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Abstract: Trend analysis has applications in several domains including: stock market predictions, environmental trend 
analysis, sales analysis, etc. Temporal trend analysis is possible when the source data (either business or 
scientific) is collected with time stamps, or with time-related ordering. These time stamps (or orderings) are 
the core data points for time sequences, as they constitute time series or temporal data. Trends in these time 
series, when properly analyzed, lead to an understanding of the general behavior of the series so it is 
possible to more thoroughly understand dynamic behaviors found in data. This analysis provides a 
foundation for discovering pattern associations within the time series through mining. Furthermore, this 
foundation is necessary for the more insightful analysis that can only be achieved by comparing different 
time series found in the source data. Previous works on mining temporal trends attempt to efficiently 
discover patterns by optimizing discovery processes in a single run over the data. The algorithms generally 
rely on user-specified time frames (or time windows) that guide the trend searches. Recent experience with 
data mining clearly indicates that the process is inherently iterative, with no guarantees that the best results 
are achieved in the first run. If the existing approaches are used for iterative analysis, the same heavy weight 
process would be re-run on the data (with varying time windows) in the hope that new discoveries will be 
made on subsequent iterations. Unfortunately, this heavy weight re-execution and processing of the data is 
expensive. In this work we present a framework in which all the frequent trends in the time series are 
computed in a single run (in linear time), thus eliminating expensive re-computations in subsequent 
iterations. We also demonstrate that trend associations within the time series or with related time series can 
be found. 

1 INTRODUCTION 

A time series X is an observed data sequence which 
is ordered in time, X = xt, t = 1, …, n, where t is an 
index of time stamps, and n represents the number of 
data observations. Typical examples include stock 
market data, weather data, and interaction flow data 
(journey to work flows, telephone flows, etc.) A 
time series is a sequence of real numbers, and may 
be categorical or continuous. Categorical time series 
have well defined segments, i.e., portions of the time 
series can easily be classified as members of given 
categories. For example, given a time series of 
precipitation data and the minimum precipitation 
that marks a drought. We can easily classify the time 
series into periods of drought and periods of normal 
precipitation. Translating categorical time series is 

thus a trivial problem. However, for continuous time 
series there are no well-defined categories. Several 
approaches have appeared in the literature for 
translating continuous time series: see e.g. (Agrawal 
et al., 1995; Faloutsos et al., 1994; Keogh et al., 
2000; Perng et al., 2000; Qu et al., 1998; Yi and 
Faloutsos, 2000). Most of the translation schemes 
are developed to index and query similar time series. 
We are interested in identifying all frequent trends 
and trend associations that exist in any given time 
series. Trends are qualitative movements that may 
exist in a time series dataset. Figure 1 shows a 
repeating trend in a time series. Frequently occurring 
trends in time series are excellent pointers for 
understanding the general behavior of the series.  
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 Trends can also be a good start for mining 
pattern associations existing within the time series, 
or between a time series and other time series. For 
example, a sales manager may be interested in 
identifying periods when the sales pattern of a 
product are similar, or when the sales pattern of a 
given product is correlated to the sales patterns of 
other products. A major objective of our work is to 
achieve such trend discovery in a flexible framework 
that allows efficient iterative analysis. Previous work 
on time series translation, frequent pattern discovery, 
and rule discovery requires domain and application 
specific parameters from the users very early in the 
process. Hence, the parameters guide (and prejudice) 
the entire process. These approaches become 
computationally very expensive if the user-specified 
parameters and time windows are removed. Our 
approach does not require time windows, and can be 
applied to any domain. Furthermore, previous works 
in the area only address the problem of finding 
frequent patterns of a specified length while we lift 
this restriction. 
 The rest of this paper is organized as follows. 
Section 2 discusses related work. We discuss our 
approach for encoding and finding frequent trends in 
Sections 3 and 4. Section 5 discusses our technique 
for identifying trend associations. We present the 
analysis of our algorithms in Section 6. Our 
experimental results are presented in Section 7, and 
we conclude in Section 8. 

2 RELATED WORK 

Time series analysis and mining has received the 
attention of several research groups. For example, 
Indyk et al (Indyk et al., 2000) study the problem of 
identifying representative trends in time series. 
Given interval windows, their work aims at 
identifying the interval that best approximates (or 
represents) its neighbors. The problem they address 
is, however, more related to identifying periodic 
patterns in time series (Han et al., 1998). Qu et al 
(Qu et al., 1998) present an approach for supporting 
trend searches in time series data. Their work is in 
the general area of time-series query processing and 
assumes that the length of the query sequence is 

known. The query sequence length is then used as a 
window size for processing the time series data. A 
match is found if the general trend of the best-fitting 
line within a window is the same as that of the query 
sequence. Adapting this approach in identifying all 
frequent trends will require O(n3) time, thus, it is not 
well suited for the problem we address in this paper.  
 Das et al. (Das et al., 1998) study the problem 
of discovering rules in time series. Their approach 
uses a sliding window of user-specified width to 
extract subsequences from the time series. The 
subsequences are then clustered into discrete groups 
to complete the translation process. Rules may then 
be obtained from the discretized series. Their 
approach can be used to find trend associations by 
normalizing the data in the subsequences, thus, is 
related in spirit to the work presented in this paper. 
However, their approach uses user-specified 
windows, and would require a quadratic-time, all-
window approach to identify all frequent trends in 
the time series. Furthermore, clustering the 
subsequences requires the setting of parameters that 
is guided by domain knowledge. If no parameters 
are set, then, in the worst case, the number of 
clusters may approach the number of subsequences 
resulting in O(n3) time complexity for an all-window 
approach. Other authors have studied rule discovery 
in time series from the viewpoint of episodes (Harms 
et al., 2001; Mannila et al., 1997). Episodes are 
well-defined categories in time series, so they differ 
from the problem addressed in this paper. 
 Patel et al. (Patel et al., 2002) address the 
problem of identifying k motifs. A motif, as used in 
their work, is a frequently occurring pattern in the 
time series. The emphasis of their work is on real 
data occurrences and not the movements or trends 
existing between data entries. Their algorithm is 
based on a user-specified sliding window 
(representing the length of the patterns of interest), 
and at best runs in sub-quadratic time. Adapting the 
algorithm to identify all motifs of arbitrary lengths 
will result in O(n3) time complexity, where n is the 
size of the time series. 
 None of the previous works on temporal trend 
discovery addresses the problem of finding all 
frequent trends of arbitrary lengths. These works are 
also guided by user-specified time windows that 
dictate the lengths of the trends of interest. As a 

Figure 1: An illustration of a repeating trend in time series. 
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result, these previous works generally require O(n3) 
time to iteratively discover frequent trends of 
arbitrary lengths. Our framework is developed to 
support iterative analysis, and discovers all the 
frequent trends in linear time. 

3 TREND ENCODING 

As a first step to time-series trend analysis, the time 
series dataset has to be encoded in some way. As 
discussed in Section 1, the encoding of categorical 
time-series is trivial because the datasets have well 
defined segments. Thus, the focus of our discussion 
in this section is continuous time series data. The 
data range for continuous time series is the set of 
real numbers. Hence, as a first step to analyzing 
continuous time-series, the data is discretized or 
encoded by extracting relevant features from the 
series. In our work, we require an encoding scheme 
that adequately captures the movements or trends 
existing in the time series. We also require an 
encoding scheme that does not make use of time 
windows so as to maintain efficient support for 
iterative analysis. Most time series translation 
schemes discussed in the literature require some 
form of windows or domain-specific data 
categorizations (Das et al., 1998; Faloutsos et al., 
1994; Keogh et al., 2000; Perng et al., 2000; Qu et 
al., 1998; Yi and Faloutsos, 2000). Such encoding 
schemes are inappropriate for our work. 
 The work by Agrawal et al. (Agrawal et al., 
1995) encodes the shapes in continuous time series 
datasets. Each point in the series is translated based 
on the relative change in the value of that point 
compared to the previous point. The change can be 
captured as a steep increase, increase, steep 
decrease, decrease, no-change, or zero. We adapt 
and generalize the shape-encoding concept 
introduced in (Agrawal et al., 1995) for our work. 
Our adapted scheme is discussed below. 

3.1 Generalized Trend Encoding 

The translation scheme used in this work is simple 
and utilizes the relative changes in the time series 
values to encode the series into a finite alphabet 
string. We utilize a symmetrical alphabet encoding 
that allows the matching of reverse patterns. The 
underlying thought in our scheme is as follows: 
given any two consecutive points on a continuous 
time series, and knowing that the time series must be 
changing in time; if the time component is 
represented on one axis in a two dimensional plane, 
then the line joining the two consecutive points must 
be less than ninety degrees from the time axis in an 

increasing or decreasing direction. Thus, we can 
represent the relative movements in the time series 
irrespective of the domain from which the data is 
drawn. Figure 2 illustrates the overall concept.  
 The maximum value of angle ab is less than 
900, as is the maximum value of angle bc. The range 
of angular values is maintained irrespective of the 
data domain. Movements in the time series are then 
simply encoded into alphabets based on the angles 
between two neighboring data points. The alphabet 
size can be greatly reduced or increased depending 
on the level of detail desired. Using fewer alphabets 
(i.e., angular categories) will result in approximate 
matches. 
 To complete our discussion on the encoding 
scheme, recall that the time component is assigned 
to one of the axes. The time component, however, is 
not on the same scale as the time series data entries. 
The magnitude of the time component affects the 
angle between the two data points. A natural choice 
for the time unit is the recorded intervals at which 
the data elements were collected. Alternatively, 
given that the time series data elements were 
collected at uniform intervals, and that the focus is 
on discovering trends relative to the overall 
movements in the series, we can establish a 
distributive value for each time unit as follows: 
 
TimeUnit = Change Space / Change Interval 
 
Given a time series X = x1, x2, …, xn; 

Change Space =  ∑
=

−−
n

i

ii xx
2

1 || , and  

Change Interval = n – 1; where n is the size of the 
time series. Given that xi and xi+1 are two 
consecutive entries in the series, and that θ is the 
angle between them; 

Tan θ = 
TimeUnit

xx ii || 1 −+
 

The angle of change is then determined, and the 
translation for that data point calculated accordingly. 
The result is a string of length n-1 where n is the 
number of data points in the original time series. 

4 IDENTIFYING ALL FREQUENT 
TRENDS 

This Section presents the main contribution of this 
paper, i.e., identifying all the frequent trends in the 
time-series in one pass, thus, eliminating expensive 
re-computations required by previous works to 
achieve iterative analysis. We propose to identify all 
frequent trends in any time series dataset by 
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representing the translated time series with a suffix 
tree (Bieganski et al., 1994; Gusfield, 1997). Such a 
representation would allow the identification of all 
frequent trends in linear time. A suffix tree can be 
used to represent a string composed from a finite 
alphabet. A suffix tree for a string x of length n is a 
rooted directed tree with exactly n leaves numbered 
1 to n. The internal nodes of the tree, besides the 
root node, must have at least two descendants. The 
edges are labeled with nonempty sub-strings of x, 
and no two edges originating from any particular 
node can have edge-labels that start with the same 
character. For any leaf i of the tree, the 
concatenation of the edge-labels on the path from the 
root to leaf i results in the suffix of string x from 
position i.  

 Figure 3 shows the suffix tree for string 
“cxxaxxaxxb”. The following nomenclature is used 
in the figure: the root node is depicted by a shaded 
oval, the internal nodes by unshaded ovals; and the 
leaf nodes by rectangles. Each leaf node is the path 
taken by a particular suffix of the sequence, and is 
named with the start position of that suffix. The label 
of each node is the concatenation of all the edge-
labels for the path from the root to that node. The 
suffix tree for “cxxaxxaxxb” has five internal nodes 
with labels: “x”, “xx”, “xxaxx”, “axx”, and “xaxx”. 
The labels of the internal nodes depict repeated parts 
of the string. We wish to capture all the meaningful 
repeated structures in the series without producing 
overwhelming output, so we only select the 
maximally repeated patterns that occur in maximal 
pairs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Suffix tree for string “cxxaxxaxxb”. 
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Figure 2: Relative trends in time series. 

AN EFFICIENT FRAMEWORK FOR ITERATIVE TIME-SERIES TREND MINING

133



Definition 1: Maximal pair: A maximal pair (or 
maximally repeated pair) in a string s is a pair of 
identical substrings r1 and r2 in s with the property 
that the character to the immediate right (left) of r1 is 
different from the character to the immediate right 
(left) of r2, thus, the equality of the two strings 
would be destroyed if r1 and r2 are extended in either 
direction. 
 
Definition 2: Maximal repeat: A maximal repeat m 
in string s is a substring of s that occurs in a maximal 
pair in s. 
 
 Based on the definitions above, only 3 of the 5 
node labels in Figure 3 are maximal repeats, these 
are: “x”, “xx”, and “xxaxx”. The other repeated 
patterns do not have independent occurrences that 
are not within the maximal repeats.  In our work, all 
the patterns that participate in maximal repeats 
(including their start and end points) are recorded in 
a file using a simple format. The first element of 
each record is a unique identifier we assign to each 
pattern. The next element is the pattern, then the 
number of occurrences of the pattern, and finally the 
start and end points of all the occurrences. An 
example of such a file is: 
 0;  x;         6;   2,2; 3,3; 5,5; 6,6; 8,8; 9,9 
 1;  xx;       3;   2,3; 5,6; 8,9 
 2;  xxaxx; 2;   2,6; 5,9 
Note that we enumerate all the occurrences of the 
pattern, and not just its occurrences that are maximal 
pairs. Thus, once a pattern has at least one 
occurrence as a maximally repeated pattern, we 
enumerate all its occurrences. The occurrences of a 
pattern begin at all the leaf nodes that descend from 
the node that has that pattern as the node label. Note 
that both “x” and “xx” have higher occurrence 
frequencies and they are sub-patterns of “xxaxx”. 
The other repeated patterns always occur within 
“xxaxx”, so they do not qualify as maximal patterns, 
and can always be generated from “xxaxx”. Our 
discussion so far is presented algorithmically below: 
 

Input: Translated sequence (from time series) 
Output: File containing maximal repeated 
patterns 
Steps: 
 1 Represent sequence with a suffix tree 

 2 Identify patterns with ≥ 1 maximally 
repeated pair. For each pattern identified: 

  2.1 Assign a unique pattern-ID 
 2.2 Write the pattern, pattern-ID, 

occurrence frequency, and start 
and end positions of all its 
occurrences to the output file 

 

 The steps discussed so far only need to be 
carried out once on a given time series dataset. At 
this stage, the user can retrieve all patterns of interest 
by specifying the minimum frequency of occurrence, 
or the minimum length of the pattern, or both. This 
operation will require a simple query because we 
have already stored all the maximal patterns and 
frequencies in a file. This differs from existing 
approaches that would require re-computation for 
each new query specification.  
 The discussion so far has used a generalized 
notion of repeating patterns. Special sets of repeating 
patterns (such as non-overlapping repeats and 
tandem repeats) may be derived from the general set 
of frequent patterns by comparing the start and end 
positions of the repeats. 

5 MINING TREND 
ASSOCIATIONS 

Our algorithm for mining trend associations relies on 
the set of maximal patterns found earlier. The 
algorithm takes the file containing the set of 
maximal patterns as input. The user has to set the 
threshold (or minimum allowable) confidence for the 
algorithm. For example, given that A and B are two 
patterns discovered in the time series; assume 
pattern A occurs four times, and that there are three 
occurrences where B is found after A. The 
confidence of the rule “B follows A” is ¾ (i.e., 75%). 
 There are also 3 optional user-specified inputs 
to the algorithm. The first is the allowable time lag, 
with a default of 0. For example, the user may want 
the association “B follows A” to mean that B follows 
A immediately, or the intent may be that B follows A 
within at most 2 time units. The user may also 
specify the minimum length of patterns considered 
in the trend associations, and (or) the minimum 
frequency of occurrence for a pattern to be 
considered in the trend associations. These two 
parameters aid in pruning the discovered rules to suit 
the user’s specific interests. We use a subset of 
Allen’s temporal interval logic (Allen, 1983; 
Hoppner, 2001) to show the associations that may 
exist between patterns in our framework. Figure 4 
shows Allen’s interval relationships. 
 The first three relationships can be realized 
between pairs of maximal patterns in our framework. 
(The time-lag parameter only applies to the first rule 
class.) However, the next three exist within maximal 
patterns. For example, given that pattern A is 
“xxaxx”, we can generate rules between the subparts 
of A, such as “axx” finishes “xxaxx”. Rules like 
these are rather obvious once we have the set of 
maximal repeats.  

ICEIS 2004 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

134



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The first three relationships in Figure 4 give 
more interesting mining results. Notice that the 
second relationship is equivalent to the first 
relationship with zero time lag. To discover these 
associations using our framework, we check the start 
and end points of each pattern in the set of maximal 
repeats against the start/end positions of all other 
maximal patterns. For example, given two patterns 
with unique id’s 0 and 1, and frequency counts 3 and 
2, respectively; as shown below: 
 0;      3;     1,4;     8,11;     15,18 
 1;      2;     5,6;   12,13 
Assuming a confidence threshold of 0.75, it is easy 
to see that the rule “Pattern 0 occurs after Pattern 1 
(i.e., every occurrence of pattern 0 follows an 
occurrence of pattern 1)” cannot hold because there 
are 3 occurrences of pattern 0 and only 2 
occurrences of pattern 1, so at best, this rule would 
have a 0.67 confidence. 
 On the other hand, the rule “Pattern 1 occurs 
after Pattern 0 (i.e., every occurrence of pattern 1 
follows an occurrence of pattern 0)” can be 
discovered by comparing the start positions of 
pattern 1 with the end positions of pattern 0. In 
general, given that X.start represents the start point 
of pattern X, and X.end represents the end point of 
pattern X. Rules of the form “Pattern A occurs after 
Pattern B (i.e., every occurrence of pattern A follows 
an occurrence of pattern B)”, can be discovered by 
finding the percentage of the occurrences of pattern 
A that satisfy the inequality 0 ≤  A.start – B.end ≤  
time lag. This percentage must be up to the threshold 
confidence for the rule to be returned (as true) to the 
user. Similarly, rules of the form “Pattern A occurs 
before Pattern B (i.e., every occurrence of pattern A 
precedes an occurrence of pattern B)”, can be 
discovered by finding the percentage of the 

occurrences of pattern A that satisfy the inequality   
0 ≤  B.start – A.end ≤  time lag. The overlapping 
relationship can be similarly defined. 
 Our framework can also be used to identify 
associations between trends/patterns in multiple time 
series. Each time series is encoded into a string, and 
the maximal repeat patterns are extracted and stored 
in a file using the techniques discussed earlier. The 
rules are mined in the same way as those for a single 
time-series, however, we can now define inequalities 
to extract relationships in the form of the last four 
Allen’s rules (see in Figure 4).  

6 ANALYSIS 

Our framework is composed of the following steps: 
Step 1: Translation: Given that the time series has N 
data elements, the translation takes O(N) time. The 
result is a string of length N-1. 
Step 2: Retrieving all frequent patterns: The suffix 
tree is built in O(N) time. The disk-based approach 
to suffix tree construction also runs in O(N) time. 
Identifying the maximal repeats from the suffix tree 
takes O(N) time. Thus, all the maximal frequent 
patterns in our framework can be retrieved in linear 
time. 
Step 3: Mining trend associations: The time 
required to discover the trend associations depends 
on the number of maximal patterns, n. Each pattern 
is compared with every other pattern in the file, thus 
the operation runs in O(n2) time. In the worst case (if 
the entire sequence is made up of the same 
character), n = N-1. The number of participating 
patterns may also be reduced by user-specified 
parameters (such as minimum pattern-length and/or 

time 

A 

B 

A after B      B before A 

A is-met-by B     B meets A 

A is-overlapped-by B    B overlaps A 

A finishes B     B is-finished-by A 

A during B     B contains A 

A is-started-by B     B starts A 

A equals B     B equals A 

Figure 4: Allen’s interval relationships (Hoppner, 2001) 
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frequency). For practical applications, however, the 
time series would be encoded with more than one 
character, and patterns spanning multiple time 
periods (e.g., ≥ 4) would be of greater interest, thus n 
<< N. 

7 EXPERIMENTAL EVALUATION 

In our experiments we make use of several publicly 
available datasets (Keogh, 2003; West, 2003). We 
begin by translating each time series dataset. We 
define 52 angular categories for encoding the 
movements between pairs of entries in the time 
series. Twenty-six of the categories are used for 
increasing trends while the other twenty-six encode 
decreasing trends. We use the average change space 
to represent the time axis (see the discussion in 
Section 3.1). The angular categories for increasing 
movements are as follows: 0 – 39 degrees are 
encoded with the letters a – h respectively, with 5-
degree increments between categories; 40 – 49 
degrees are encoded with letters i – r respectively, 
with 1-degree increments; 50 – 90 degrees are 
encoded with letters s – z respectively, with 5-degree 
increments. Decreasing trends are encoded in capital 
letters using the same categories. We use more 
discriminatory categories for angular changes 
between 40 and 49 degrees. This is because the 
mean movement has an angular change of 45 
degrees when the time axis is represented by the 
mean change space. Table 1 gives a summary of our 
results on different datasets using 52 angular 
categories. Reducing the number of categories used 
can discover more approximate patterns. Table 2 
shows the summary of our results when the angular 
categories are reduced to 3. For both experiments, 
time lag is set to 10 periods and threshold 
confidence is 0.80. (Time-lag and confidence are 
used for identifying trend associations. See the 
discussion in Section 5). For the second experiment, 
angular changes between –10 and +10 are taken as 
no change (n), changes greater than 10 degrees are 

encoded as increasing or decreasing trends (i or d) 
respectively, depending on the direction of change. 
 Notice that for both experiments, the number of 
frequent patterns is much smaller than the number of 
entries in the time series. The number drops further 
if the minimum pattern length is set ≥ 4. Notice also 
that more frequent trends are reported in Table 2 for 
each of the datasets. The trends are also longer and 
generally occur more frequently. There are also 
more trend associations. The increases are due to the 
approximate matching achieved by using fewer 
angular categories. The number of categories to use 
should be guided by the analysis task at hand. 
Generally, broader categories may be used to 
identify broad segments of the time series with 
similar movements. More discriminatory categories 
however, should be used if identifying interesting 
trend associations is the objective. 

8 CONCLUSIONS 

In this paper we have addressed the problem of 
identifying all frequently occurring trends in time 
series. We also show how to identify associations 
existing in the discovered frequent trends. A major 
underlying theme of the work presented in this paper 
is the support for iterative trend discovery and 
mining. The mining framework used in this paper is 
well suited for both categorical and continuous time-
series datasets. Existing approaches for time series 
trend discovery and mining require domain-specific 
input very early in their processes, thus, the domain-
specific variables (such as time windows) drive the 
subsequent stages of these algorithms. Our approach 
does not make use of time windows, thus, all the 
frequent trends existing in the dataset are identified 
in the first pass. The identified trends are stored and 
simply queried for subsequent analysis. Hence, our 
approach is better suited for iterative trend analysis 
because it does not require expensive re-computation 
when parameters are changed during analysis. 

Table 1: Summary of results with 52 angular categories 
Dataset Length Number of 

frequent 
trends 

Frequent trends 
spanning at ≥ 4 
time periods 

Average freq. of 
trends spanning 
≥ 4 periods 

Num. of trend 
associations 

Balloon 2001 768 412 5 31 
Darwin 1400 421 1 2 5 

Foetal_ecg 2500 694 22 2 10 
Greatlakes 984 328 3 2 15 
Industrial 564 190 1 2 17 
Soiltemp 2304 772 90 2 20 
Sunspot 2899 841 32 6 9 
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Table 2: Summary of results with 3 angular categories 
Dataset Length Number of 

frequent 
trends 

Frequent trends 
spanning at ≥ 4 
time periods 

Average freq. of 
trends spanning 
≥ 4 periods 

Num. of trend 
associations 

Balloon 2001 1200 1161 6 101 
Darwin 1400 743 705 9 330 

Foetal_ecg 2500 1510 1471 6 159 
Greatlakes 984 510 471 8 221 
Industrial 564 346 316 7 114 
Soiltemp 2304 1404 1365 7 176 
Sunspot 2899 1783 1744 7 159 
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