect on vendors’ decisions for
incorporation of UML into their tools (method-in-

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

626

tool), if aiming to support a range of different
preferences amongst users with respect to method-
in-action.

Commercial CASE vendors have addressed
complexity in the CASE environment by opening
their proprietary products in a limited way, through
export and import facilities. In such a CASE
environment, a set of CASE products being supplied
from different vendors can inter-operate, and each
vendor can thereby focus on their “speciality”,
leading to decreased complexity in each individual
product. However, the CASE vendors may well not
utilise standard interchange formats as they can be
seen as a threat to market share – allowing migration
to other tools. It is an open issue whether
interoperability will raise related issues in the open
source community. Lyytinen et al. (1998) go further
than simple CASE data interchange, arguing for
high levels of adaptability based on metamodeling of
ontology, notations and process.

In fact, the problem of tool integration appears to
be a growing one in that “more and more production
software organizations are [again] using old-
fashioned stand-alone development tools and
struggling to match up tools and their outputs and
inputs to do software engineering” (Hart et al., 1999,
p. 225).

5 SUMMARY AND REFLECTIONS

In this paper we have presented the stakeholder
triangle as representing the associated tensions
apparent when considering tool support for ISD
activities. It is clear that two of the tensions
identified have already been explicitly but
independently explored in the literature; a third
tension is apparent in product usage. It concerns
differences in perceptions of the utility of tools
amongst stakeholders in ISD organisations, and has
previously only been addressed rather implicitly.
This tension arises because tools are not used in
practice as envisaged and planned for by their
manufacturers. This is unsurprising if one considers
the mismatch apparent between method-in-action
and method-in-tool. We elaborate on some of the
possible implications of recognising this mismatch.

From the perspective of an IS developer, tool
evaluation needs to be grounded not only in the
culture and technical demands of an organisation,
but must also allow systematic review of the
implications and limitations of adopting specific
tools. In particular, prescriptive tool use is unlikely
to lead to successful adoption, so each
manufacturer’s design philosophy needs to be
scrutinised. For example, does a tool offer flexible

method support, such as notification of integrity
violations, rather than enforcing a particular
methodological approach designed to lessen such
violations? And if enforcement is offered, is it (or
can it be made) consistent with organisational
practice?

From the perspective of product developers, it is
important not to be prescriptive with respect to
method-in-tool. This would inhibit tool take up
because of the diversity of method-in-action.
Flexibility in tailoring is clearly an important
property to aim for; it is in fact important to
acknowledge that the underlying philosophy of a
tool’s designers is likely to be shared by few
development groups. Further, these groups are likely
to be multi-tool based, and look for interoperability
features to allow them greater scope in tailoring their
environments to ones suited to their own value
systems.

As a consequence, from the perspective of
method developers, method tailoring must be
accepted as a legitimate and expected goal both of
method users and of tool developers. It is important
to be explicit about the underlying assumptions
behind methods, and to stress the important
constraints on consistency within a method rather
than attempting to be prescriptive through process.
Such an approach would give much greater input to
other stakeholders’ decision processes, whether
towards tool design or systems development.

REFERENCES

Avison, D. & Fitzgerald, G., 2003. Where Now for
Development Methodologies?. Communications of the
ACM, 46(1), 79-82.

Brinkkemper, S., 1996. Method engineering: engineering
of information systems development methods and
tools. Information and Software Technology, 38(4),
275-280.

Brooks, A. & Scott, L., 2001. Constraints in CASE tools:
results from curiosity driven research. In Proceedings
2001 Australian Software Engineering Conference,
IEEE Computer Society, pp. 285-293.

Fitzgerald, B., Russo, N.L. & Stolterman, E., 2002.
Information Systems Development: Methods in Action.
McGraw-Hill, London.

Fitzgerald, B., Russo, N.L. & O’Kane, T., 2003. Software
Development Method Tailoring At Motorola.
Communications of the ACM, 46(4), 65-70.

Floyd, C., 1986. A Comparative Evaluation of System
Development Methods. In Information Systems Design
Methodologies: Improving the Practice, North-
Holland, Amsterdam, pp. 19-54.

METHOD-IN-ACTION AND METHOD-IN-TOOL: SOME IMPLICATIONS FOR CASE

627

Fowler, M., 2003. What Is the Point of UML?, In UML
2003 - The Unified Modeling Language: Modeling
Languages and Applications, Springer, Heidelberg, p.
325.

Glass, R.L., 1999. The Loyal Opposition: Of Open Source,
Linux, and Hype. IEEE Software, 16(1), 126-128.

Gray, J.P., 1997. CASE tool construction for a parallel
software development methodology. Information and
Software Technology, 39(4), 235-252.

Hart, H., Boehm, B., Taft, S.T. & Wasserman, T., 1999.
PANEL: What Happened to Integrated
Environments?. In Proceedings of the ACM SIGAda
Annual International Conference on Ada, pp. 225-226.

Hickman, L. and Longman, C., 1994. CASE Method:
Business Interviewing, Addison-Wesley, Wokingham.

Iivari, J. & Lyytinen, K., 1999. Research on Information
Systems Development in Scandinavia: Unity in
Plurality. In Rethinking Management Information
Systems: An Interdisciplinary Perspective, Oxford
University Press, Oxford, pp. 57-102.

Introna, L.D. & Whitley, E.A., 1997. Against Method-ism:
Exploring the limits of method. Information
Technology & People, 10(1), 31-45.

Jankowski, D., 1997. Computer-Aided Systems
Engineering Methodology Support and Its Effect on
the Output of Structured Analysis. Empirical Software
Engineering, 2(1), 11-38.

Jarzabek, S. & Huang, R., 1998. The Case for User-
Centred CASE Tools. Communications of the ACM,
41(8), 93-99.

King, S. (1997) Tool support for systems emergence: A
multimedia CASE tool. Information and Software
Technology, 39(5), 323-330.

Kollman, R., Selonen, P., Stroulia, E., Systä, T. &
Zundorf, A., 2002. A Study of the Current State of the
Art in Tool-Supported UML-Based Static Reverse
Engineering. In Proceedings of the Ninth Working
Conference on Reverse Engineering (WCRE’02),
IEEE Computer Society, pp. 22-32.

Lending, D & Chervany, N.L., 2002. CASE tool use and
job design: a restrictiveness/flexibility explanation.
Journal of Computer Information Systems, 43(1), 81-
90.

Lundell, B. & Lings, B., 2003. The 2G method for doubly
grounding evaluation frameworks. Information
Systems Journal, 13(4), 375-398.

Lundell, B. & Lings, B., 2004, Changing perceptions of
CASE-technology. Journal of Systems and Software,
(to appear).

Lyytinen, K., Martiin, P., Tolvanen, J.-P., Jarke, M., Pohl,
K. & Weidenhaupt, K. (1998) CASE Environment
Adaptability: Bridging the Islands of Automation, In
Proceedings of the Eight annual Workshop on
Information Technologies and Systems WITS’98,
University of Jyväskylä.

Maccari, A. & Riva C., 2000. Empirical Evaluation of
CASE Tools Usage at Nokia. Empirical Software
Engineering, 5(3), 287-299.

Moody, D.L. 2002. Validation of a method for
representing large entity relationship models: an action
research study. In European Conference on
Information Systems, Gdansk, pp. 391-405.

Post, G. & Kagan, A., 2001. User requirements for OO
CASE tools. Information and Software Technology,
43(8), 509-517.

Rossi, M., Tolvanen, J.-P., Lyytinen, K. & Kaipala, J.,
2000. Method Rationale in Method Engineering. In
Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, IEEE Computer
Society, pp. 1-10, Vol. 2.

Scott, L., Horvath, L. & Day, D., 2000. Characterizing
CASE Constraints. Communications of the ACM,
43(11), 232-238.

Senn, J.A. & Wynekoop, J.L., 1995. The other side of
CASE implementation: Best Practices for Success.
Information Systems Management, 12(4), 7-14.

Tolvanen, J.-P., Rossi, M. & Liu, H., 1997. Method
Engineering: Current research directions and
implications for future research, In Method
Engineering: Principles of method construction and
tool support, Chapman & Hall, London, pp. 296-317.

Truex, D. & Avison, D., 2003. Method Engineering:
Reflections on the Past and Ways Forward, In Ninth
Americas Conference on Information Systems, pp.
508-514.

Van Der Straeten, R., Mens, T., Simmonds, J. & Jonckers,
V., 2003. Using Description Logic to Maintain
Consistency between UML Models. In UML 2003 -
The Unified Modeling Language: Modeling
Languages and Applications, Springer, Heidelberg,
pp. 326-340.

Wastell, D.G., 1996. The fetish of technique: methodology
as a social defence. Information Systems Journal, 6(1),
25-49.

Wieringa, R. 1998. A Survey of Structured and Object-
Oriented Software Specification Methods and
Techniques. ACM Computing Surveys, 30(4), 459-527.

Viller, S. & Sommerville, I., 2000. Ethnographicaly
informed analysis for software engineers.
International Journal of Human-Computer Studies,
53(1), 169-196.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

628

