
UNDERLYING PLATFORM OF THE E-COMMERCE
SYSTEM: J2EE VS. NET

Hamid Jahankhani, Mohammed Youssef
University of East London, School of Computing and Technology, Longbride Road, Dagenham, Essex RM8 2AS

Keywords: Microsoft.NET, Web Services, J2EE, E-business solutions, Syspro, ERP, SME.

Abstract: when considering the implementation of any new Web-based application these days, the main two
options available to developers are to either base the application on Sun Microsystems’ J2EE (Java 2
Enterprise Edition) platform, or on Microsoft’s .NET platform. Although other platforms do exist, the
IT industry has identified these two as the main choices. .NET initiative is a broad new vision for
embracing the Internet and the Web in the development, engineering and use of software. One key
aspect of the .NET s strategy is its independence from a specific language or platform. This paper is
about the strategic decision making that any Small and Medium size Enterprises (SME) should make to
adopt a technology platform for a new project. This paper refers to an on ongoing development to
provide an integrated business information and e-commerce system for a manufacturing company. The
company uses Syspro ERP system. Consumers of ERP systems are demanding solutions that can be
easily integrated with Web applications in order to provide such services as e-commerce to customers
and browser-based access to remote workers. The aim of this paper is to compare the two technologies
and discuss the main reasons why it is believed that .NET would be more appropriate than J2EE as a
technology platform for the e-commerce solution.

1 INTRODUCTION

The .NET platform offers powerful capabilities for
software development and deploying independence
from a specific language or platform. Rather than
requiring developers to learn a programming
language, programmers can contribute to the same
software project, but write code using any or several
of the .NET languages (such as Visual Basic .NET,
Visual C++ .NET, C#, COBOL, Fortran and others)
with which they are most experienced or skilled. In
addition to providing language independence, .NET
extends program portability by enabling .NET
applications to reside on, and communicate across,
multiple platforms thus facilitating the delivery of
Web services over the Internet. .NET enables Web-
based applications to be distributed to consumer
electronic devices, such as mobile phones, Handheld
PC’s and persona1 digital organizers, as well as to
desktop computers. The capabilities that Microsoft
has incorporated into the .NET platform created new
software-development model that will increase
programmer productivity and decrease development
time (Deitel, 2002).
 .NET is also a set of standards, and an operating

platform, to enable different applications and
organisations to communicate over the Internet,
using industry-agreed protocols such as Simple
Object Access Protocol (SOAP).
 .Net is a set of technologies for connecting
information, people, systems and devices over the
Internet through the use of XML Web services. In
order to create an XML platform there are five key
areas of deliverables, which are Clients, Servers,
Services, Developer tools experiences and solution.
Thus Microsoft adopted the use of XML Web
services as one of the key components for its next
generation Internet platform .NET, which addresses
all of these areas in the .NET Framework.

This paper reports on the ongoing development
to provide an integrated business information and e-
commerce system for a manufacturing company.
The company uses Syspro (Formerly Impact Encore)
ERP system.

In this paper we will be comparing the features
and properties of .NET with the J2EE.
The reason why J2EE is chosen is because of the
fact that it is one of the most widely accepted
standards which is similar to the .NET with similar
properties. In fact it is the JAVA that has given

250
Jahankhani H. and Youssef M. (2004).
UNDERLYING PLATFORM OF THE E-COMMERCE SYSTEM: J2EE VS. NET.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 250-257
DOI: 10.5220/0002619302500257
Copyright c© SciTePress

existence to the .NET framework in other wards
Microsoft’s aim is to dominate and replace JAVA
with .NET. Therefore by evaluating and comparing
the two giant platforms we will have a clear picture
of advantages and disadvantages of both of the
platforms.

2 INTEGRATING ERP WITH
EXTERNAL APPLICATIONS

The manufacturing company uses Syspro solution
for its ERP system. E.net solutions is Syspro’s very
latest response to developer’s needs of a bridge
between external applications and the core ERP
system, (Syspro, 2003). The term e.net coined by
Syspro does not refer to, and is totally different
from, the Microsoft term .NET. However, the two
terms are similar enough to cause confusion. Since
e.net solutions utilises a COM interface to allow
integration of external applications with Syspro, it
follows that applications based on COM technology
as well as those based on Microsoft’s other more
recent technology framework, .NET, would
naturally be compatible with e.net.

Recently, Syspro have further increased the
ability of their ERP system to integrate with external
applications by enabling the business objects to be
accessed through Web Services. Developers can
therefore now choose to integrate their applications
with Syspro either through the original COM
interface or by utilising the Web Services.

In order to perform the most basic of its
envisaged functions, the e-commerce solution being
planned will need to be tightly integrated with the
company's Syspro ERP system. However, it is
almost certain that the final e-commerce system will
be more than just a website that exchanges data with
Syspro. Rather, the system will be a comprehensive
platform consisting of several components, with
each component possibly being required to interact
with a variety of different applications in addition to
Syspro. Some components may play an indirect role
in supporting e-commerce by automating certain
offline internal business processes; such components
may be required to interact with Microsoft Excel, for
example. Other components may play a direct role in
e-commerce but may be unrelated to the website
aspect of the system; such components may rely on
applications such as Microsoft Outlook and Syspro’s
DFM (Document Flow Manager). While the final
form of the complete e-commerce solution is
unknown at this stage, one certainty is that
maximum benefits will only be achieved if this
solution is tightly integrated with the company’s

overall IT infrastructure rather than just Syspro. Any
comparison of .NET and J2EE therefore needs to
examine the ability of the technology to enable such
integration.

Like most small-medium size enterprises
(SMEs), this company’s IT infrastructure is based on
Microsoft technology and most (if not all) of the
software used by the company is either Microsoft
software or other Windows-based software. Large
companies, on the other hand, usually have a highly
heterogeneous IT infrastructure that consists of a
wide variety of technology platforms (Windows,
Unix, IBM mainframe, etc.). This fundamental
difference between SMEs and large enterprises
heavily influences their choice of technology (J2EE
or .NET) when considering the implementation of
new applications that require close integration with
the overall IT infrastructure.

Being a small company with a Microsoft-centric
IT infrastructure, this organisation fits the profile of
a typical .NET adopter. Although this kind of
profiling may provide a rough guide as to what
technology is generally appropriate for which
companies, when making a strategic decision to
adopt a technology platform for a new project this
kind of general analysis should be supplemented
with a more specific analysis of the project. It is
important to mention that whether the e-commerce
system is based on J2EE or .NET, either choice
would not greatly affect its ability to integrate with
Syspro.

3 .NET FRAMEWORK

The Microsoft.NET framework is the result of the
ASP’s team and of the other teams in Microsoft who
hunted a better way to create Web applications that
would improve speed, provide more built-in system
services, improve state management, and separate
the HTML (interface) from the script (business
rules). Precisely, they were aiming to make it easier
to build Web-based applications. Also, they wanted
to give developers additional ways to have access to
extensibility points within this new ASP framework
that would enable more developers (that is, all
developers who were not C++ developers) to create
functionality similar to ISAPI filters and extensions.
Moreover ASP.NET applications offer a greater
degree of control; flexibility, and performance than
the standard ASP applications (Tabor, 2001).
We all know that every single thing in this world is
composed of more than one part or component
similarly the .NET Framework consists of the
Common Language Runtime (CLR), the Services
Framework, and the Applications Framework. The

UNDERLYING PLATFORM OF THE E-COMMERCE SYSTEM: J2EE VS. NET

251

CLR manages a common data type system, a
common metadata structure for describing
components, and a common security mechanism,
and also manages memory, object invocation, and so
forth. The Services Framework is a rich set of
libraries and tools developers can use to create
applications that work within a managed execution
context. The Applications Framework includes tools
for developers to create traditional Windows Forms
applications and ASP.NET.
 The Common Language Runtime (CLR) is the
heart of .NET, the foundation on which all
the dreams of the programmable Web are resting for
Microsoft. It is arguably the most important move
forward for Microsoft-based development and
constitutes the single greatest paradigm shift yet
introduced for the PC. In this section CLR is
introduced with discussion on how different or
similar to the ASP/COM environment. Code that
runs within the CLR are known as "managed code."
since there is no IL compiler for Visual Basic 6.0
and Visual C++ 6.0.
 The CLR offers a number of major benefits.
First, the CLR defines a common set of data types
across all CLR programming languages, allowing
for multi-language integration. This feature makes it
possible to create classes in Visual Basic .NET that
derive from classes created in C# and vice versa
(Tabor, 2003), (Kennedy, 2002). The CLR enables a
development environment with many desirable
features.
 These include cross-language integration, a
strongly typed shared type system, self-describing
components, simplified deployment and versioning,
and integrated security services. Since the CLR is
used to load code, create objects, and make method
calls, it can perform security checks and enforce
policy as managed code is loaded and executed.
Code access security allows the developer to specify
the rights or permissions that a piece of code needs
in order to execute. For example, permission may be
needed to read a file or access environment settings.
This information is stored at the assembly level,
along with information about the identity of the
code, (Kennedy, 2002), (Sullivsan, 2003). The CLR
provides code-access security, which is, in essence,
mini-checkpoints your code must pass through based
on the actions it is trying to perform.
 This security measure ensures that unauthorized
users cannot access resources on a machine and that
code cannot perform unauthorized actions. If the
programmers code accesses information or perform
actions on the machine it is running on (access files
on the hard drive or access the network), it must ask
the CLR if it has permission to do that. The CLR at
runtime determines the source of the code and where
it was obtained from, as well as other information

stored in the code's assembly, and grants or denies
permission to the code to perform the given task.
 In addition to code access security, the runtime
supports role-based security. This builds on the same
permissions model as code access security, except
permissions are now based on user identity rather
than code identity. Roles represent categories of
users and can be defined at development time and
assigned at deployment time. Policies are defined for
each role. At runtime the identity of the user on
whose behalf the code is running is determined. The
runtime checks what roles are associated with the
user, and then grants permissions based on those
roles.
 The CLR encourages moving away from scripted
languages compiled at run time to the concept of
Managed code. Managed code means a clearly
defined level of cooperation between an executing
component and the CLR itself. Responsibility for
many tasks, like creating objects and making method
calls, is delegated to the CLR, which
provides additional services to the executing
component.
 Source code is compiled into Microsoft
Intermediate Language (MSIL) that is
then consumed by the CLR. In addition to MSIL,
.NET compilers also produce metadata. This is
information the CLR uses to carry out a variety of
actions such as locate and Load class types in a file,
Lay out object instances in memory, and resolve
method invocations and field references (Tabor,
2003), (Kennedy, 2002), (Sullivsan, 2003).
 The CLR defines a common metadata so that
components can be self-describing; other words, no
separate type-library file or header file is necessary
because the class definition, version, and so forth
reside within the component or executable file. This
metadata is generated from the component's actual
source code, so it is never out of sync with the actual
executable file.
 The metadata that the .Net Framework compliers
produce includes class definitions and configuration
information. It allows an application to totally
describe itself.
 In other words, an assembly can be one physical
DLL file with one or more classes and resources, or
an assembly can have multiple DLL files, each with
one or more classes and resources. From the user-
programmer’s perspective, all the classes appear to
be packaged into the same component.
 There are a number of advantages to
this approach, including how you can formulate a
security policy around assemblies, control
versioning in your components (that is, which
version of the dependent component should be used
if multiple versions are present on the system), and

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

252

improve control of the configuration and
deployment of your applications.
 The assembly's metadata is actually known as the
manifest, which includes dependency information,
the version of the component, the types that the
component supports, and other information.
Since assemblies are self-describing, no explicit
registration of your components is necessary. You
simply copy your assembly into a directory
(designated as a \bin directory) and the CLR takes
care of managing the registration process. Delete the
file, and the CLR takes care of unregistered the
assembly.
 This method is in sharp contrast to the
registration (and unregistered) process for
COM/COM+ components that required you to create
an application in COM+/MTS or use the
regsvr32.exe command-line utility (Tabor, 2001).
Through the use of MSIL and assembly metadata,
code written in many languages can be debugged
together, with no loss of information or control as
we step through Multilanguage projects. An
exception thrown by a component written in one
language can be dealt with using a component
written in another language.
 Cross-language inheritance is supported.
Assemblies can be made private to an application or
can be shared by multiple applications. Multiple
versions of an assembly can be deployed on a
machine at the same time. Application configuration
information defines where to look for assemblies,
thus the runtime can load different versions of the
same assembly for two different applications that are
running concurrency.
 This means that installing an application now
becomes as simple as copying the necessary files to
a directory tree, provided security permissions are
satisfied (Tabor, 2003), (Sullivsan, 2003). One of the
most important benefits of the CLR is that it
provides high-level services to developers that are
not restricted to a particular hardware platform or
Operating System. Code written to the CLR does not
need to be re-written to run on different platforms
and under different Operating System One
immediate benefit is that the same code can run on
all of the various flavours of 32-bit Windows and
also 64-bit Windows. It extends the familiar ideas of
runtime libraries, template libraries, and the Java
Virtual Machine. It means that developers can reuse
more code and have to develop less in the way of the
more basic services themselves.
 The CLR and .NET simplify the programming
model and make it more consistent. Initially, the
CLR supported only four languages namely Visual
Basic .NET, Visual C++ .NET, Visual C# .NET, and
Visual J# .NET. There were many companies
working on other compilers that produce managed

code for languages including COBOL. Pascal and
Perl. Now with all the effort put on to the .NET
Framework it is capable of supporting more than 24
languages including Fortran, Cobol etc.
The key design goal and features of .NET can be
briefly classified as following:
 New memory management, featuring the use of

garbage collection rather than reference
counting and deterministic finalization

 Just in Time (JIT) Compilation. Various designs
were implemented, explored, and refined,
including Optimising JIT and Fast JIT models

 Thread and Process Management
 Virtual Object System
 Remoting
 Common Type System (CTS)
 Code Access Security (CAS).
 Code Access Security (CAS)
 Support for debugging and profiling.
 Unmanaged code support
 Simplified, flexible deployment model

4 .NET VS JAVA

Before continuing with this comparison it should be
noted that this comparison was conducted without
any prejudice to any one platform in particular. We
shall not be comparing each and every aspect
because if we try to cover almost every aspect we
shall not be able to end this comparison. Therefore
in order to simplify we are only concentrating on the
main issues.
 Microsoft .NET is product suite that enables
organisations to build smart, enterprise-class Web
Services and applications. Microsoft .NET is largely
a modification of Windows DNA, which was
Microsoft's earlier platform for developing
enterprise applications. Windows DNA includes
many proven technologies that are in production
today, including Microsoft Transaction Server
(MTS) and COM+, Microsoft Message Queue
(MSMO), and the Microsoft SQL Server database.
But the new .NET Framework replaces these
technologies and includes a web services layer as
well as improved language support (Vawter, 2003).
.NET architecture comprises of the following,
(Farley, 2003):

 C#, (C Sharp) a "new" language for writing
classes and components, that integrates
elements of C, C++, and Java, and adds
additional features, like metadata tags, related to
component development,

 A CLR "common language runtime", which
runs byte codes in an Internal Language (IL)
format as discussed in previous section in this

UNDERLYING PLATFORM OF THE E-COMMERCE SYSTEM: J2EE VS. NET

253

paper. Code and objects written in one language
can, apparently, be compiled into the IL
runtime, once an IL compiler is developed for
the language.

 A set of base components, accessible from the

common language runtime, that provides
various functions (networking, containers, etc.).

 ASP+, a new version of ASP which supports
compilation of ASPs into the common language
runtime (CLR) and thereby enabling the
programmer to write ASP scripts using any
language with an IL binding (Farley, 2003)

 Win Forms and Web Forms are new UI
component frameworks for building Windows
and Web Applications and are accessible from
Visual Studio.NET.

 ADO+ a new generation of ADO data access
components that use XML and SOAP for data
interchange.

 The Java 2 Platform, Enterprise Edition (J2EE) is
an industry standard and was designed to simplify
complex problems with the development,
deployment, and management of multi-tier
enterprise solutions. J2EE is an industry standard,
and is the result of a large industry initiative led by
Sun Microsystems. The J2EE architecture is based
on the Java programming language, (Driver, 2002).
The process is as follows, (Vawter, 2003).
1. Developers write source code in Java.
2. The Java code is compiled into byte code,

which is a cross-platform intermediary, halfway
between source code and machine language.

3. When the code is ready to run, the Java Runtime
Environment (JRE) interprets this byte code and
executes it at the Run time.

 In large-scale J2EE applications, business logic
is built using Enterprise JavaBeans (EJB)
components. This layer performs business
processing and data logic. It connects to databases
using Java Database Connectivity (JDBC) or SQL/J,
or existing systems using the Java Connector
Architecture (JCA). It can also connect to business
partners using web services technologies (SOAP,
UDDI, WSDL, ebXML) through the Java APIs for
XML (the JAX APIs), (Vawter, 2003).

5 SUPPORT FOR WEB SERVICES

J2EE application is hosted within the container,
which provides qualities of service necessary for
enterprise applications, such as transactions,
security, and persistence services.
 The business layer performs business
processing and data logic. In large-scale J2EE

applications, business logic is built using Enterprise
JavaBeans, EJB) components. This layer performs
business processing and data logic. It connects to
databases using Java Database Connectivity (JDBC)
or SQL/J, or existing systems using the Java
Connector Architecture (JCA). It can also connect to
business partners using web services technologies
(SOAP, UDDI, WSDL, ebXML) through the Java
API's for XML (the JAX APIs).
 Business partners can connect with J2EE
applications through web services technologies
(SOAP, UDDI, WSDL, ebXML). A servlet, which is
a request/response oriented. Java object can accept
web service requests from business partners. The
servlet uses the JAX APIs to perform web services
operations (Sun Microsystems, 2003). Shared
context services will be standardized in the future
through shared context standards that will be
included with J2EE.
 Traditional 'thick' clients such as applets or
applications connect directly to the EJB layer
through the Internet Inter-ORB Protocol (IIOP)
rather than web services, since generally the thick
clients are written by the same organization that
authored J2EE application, and therefore there is no
need for XML-based web service collaboration.
 Browsers and wireless devices connect to Java
server Pages (JSPs) which render user interfaces in
HTML, XML, or WML. `In addition to the
specifications, Sun also ships a reference
implementation of J2EE. Developers write
applications to this to ensure portability of their
components. This implementation should not be
used for production but rather just for testing
purposes.
 The .NET application is hosted within a
container, which provides qualities of service
necessary for enterprise applications, such as
transactions security, and messaging services.
 The business layer: of the .NET application is
built using .NET managed components. This layer
performs business processing and data logic. It
connects to databases using Active Data Objects
(ADO.NET) and existing systems using services
provided by Microsoft Host Integration Server 2000,
such as the COM Transaction Integrator (COM TI).
It can also connect to business partners using web
services technologies (SOAP, UDDI, WSDL).
 Business partners can connect with the .NET:
application through web services technologies
(SOAP, UDDI, WSDL, Biz talk).
 Traditional 'thick' clients, Web browsers:
wireless devices connect to Active Server Pages
(ASP.NET) which render user interfaces in HTML,
XHTML, or WML. Heavyweight user interfaces are
built using Windows Forms.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

254

 Multiple language support is one of the key
differences between .NET and the J2EE and the
greatest feature of the .NET platform that dominates
over the J2EE .NET offers language-independence
and language-interoperability as stated, the most
Intriguing and fundamental aspects of the .NET
platform. A single .NET component can be written,
for example, partially In.NET version of Visual
Basic, and C#, Microsoft's new object-
oriented programming language and many other
.NET supported languages. The feature of .NET
proves to be the key differentiators between .Net and
J2EE, mainly points towards Microsoft’s real
play.Microsoft has two notable things with .NET
that It is opening up a channel to developers in other
programming languages and many other openings to
non-.NET components by integrating XML and
SOAP into their messaging scheme. .Net supports
development in any language that Microsoft’s tools
support due to the new CLR . With the exception of
Java, all major languages will be supported
Microsoft’s C# language is equivalent to Java. In
addition to this Microsoft have included a refined
version or the rewrite of JAVA as J#.NET, which is
available as a programming language within
VisualStudio.NET environment.
 The multiple language support that Microsoft has
introduced with the CLR is an exciting innovation
for business. Cross language compatibility .NET is
enfranchising PERL, Eiffel, COBOL and other
programmers by allowing them to play in the
Microsoft Programming environment. By using
XML and SOAP in their component messaging
layer, Microsoft is bolstering their diplomatic face
and adding an element of openness to its platform
which I suppose will definitely be encouraged by the
developers and businesses, (Vawter, 2003).
J2EE promotes Java-Centric computing, and as such
all components deployed into a J2EE deployment
(such as EJB components and servlets) and must be
written in the Java Language.

6 RISK, MAINTAINABILITY AND
OTHER REASONS REGARDING
LANGUAGE SUPPORT

Many existing systems are internally convoluted.
Disrupting such existing systems is a risky
proposition as once disturbed it is extremely difficult
to put everything back to normal even for the
knowledgeable engineers.
We think that a combination of languages running in
the CLR may lead to a mess of combination code
which is very difficult to maintain. If you have an

application written in multiple languages, then to
fully develop, debug, maintain and understand that
application; you will need experts in different
languages. Several languages equates to an increase
in Development training expenditures but then again
there is an argument that if there is a problem with
existing code it can be replaced by any language in
which the programmer is proficient.
With combination language code, developers are
unable to share best practices. While individual
productivity may increase, communication breaks
down, and team productivity decreases but again
other had it will reduce the cost of development.
Developers using different languages may have very
quickly coded .NET system using VB.NET and C#.
Skills transfers like VB.NET developers to
understand and write code in C# or other code base
developers and bring them into .NET standards. The
resulting lack in productivity equates in reduced
time to market and a higher total cost of ownership.
In many other cases, it is much better design to
standardize on a single language, and to treat legacy
systems as legacy systems and integrate which can
be achieved either by J2EE or .NET.
J2EE based technologies or Windows DNA based
technologies an interesting discussion is the ease of
migration from the previous platform to the new
platform. J2EE does not impose many migration
problems. Microsoft .NET is based on MTS and
Com+, we are concerned that the migration to .NET
will be taxing compared to J2EE. It is entirely new
infrastructure based on an entirely new code base –
CLR. COM+. To accommodate a common type
system (CTS) it standardizes on data types used
between languages, the original Visual Basic data
types have been dismissed (Vawter, 2003).
The COM+ migration path In .NET terminology,
code that runs within the CLR is referred to as
managed code, while coding running outside the
CLR is called unmanaged code.
If one is a COM+ developer and want to take an
advantage of the new CLR. There are two methods
of solving in the first methid COM+ code needs to
rewritten to accommodate the CLR’s automatic
garbage collection mechanism and its depreciation
of pointers. In the other method the existing code
has to collaborate between managed and unmanaged
code and for that special measures must be taken.
This is another key issue with regard to .NET and
J2EE. in this case J2EE definitely dominates the
.NET as J2EE is platform-agnostic running on a
variety of hardware and operating systems, such as
Win32, Unix and mainframe systems where as .Net
does not support most of these.
 This portability is absolute reality because the
Java Runtime Environment (JRE) on which J2EE is
based, is available on any platform (Vawter, 2003).

UNDERLYING PLATFORM OF THE E-COMMERCE SYSTEM: J2EE VS. NET

255

As mentioned above J2EE is a standard so it
supports a variety of implementations such as BEA,
IBM, Borland, (Pallatto, 2001) and Sun. The danger
in an open standard such as J2EE is that if vendors
are not held strictly to the standard application
portability is sacrificed.
 Sun has built a J2EE compatibility test suite
which ensures that J2EE platforms comply with the
standards. This test suite is critical because it ensures
portability of applications. J2EE portability will
never be completely free. It is ridiculous to think
that complex enterprise application can be deployed
from one environment to the next without effort,
because in practice organizations must occasionally
take advantage of specific features to achieve real
world systems. .NET only runs on windows its
supported hardware and the .NET environment.
There is no portability at all. It should be noted that
there have been hints that additional
implementations of .NET will be available for other
platforms (Vawter, 2003). The future of eBusiness
collaboration is undoubtedly web services. J2EE
supports web services through the Java API for
XML parsing (JAXP). This API allows developers
to perform any web service operation today
manually parsing XML documents. JAXP can be
used to perform operations with SOAP, UDDI,
WSDL and ebXML.
 Transforming XML-to-Java and Java-to-XML.
Parsing WSDL documents and performing
messaging such as with ebXML this feature is
extremely easy to build. J2EE compatible 3rd party
tools are available today that enable rapid
development of web services. There are at least
sixteen SOAP implementations that support Java.
Almost all of these implementations are built on
J2EE. There are only five UDDI API
implementations four of them support Java (IBM
UDDI4J, Bowstreet jUDDI, The Mind Electric Glue
and Idox WASP), (Vawter, 2003). The tools that
ship with Microsoft.NET also offer rapid application
development of web services with automatic
generation of web services wrappers to existing
systems. Concluding above J2EE you can develop
and deploy web services today using JAXP and
.NET you can develop web services today using
.NET which is much easier to build and deploy. The
Sun J2EE product portfolio includes a modular and
extensible Java based IDE that pre-date both Sun,
J2EE and .NET. Microsoft has always been a strong
tools vendor.
 There are many implementations based on J2EE
architecture that are available for purchase. With
many price points varying dramatically, this enables
a corporation to choose the platform that fits with
their budget and desired service level. As far as
hardware, J2EE supports Unix and mainframe

systems while both J2EE and .NET support the
Win32 platform which is generally the less
expensive alternative. The takeaway point is that
you can get low-cost solutions with both Microsoft
and J2EE architecture.
 Scalability is essential when growing a web
services deployment over time, because one can
never predict how new business goals might impact
user traffic. J2EE and .NET allow one to add
additional machines to increase user load while
maintaining the same response time. The significant
difference between J2EE and .NET scalability is that
since .NET supports win32 only a greater number of
machines are needed than a comparable J2EE
deployment due to processor limitations. This
multitude of machines may be difficult for
organizations to maintain.

7 CONCLUSIONS

Every SME goes through the strategic decision
making when they adopt a technology platform for a
new project. The decision making becomes more
difficult when attempting to integrate business
information and e-commerce system through an
ERP system. Consumers of ERP systems are
demanding solutions that can be easily integrated
with Web applications in order to provide such
services as e-commerce to customers and browser-
based access to remote workers. When attempting to
rewrite their software to provide this type of
functionality, .NET is the natural choice of platform
since most small-medium enterprises that use these
ERP solutions have IT infrastructures that are based
on Microsoft software.

Amongst SME’s .NET development is usually
the more appropriate choice. One reason why this is
so is that these type of organisations usually have
less technical expertise and resources available to
them, making fast and simple application
development (RAD) a priority. While J2EE
development can also provide a RAD route to the
implementation of applications, it is nowhere near as
effective as that provided by .NET; the advantages
of J2EE generally lie in its ability to create highly
complex enterprise-scale cross-platform
applications, rather than applications that are easy
and quick to implement. This is a matter that even
advocates of J2EE admit to.
 In a comparative study of J2EE and .NET, it is
clear that .NET is definitely having command over
J2EE when it comes to multiple language support
and the development environment.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

256

ACKNOWLEDGEMENTS

This on going research and development is
undertaken as part of Knowledge Transfer
Partnerships Program.

REFERENCES

Deitel N.: Visual basics .net, how to program, 2nd edition,
Prentice hall, UK, 2002.

Driver, M., .net Magazine, April 2002, .NET vs. Java: No
Easy Answers
http://www.fawcette.com/dotnetmag/2002_04/magazi
ne/columns/strategy/default_pf.asp

Farley J.: Microsoft .net Vs J2EE: how do they stack up?,
http://java.oreilly.com/news/farley_0800.html cited on
March 2003.

Kennedy A., Syme D.:.Design and implementation of
generics for the .Net CLR,
www.eecg.toronto.edu/~voss/ece1724f/Slides/DotNet.
ppt , November 2002, cited May 2003.

Microsoft: defining the basic elements of .net,
http://www.microsoft.com/net/basics/asp, cited
February 2003.

Pallatto J.: Borland Takes Lead in Industry Standard
Benchmarking of J2EE™ Application Servers,
http://www.borland.com/about/press/2001/j2eelead.ht
ml, cited April 2003.

Sullivan G. A.: .net, the big picture,
http://www.gasullivan.com/whitepapers/, cited on
April 2003.

Sun Microsystems’ Java website; Java 2 Platform,
Enterprise Edition Client Access Services (J2EE CAS)
COM Bridge 1.0 Early Access
http://developer.java.sun.com/developer/earlyAccess/j
2eecas/download-com-bridge.html

Syspro Support Zone, Syspro e.net Solutions Online
Documentation: Web Services
http://support.syspro.com/user/enet_solutions/index.ph
p?section=Web%20Services

Tabor, R: Microsoft .net XML web services, SAMS, USA,
2001.

Vawter C., Roman E.: white paper, J2EE vs. Microsoft
.Net,
http://searchwebservices.techtarget.com/whitepapersA
uthor/0,293844,sid26_gci829769,00.html, cited April
2003.

UNDERLYING PLATFORM OF THE E-COMMERCE SYSTEM: J2EE VS. NET

257

http://www.fawcette.com/dotnetmag/2002_04/magazine/columns/strategy/default_pf.asp
http://www.fawcette.com/dotnetmag/2002_04/magazine/columns/strategy/default_pf.asp
http://java.oreilly.com/news/farley_0800.html cited on March 2003
http://java.oreilly.com/news/farley_0800.html cited on March 2003
http://www.eecg.toronto.edu/~voss/ece1724f/Slides/DotNet.ppt
http://www.eecg.toronto.edu/~voss/ece1724f/Slides/DotNet.ppt
http://www.microsoft.com/net/basics/asp
http://www.borland.com/about/press/2001/j2eelead.html
http://www.borland.com/about/press/2001/j2eelead.html
http://www.gasullivan.com/whitepapers.netbigpicture_new.pdf
http://developer.java.sun.com/developer/earlyAccess/j2eecas/download-com-bridge.html
http://developer.java.sun.com/developer/earlyAccess/j2eecas/download-com-bridge.html
http://support.syspro.com/user/enet_solutions/index.php?section=Web%20Services
http://support.syspro.com/user/enet_solutions/index.php?section=Web%20Services
http://searchwebservices.techtarget.com/whitepapersAuthor/0,293844,sid26_gci829769,00.html
http://searchwebservices.techtarget.com/whitepapersAuthor/0,293844,sid26_gci829769,00.html

