
CONNECTING VIRTUAL SPACES
Shadow Objects as key elements for weaving the cooperative space

Thomas Bopp, Thorsten Hampel, Bernd Eßmann
Heinz Nixdorf Institute,University of Paderborn, Fuerstenallee11, Paderborn, Germany

Keywords: CSCW, MUD, virtual environment, distributed knowledge, area, multi-server, peer-to-peer

Abstract: Cooperative knowledge areas are a well-proved approach to support process of cooperative work and E-
Learning. The Paderborn Open-Source system sTeam establishes cooperative knowledge spaces so far as a
single server implementation. This paper presents our architecture of distributed cooperative knowledge
areas. The main conceptual idea of the sTeam system is a combination of a document management system
and a MUD. The goal of a distributed architecture of cooperative knowledge spaces is the ability to create
one world of connected virtual knowledge spaces over various servers. Something, which is especially
important, when thinking of new scenarios of integrating peer-to-peer clients into a multi-server
architecture. Distributed knowledge spaces also have to cover concepts for a multi-server group and user
management, which allow to move users transparently from one server to another. Materials should be
structured independently of their location on a server. The following paper first discusses the idea of
structuring a virtual world into zones or areas, which is also found in multi-user virtual environments. After
that our architecture of distributed cooperative knowledge areas is presented. In the field of user
management two different approaches of a peer-to-peer and master-server group and user-management are
possible and discussed in detail. Our trial implementation will be a fusion of both concepts and prototypes.

1 INTRODUCTION

The WWW is currently the standard way of
accessing documents on the Internet. However, it
does not support any cooperative structuring or
working with documents. Due to this there are some
isolated applications like CSCW or CSCL systems,
but there are mostly no standard interfaces to access
the materials.

When there are multiple servers the situation
often arises where a user wants to reference
materials on a different server. On web servers this
can be accomplished by using the URL of a
document. While this is also possible for objects in a
CSCW system, we might want to reference distant
objects transparently and work cooperatively with
users on other servers. Our goal is to create a
distributed cooperative knowledge space (Hampel,
2003) by joining individual servers.

Since our current sTeam system is area based
and avatars move through gates from one knowledge
area to another, this idea should be extended to
create gates between servers. Thus users can access
materials on other servers and they do not even have
to know about their location.

The following issues are addressed in this paper
as key features of a distributed knowledge space:
– Consistent group- and user-management over a

cluster of servers.
– Distribution of areas on a cluster of servers.

The most important part is the partitioning of
areas. Users work cooperatively in groups inside
group’s work areas and can move between them
through gates. Figure 1 shows a number of areas on
a single server. One area is the private workplace of
a user named “Carsten”, which is connected to the
group “Documentation” work area by a gate.
When there are lots of materials inside an area the
content can be further structured using containers
(folders).

475
Bopp T., Hampel T. and Eßmann B. (2004).
CONNECTING VIRTUAL SPACES - Shadow Objects as key elements for weaving the cooperative space.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 475-479
DOI: 10.5220/0002610504750479
Copyright c© SciTePress

sTeam currently uses a client-server architecture
where all clients are connected to one central server.
Any action is executed inside this server and then
distributed among clients using an event system.
This mixture of document repository and
synchronous communication with the integration of
the latest standards and protocols has proven to be a
sound approach to distributed knowledge
management (Hampel, 2003). The underlying
architecture is strictly object-oriented with every
class derived from the class “Object” providing the
basic functionality of any object. This includes
access, events and attributes. Apart from that any
object is persistently stored inside a database.

The open source sTeam server is designed as a
rather small kernel with pluggable modules.
However, the components are all written with a
single monolithic server in mind and thus some parts
have to be re-designed in order to fit the
requirements of a distributed server system.

In order to find a flexible design, we first have to
inspect all requirements of a distributed server
architecture.

2 MULTI SERVER ISSUES

There are several reasons to create a Multi-Server
cluster. As described above our main reason is to
have a single world of knowledge areas with all
users working cooperatively together through server
boundaries. A more common reason in virtual
environments is to improve the performance of the
overall system. Thus the initial situation might be
there is one server that should be split on different
machines. Each machine could have a subset of
objects of the initial server or each server could
replicate the whole content. The latter case would
require some sort of master or proxy server to
balance the load between all available machines. On
the other hand, if each server in the cluster contains

native objects then a user would connect to that
server where the requested resource is available. Of
course the server cluster should be hidden to the user
in order to be able to transparently access materials.
The research about distribution of virtual
environments mostly regards graphical 3D systems.

NPSNET (Zyda et al, 1992) and Massive
(Greenhalgh et al, 2000) use Area of Interest
Management because of performance reasons – in
3D environments something like the line of sight
plays an important part and a lot of events take place
in such a virtual world. Therefore events are filtered
and only the relevant notifications are send to a
client.

Figure 1: Knowledge Area In our approach the performance reasons do not
play an important role, nevertheless the semantic
area concept can be used to improve performance, as
well as getting informed about what is going on
inside an area. Furthermore it allows distributing
different areas on different servers. In this sense the
sTeam server is already partitioned and might be
distributed to multiple servers. The problem is how
to deal with references to objects, which are on
different servers and with groups and users, which
exist on any server of the cluster.

When it comes to synchronous tools like chat and
whiteboard we only have 2D environments, which
do not demand full processing power. All interaction
takes place on a central server, which notifies other
applications about events. This means a lot of
network traffic and the requirement of notifying a
client only about events that are of interest.

Events can be seen as synchronisation objects
that notify other clients, or objects in general, that
something has happened. Any object can respond to
such a notification in its own matter. A solid event
model is required for a middleware and distributed
objects (Lewandowski, 1998).

On a CSCW system it should be possible to
reference materials on different servers. Supposing a
scenario where several departments at a university
host their own server and where many relationships
between departments and the provided materials
exist. So instead of performance scalability we need
some kind of semantic scalability on a CSCW
server, which means we need one world of
cooperative knowledge spaces with a coherent group
structure valid on all servers. Due to that a user just
has to create a single account and is able to access
all the materials provided within the cluster.

Taking into account all the issues mentioned
above the server design for a cluster of CSCW
systems needs to be very flexible and adaptable on
different situations. In the next chapter some
different approaches are described.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

476

3 STEAM MULTI-SERVER
ARCHITECTURE

The most central part of the architecture is the so-
called shadow (see figure 2), which makes possible
to reference objects on distant sTeam servers. To do
so the shadow only keeps the object ID and the
server ID. Apart from that it only functions as a
wrapper object to transparently call methods on
distant servers. The shadow works effectively as a
middleware – a replicated object on the local server
with minimal data. All function calls are handled by
the COAL (Client Object Access Layer) protocol,
which invokes remote methods. This is in a sense
related to the proxy (or wrapper) design pattern,
which is generally used in the sTeam core server.
For each object in sTeam a proxy is used as a
placeholder for the actual object containing the
whole data. It must be assured that any stored
reference points to the proxy instead of the object
itself.

This mechanism allows the implementation of
swapping algorithm and dynamically upgrading of
an objects source code, because we can just drop any
object and then create a new instance with the same
data. Especially the upgrade functionality is a crucial
feature of a virtual environment, since it allows
adding features and fixing bugs on the fly, without
having to reboot the whole system.

Every time a method is called inside the shadow
object the call is forwarded to the distant server. The
current action then waits for the result and so the
latency between the servers is crucial for response
times. Moreover the server needs to be multi-
threaded in order to still be able to respond to other
requests, as the active thread needs to wait for the
data from the distant server and the server might get
into some dead lock situation.

Apart from the integration of the COAL
middleware, the only difference between a proxy
and a shadow is that the shadow additionally needs

to store the distant servers ID. Figure 2 shows how
function calls on shadows take place.

Shadows can be references of every kind. So it is
not only possible to have shadows inside an
inventory listing (actually this is never the case, if
objects are always on the same server as their
environment), but also in an object ACL.
Furthermore even a user could be a shadow, which
points to a user on a different server. Here the object
reference of being a member of a group comes to
mind.

So whenever a shadow object is called, the server
needs to create a connection to the distant server. In
order to have an overview of all connections and
limit the number of connections at a time, there has
to be a special connection handler module keeping
track of all connections. Also, there should be a pool
of connections, since the number of connections
should not grow out of bounds.

Furthermore it is required to keep the area
partitioning of a server and retain any object inside
an area locally. It is also required to move objects
between servers. Any object inside sTeam has a
unique environment. Moving an object from one
area to another might move the object to another
server, if the area is located on a different one. Such
a movement might also involve the creation of a new
shadow on that server as replacement of the object
just leaving this server. Due to that it is possible that
there are chains of shadows. Following such a chain
should resolve the chain and directly store the target
location and thus update the shadows.

A quite different behaviour is required when a
user is moved, since we don’t want to move user
objects from one server to another in general. The
solution is to create a temporary shadow for the
users current environment and the objects inside of
it. So instead of moving the user we create a new
virtual environment for this user locally.

The architecture described above has already
been implemented as a prototype and has been
successfully tested. Inspecting the issues more
closely we can distinguish between two main
approaches at this point. The peer server approach
and the master server approach:

Figure 2: Shadows – References on distant objects

3.1 Peer-Server Approach

The Peer-Server approach keeps user data on each
server. A user’s home area is located on that server
on which the user was initially created. Although all
groups are spread through the server cluster, there is
one virtual group of all users on each sTeam server.
Due to the transparency of the whole cluster, the
„sTeam“ group might also just have the meaning of
giving any sTeam user of the cluster the appropriate

CONNECTING VIRTUAL SPACES: Shadow Objects as key elements for weaving the cooperative space

477

permissions. However, this would involve giving
access permissions to a group of people, which may
change unpredictable. The concept of self-
administration (Hampel, 2003) might apply on some
servers of the cluster in terms of allowing everyone
to freely join a server. On the other hand some other
servers might be much more restrictive. Also
technical difficulties apply because there is already a
work area of the “sTeam” group on every server.
This area would then be distributed between a lot of
servers and needs to be synchronized. This does not
fit into the concept of having areas distributed
between servers and not distributing the content
inside one area (by keeping the inventory of an area
locally). Due to that a “sTeam” group should always
be a local group of each server. Additionally the
shadow of a “sTeam” group can be used on a server
in order to give users of specific servers access
permissions.

The Peer-Server approach can be described as a
couple of previously independent servers being
loosely connected by shadows (see figure 3). Each
of these servers keeps its own user- and group-base
and is still under a local administration. By giving
access to group-shadows users are able to allow
distant groups to work cooperatively with local
groups.

Figure 3: Peer-Server approach

Any object reference stored inside one server

could be the direct reference to the object itself or to
a shadow. The location of the real object addressed
remains invisible to the client.

Unfortunately this causes problems with the
naming of groups, because a group named „users“
on server A is not distinguishable from a group with
the same name on server B. This is especially
harmful since it affects security. When a user gives
access permissions to some groups, identification
takes place just by the groups’ name. A solution
would be to add the servers name to the name of the
group. So something like serverA.<group> could be
an identifier. Of course this is not an ideal solution,
as it leads to less transparency and might also
confuse the user. This whole matter also applies for
user names.

3.2 Master-Server Approach

A different approach would be to move all user data
to one master server, which also handles the initial
connection of a client (see figure 4). The Master-
Server updates it’s peer connection depending on the
environment of the user. That is when a user moves
from one area to another this might mean the user is
also moved to a different server and thus also
connected to that server.

To meet load-balancing issues areas should also
be moved from one server to another. For example if
an area on server A, which already has the most
load, is accessed very often, then it should be moved
to some other server with less load.

We need to keep this in mind when it comes to
dynamic server clusters, because in general a server
administrator don’t want any of the server’s data
moved to some unknown server.

Figure 4: Master-Server approach

Moving an area actively by a user is a different
matter though, because then the MOVE bit of the
areas access control list is used. As described above
an ACL could also contain shadows of groups of
other servers, enabling members of distant groups to
move an area from one server to another.

Figure 5: Group Work Areas

Observing the whole structure including the

gates, we get a quite complex graph. Areas can have
sub-areas in their inventory and gates connecting
different areas (see figure 5). Also the graph
contains a couple of trees with root nodes being the
groups’ work areas, as those work areas do not have
an environment and are just set to be the private area
of a certain group – they can be seen as starting

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

478

points into the sTeam virtual world. Apparently this
leads to a partitioning of group work areas if we
want to keep the locality criterion, which means
keeping any object in an areas’ inventory on the
same server as the area (see figure 6).

Furthermore since gates connect one area with
another, the distribution of areas through different
servers leads to gates, which will transparently move
a user to a distant server. Obviously this can be
accomplished by just using a shadow as the gates
destination.

This approach has some similarities to NetEffect
(Tapas, 1997), which handles the partitioning of a
server using communities. On each server of a
cluster are a couple of usually independent
communities. If a user is part of more than one
community he has to specify the community he
wants to use. A switch of the active community
might include a connection to a different server.

Due to the fact that there is one master server
keeping all the user and group data, this architecture
cannot dynamically expand to new servers unless
some hybrid solution of the Peer- and Master-Server
approach is applied. In that case new peer servers
have to be handled differently, as they have their
own user base.

 Figure 6: Area Partitioning of sTeam Server Cluster

4 CONCLUSION

This paper described the issues and different
approaches to distribute areas between previously
independent servers. Our goal is to connect those
servers in a cluster where transparent access on
distant areas is possible. Performance is less
important here, so multi-server solutions using
replication of data is of less interest to create a
sTeam server cluster.

The most challenging problem in such a virtual
world of areas is to keep a coherent access and
group structure for all groups and users on any
server. A central solution with a sophisticated
user/group server is not sufficient for mobile
environment where peer-servers on mobile devices
join and leave the cluster regularly. However, we
want to create a coherent solution, which should
work in most scenarios. Thus hybrid architecture is
the only possible approach.

Apart from that the sTeam cooperative
knowledge area is an ideal base for partitioning a
server into a cluster of servers, since it provides
independent connected areas.

REFERENCES

Hampel T.,Bopp T. (2003): Combining Web Based
Document Management and Event-Based Systems -
Integrating MUDS and MOOS Together with DMS to
Form a Cooperative Knowledge Space. ICEIS 2003,
Proceedings of the 5th International Conference on
Enterprise Information Systems, pages 218-223.

Hampel, T., Keil-Slawik, R. (2003): Experience With
Teaching and Learning in Cooperative Knowledge
Areas. Proceedings of the Twelfth International World
Wide Web Conference, CDROM 1-8.

Hampel, T. (2003): Our Experience With Web-Based
Computer-Supported Cooperative Learning.Self-
Administered Virtual Knowledge Spaces in Higher
Education. In: Proc. of Site 2003. Society for
Information Technology and Teacher Education -
International Conference, pages 1443-1450.

 Zyda M., Pratt D., Monahan, J., Wilson K.(1992):
NPSNET: constructing a 3D virtual world
Proceedings of the 1992 symposium on Interactive 3D
graphics, pages 147-156.

Greenhalgh C., Purbrick J., Snowdon D.(2000):
Inside MASSIVE-3: flexible support for data consistency

and world structuring. Proceedings of the third
international conference on Collaborative virtual
environments, pages 119-127.

Tapas D., Singh G.,Mitchell A.,Kumar S., McGee K.
(1997). NetEffect: a network architecture for large-
scale multi-user virtual worlds. Proceedings of the
ACM symposium on Virtual reality software and
technology, pages 157-163.

Vellon, M., Marple, K., Mitchell, D., Drucker, S. (1998):
The Architecture of a distributed Virtual Worlds
System. Microsoft Research:
http://www.research.microsoft.com/vwg/#papers.

Lewandowski S. (1998): Frameworks for Component-
Based Client/Server Computing. ACM Computing
Surveys, Vol. 30, No. 1, pages 3-27.

CONNECTING VIRTUAL SPACES: Shadow Objects as key elements for weaving the cooperative space

479

