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The significant growth of sequence database sizes in recent years increase the importance of developing

new techniques for data organization and query processing. Discovering sequentia patterns is an important
problem in data mining with a host of application domains. For effectiveness and efficiency consideration,
constraints are essential for many sequentia applications. In this paper, we give a brief review of different
sequentia pattern mining algorithms, and then introduce a new agorithm (termed NewSPIRIT) for mining
frequent sequential patterns that satisfy user specified regular expression constraints. The general idea of our
algorithm is to use a finite state automata to represent the regular expression constraints and build a
sequentia pattern tree that represents all sequences of data which satisfy this constraints by scanning the
database of sequences only once. Experimental results shows that our NewSPIRIT is much more efficient

than existing algorithms.

1 INTRODUCTION

Sequential pattern mining from a large database of
sequences is an important data mining problem with
broad applications. Briefly, given a set of data
sequences, the problem is to discover subsequences
that are frequent, in the sense that the percentage of
data sequences containing them exceeds a user-
specified minimum support (Agrawal,1995, Srikant,
1996). Mining frequent sequential patterns has found
a host of potential application domains, including
retailing (i.e, market-basket data),
telecommunications, and, more recently, the World
Wide Web (WWW).

There have been many studies on efficient sequential
pattern mining algorithms and their applications
(e.0. (Agrawal,1995, Srikant, 1996, Mannila, 1997,
Pei, 2001, Zaki, 2001)). Sequential pattern mining
algorithms, in general, can be categorized into three
classes. (1) Apriori-based, with  horizonta
formatting method, with GSP (Srikant, 1996) as its
representative;  (2)Apriori-based, with vertica
formatting method, such as SPADE (Zaki, 2001);
and (3) projection-based pattern growth method,
such as PrefixSpan (Pei, 2001).

For effectiveness and efficiency considerations,
constraints are essential in many data mining
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applications. In the context of constraint-based
sequential  pattern mining, Srikant and Agrawal
(Srikant, 1996) generalize the scope of sequential
pattern mining (Agrawal,1995) to include time
congtraints, sliding time windows, and user-defined
taxonomy. Garofalakis et a. (Garofalakis, 1999)
proposed regular expressions as constraints for
sequential pattern mining and develop a family of
SPIRIT agorithms. In the SPIRIT framework,
pattern constrains are specified as regular
expressions, which is an especialy convenient
method if a user wants to significantly restrict the
structure of patterns to be discovered. It has been
shown that pushing regular expression constraints
deep into the mining process can reduce processing
time by more than an order of magnitude.

The remainder of this paper is organized as
follow: section 2 gives a forma statement of
sequential pattern mining problem, section 3 gives a
formal statement of mining sequential pattern with
congtraint, while section 4 address the problem of
sequential pattern mining with Regular Expression
congtrains explaining SPIRIT agorithms and its
drawback. Finally, we will introduce a new efficient
algorithm for this problem named “NewSPIRIT” in
section 5 and its experimenta results and
performance analysisin section 6.
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2 SEQUENTIAL PATTERN
MINING PROBLEM

In this section, we first define the problem of
sequential pattern mining, and then illustrate some
of the well known Seguential Pattern Mining
Algorithms explaining their working with examples.

2.1 Definitions

The formal statement of sequentia pattern mining is
defined in (Agrawal,1995) as following:

Let | ={xg,...... Xm} be aset of items. An itemset is
a non-empty subset of items, and an itemset with |
items called al-itemset.

A sequence s = ( S,...,S ) is an ordered list of
itemsets where s is the i! element of s and is called
a transaction. The number of transaction in a
sequence is caled the length of the sequence. A
sequnce s with length k is called k-sequence and is
denoted by |g].

Consider two data sequencess=( s;,...,S,y and t =¢
ty,..tm )- We say that sisasubsequenceof tif sisa
“projection” of t derived by deleting elements and/or
items from t. More formally sis a subsequence of t
if there exist integersj; <, <jz <...<j, such that s;
C i, S C tjp,..,and s, C tj,. For example sequences
13)and(124) are subsequencesof ( 1234 ),
while (3 1) isnot.

Following (Srikant, 1996), the sequence s is defined
to be subsequence with a maximum distance
constraint of &, or adternately Jdistance
subsequence, of t if there exist integers j; < j» < j3
<...<jpsuch that s, C tj1, S C i, S S tjn and i — Jia
< o for each k = 2,3/4,...,n. That is, occurrences of
adjacent elements of s within t are not separated by
more than ¢ elements.

As a specia case of the above definition, we say that
s is a contiguous subsequence of t if s is a 1-
distance subsequence of t, i.e., the elements of s can
be mapped to a contiguous segment of t.

A sequence sis said to contain asequencep if pisa
subsequence of s.

The support of a pattern p is defined as the fraction
of sequences in the input database that contain p.
Given a set of sequences S, we say that se Siis
maximal if there are no sequencesin S - { s} that
contain it.

2.2 Sequential Pattern Mining
Algorithms

Sequential pattern mining has been intensively
studied during recent years, so there exist a great
diversity of algorithms for sequential pattern mining.

PATTERN TREE

Most of these agorithms are based on the Apriori
property proposed in association rule mining
(Agrwal, 1994), which states that any sub-pattern of
a frequent pattern must be frequent. Based on this
heuristic, a series of Apriori-like algorithms have
been proposed: AprioriAll, AprioriSome,
DynamicSome in (Agrawa,1995), and GSP
(Srikant, 1996). Later on another series of data
projection based algorithms became popular because
of their efficiency, which include FreeSpan (Han,
2000) and PrefixSpan (Pei, 2001). Recently, Zaki
proposed an efficient algorithm called SPADE
(Zaki, 2001), which is a lattice based algorithm.
After that, a fast algorithm, called SPAM (Ayres,
2002) is proposed, it uses a vertica bitmap
representation of the data. Also, a memory indexing
based approach called MEMISP (Ming-Y en, 2002)
is proposed, it uses a memory indexing scheme to
reduce the I/O complexity.

3 SEQUENTIAL PATTERN
MINING AND CONSTRAINTS

Like many frequent mining problems, there are two
major difficulties in sequential pattern mining: (1)
effictiveness; mining may return a huge number of
patterns, many of which could be uninteresting to
users, and (2) efficiency: it often takes substantial
processng power for mining the complete set of
sequential paterns in a large sequence database.
Congtraint-based mining may overcome both
difficulties since constraints usually represents user’s
interest and focus, which confines the patterns to be
found to a particular set o conditions. Moreover, if
constraints can be pushed deep into the mining
process, it is likely to achieve efficiency since the
search can be focused. This motivates the study of
constraint-based mining of sequential patterns.

3.1 Categoriesof Constraints

For rea-world data mining, it is interesting to
examine some interesting constraints from the
application point of view. These constraints are
presented in (Pei, 2002). Although this is by no
means complete, it covers most of the interesting
constraints in applications.

Alternatively, constraints can be categorized
according to their properties for constraint pushing
in the candidate generation and pruning
processes(Ng, 1998, Pei, 2000, Pei, 2001).
Monotonicity, anti-monotonicity, and succinctness
are three categories of constraints that we briefly
discuss below.
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e A constraint C, is anti-monotonic if a
sequence s satisfying C, implies that every
nonempty subsequence of s also satisfies Ca.

e A congtraint Cy is monotonic if a sequence s
satisfies Cy implies that every super sequence
of salso satisfies Cy.

e The basic idea behind succinct constraint is
that, with such a constraint, one can explicitly
and precisely generate al the sets of items
satisfying the constraint without recourse to a
generate-everything-and-test  approach. A
succinct constraints is specified using a precise
“formula’. According to the “formula’, one
can generate all the patterns satisfying a
succinct constraint.

3.2 Mining Sequential Patternswith
Constraints

The classical constraint-pushing framework based
on anti-monotonicity, monotonicity, and
succinctness can be applied to a large class of
constraints (Ng, 1998). Thus the corresponding
congtraint-pushing strategy can be integrated easily
into any one of sequentia pattern mining algorithms,
such as GSP, SPADE, and PrefixSpan. However,
some important classes of constraints, such as RE
(regular expressions), average, and sum, do not fit
into this framework.

Sequential pattern can also be mined using level-by-
level, candidate-generation-and-test Apriori-like
methods. For example to find a sequentia pattern
(abc), which is an ordered list of three transactions
{a}, {b}, and {c}, we can first find frequent length-1
patterns ( a ), ( b ), and ( ¢ ). Then, length-2
candidates ( aa ), ( ab ), ...., { (ab) ), ( (ac) ), and
{(bc)) can be generated and tested. If ( ab ), ( ac ),
and ( bc ) are all frequent, length-3 candidate ( abc )
can be generated and tested. Even Apriori-like
sequential  pattern mining methods are intuitive
extensions, they meet difficulties in handling many
constraints (Pei, 2002).

4 SEQUENTIAL PATTERN
MINING WITH REGULAR
EXPRESSION CONSTRAINT

A regular expression (RE) constraint R is specified
as a RE over the alphabet of sequence elements
using the established set of RE operators, such as
digunction ( | ) and Kleene closure (*) (Garofalakis,
1999). Thus, a RE constraint R specifies a language
of strings over the element alphabet or, equivalently,
a regular family of sequential patterns that is of
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interest to the user. A well-known result from
complexity theory states that REs have exactly the
same expressive power as deterministic finite
automata (Garofalakis, 1999). Thus, given any RE
R, we can adways build a deterministic finite
automaton Ag such that Agr accepts exactly the
language generated by R. Figure 2 depicts the state
diagram of a deterministic finite automaton for the
RE 1*(22]234/44) (i.e., all sequences of zero or more
1’s followed by 2 2, 2 3 4, or 44) Following
(Garofalakis, 1999), we use double circles to
indicate an accept state and > to emphasize the start
state (@) of the automaton.

Figure 2: Automaton for the RE 1*(22|234/44)

4.1 Problem Statement

The abstract definition of our constrained pattern

mining problem is as follows.

e Given: A database of sequences D, a user-
specified minimum support threshold, and a
user-specified RE constraint R (or,
equivaently, an automaton Ag ).

e Find: All frequent and valid sequential
patternsin D.

Thus, the objective is to efficiently mine patterns

that are not only frequent but also belong to the

language of sequences generated by the RE R.

4.2 The SPIRIT Algorithms

Garofalakis et al. proposed a family of algorithms
that uses the RE as a flexible constraint specification
tool that enable users to focus on what he needs
from the mining process (Garofalakis, 1999). Using
an input parameter C to denote a generic user-
specified constraint on the mined patterns. The
output of a SPIRIT agorithm is the set of frequent
seguences in the database D that satisfy constraint C.
The agorithmic framework is similar in structure to
the general Apriori strategy of Agrawal and Srikant
(Srikant, 1996). The candidate counting step is
typically the most expensive step of pattern mining
process and its overhead is directly proportional to
the size of Cy, Thus the goal of an efficient pattern
mining strategy is to employ minimum support
requirements and any additional user-specified
congtraint to restrict as much as possible the set of
candidate k-sequences counted during the pass k.
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The SPIRIT framework strives to achieve this goal
by using two different types of pruning within each
pass k.
e Congtraint-based pruning using a relaxation
C’ of the user-specified constraint C; that is,
ensuring that all candidate k-sequences in Cy
satisty C’. This is accomplished by
appropriately employing C'° and F in the
candidate generation phase.
e Support-based pruning; that is, ensuring that
al subsequences of a sequence s in Cy that
satisfy C’ are present in the current set of
discovered frequent sequences F.
Intuitively, constraint-based pruning tries to restrict
Cx by (partidly) enforcing the input constraint C,
where as support-based pruning tries to restrict Cy
by checking the minimum support constraint for
qualifying subsequences. Note that, given a set of
candidates C, and a relaxation C’ of C, the amount
of support-based pruning is maximized when C’ is
anti-monotone (i.e. all subseguences of sequence
satisfying C’ are guaranteed also to satisfy C’). This
is because support information for all of the
subsequences of a candidate sequence sin C, can
be used to prune it. However, when C’ is not anti-
monotone, the amounts of constraint-based and
support-based pruning achieved vary depending on
the specific choice of C'.

5 NEWSPIRIT: ANEW ALGORITHM
FOR SEQUENTIAL PATTERN
MINING WITH REGULAR
EXPRESSION CONSTRAINTS

In this section, the proposed algorithm for sequential
pattern mining with constraint named, NewSPIRIT
is described. NewSPIRIT scans the sequence
database only once to build the sequence-pattern tree
in the main memory and get the valid frequent
sequences by traversing this tree using a standard
depth-first search (DFS) manner.

5.1 Sequential Pattern Tree Design
and Construction

The agorithm represents the discovered patternsin a
tree structure called SP-Tree (sequential-pattern
tree). This tree is growing progressively by the
algorithm such that each valid sequence is
represented in the tree with its support count. We
assumes that the SP-Tree ( and al data structures
used for the algorithm) completely fit into main
memory, this is because the size of current main
memories reaching gigabytes and still growing.

PATTERN TREE

Each segquence in the SP-Tree can be considered as
either a sequence-extended sequence or an itemset-
extended sequence. A sequence-extended sequence
is a sequence generated by adding a new transaction
consisting of a single item to the end of its parent’s
sequence in the tree. An itemset-extended sequence
is a sequence generated by adding an item to the last
itemset in the parent’s sequence, such that the itemis
greater than any item in that last itemset. For
example, if we have a sequences, =( (ab) a),
then ( (ab) a c) isanextended sequences of s, but
((ab) (ac))isanitemset-extended sequence of
S.. In our agorithm we extend this definition by
using the interval time between adjacent elements in
a pattern as a dimension for counting the support for
each pattern. Fig. 3 shows a sample of SP-Tree,
where each node has its sequence extension, the
interval time between it and its parent , and the
support count for this interval. Note that, itemset
extension occurs when the interval time = O,
otherwise the extension will be sequence extension.

Database and Transaction Time
Student Term | Course
No. No.
00100001 i E Data Set D
2 a
00100002 1 a =| ((ab)a)
: > ((ab)ac)
3 c ((ac))
00100003 2 a
2 c

Figure 3. SP-Tree ( Sequential Pattern Tree)

119



ICEIS 2004 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

5.2 TheNewSPIRIT algorithm

Fig. 4 depicts the agorithmic skeleton of the
NewSPIRIT algorithm, using an input constraint C
to denote a generic user-specified constraint on the
mined patterns. The output of the NewSPIRIT is the
set of frequent sequences in the database D that
satisfy constraint C. The NewSPIRIT needs only one
database scan to construct the SP-Tree which its
sequences are valid with respect to the constraint C.
Note that, the SP-Tree is built using constraint based
pruning only, where the support count is become
known after finishing the sequence tree building.
After that the support based pruning ( that is,
ensuring that all sequences are frequent ) is achieved
by traversing SP-Tree in DFS manner.

Algorithm : NewSPIRIT Mine sequential patterns with

regular expression constraint using SP-Tree.

Input : A transaction Database, D; minimum support

threshold, min_sup; Regular expression Constraint C.

Output : The complete set of sequential patterns F

Method :-

- Read the regular expression constraint C and construct
thefinite state automata

- Create the root of the SP-Tree and label it as“Null”

- Foreach sequence sin the database D

e Foreach valid
subsequence  t
froms

- Parse the SP-Tree with the valid sequence
t, visit its nodes, and then insert the
remainder part of t that isnot found in it.
¢ End foreach
- End Foreach
- Traverse the SP-Tree to get the compl ete set of
sequentia patterns where each path on the
SP-Tree is a sequence with support count at the
last node on this path.

Figure 4: NewSPIRIT Algorithm
5.3 SP-Tree Traversal

The NewSIRIT traverses the sequence tree described
above in a standard DFS manner to get all valid
sequences with its support count. The support count
is the minimum count from the nodes that represent
this sequence ( i.e. from the last sequence extension
for this sequence). At each node n, the support of
each sequence-extended child is tested. If the
support of a generated sequence s is greater than or
equal to minSup, we store that sequence and repeat
DFS recursively on s. If the support of sis less than
minSup, then we do not need to repeat DFS on s by
the Apriori principle, since any child sequence
generated from s will not be frequent (Srikant, 1996).
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If none of the generated children are frequent, then
the nodeis aleaf and we can backtrack up the tree.

6 EXPERIMENTAL RESULTS

To evauate the effectiveness and efficiency of the
NewSPIRIT agorithm, we performed an extensive
study of four algorithms: SPIRIT(L), SPIRIT(V),
SPIRIT(R) and NewSPIRIT on many samples of
data sets, with various kinds of sizes and data
distributions. The implementation of these
agorithms was done to compare between them at
the same platform, and at the same environment.

Detailed agorithm implementation is described as

follows.

- SPIRIT(L), SPIRIT(V), and SPIRIT(R)
algorithms are implemented according to the
description in (Garofalakis, 1999).

- NewSPIRIT is implemented as described in this
thesis.

For the data sets used in our performance study, we
use two samples of data sets from real database. We
have obtained these samples of data sets from
student database in AAST. The sequences are
generated from the student course registration table
which contain student-id, counse-id, and registration
term. The Regular Expression constraint are
constructed from the course plan of a specified
department. In these data sets the number of items
were 70 item (Number of courses in the course plan
in this department), while the number of sequences
and its average lengths are :-

- 1323 sequence with average length 47 for data
set |

- 253 sequence with average length 17 for data set
I

The testing result in figure 5 makes clear distinction
among the algorithms tested, where it shows that our
NewSPIRIT is much more efficient than SPIRIT(V),
SPIRIT(R), and SPIRIT(L). The execution time of
our NewSPIRIT is independent of min. support
threshold where it constructs its SP-Tree based only
on the Regular Expression constraint. With the
above comprehensive performance study, we are
convinced that NewSPIRIT is the clear winner
among all the four tested algorithms. The other three
algorithms (SPIRIT(L), SPIRIT(V), and SPIRIT(R)
require many passes over the databases where they
are based on GSP. GSP method that it bear three
nontrivial, inherent costs which are independent of
detailed implementation techniques.

1- A huge set of candidate sequences could be

generated in alarge sequence database.

2- Many scans of databasesin mining.
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3- The Aperiori-based method encounters
difficulty when mining long sequential
patterns.

——SPIRIT(L)
1200 —— SPIRIT(V)
) SPIRIT(R)
,E 800 - - - X - -NewSPIRIT
c
S 400 -
=
8
X 0 ‘ = ‘ X
0 2 4 6 8 10
Min. Support
a. Performance results for 1323 sequence with 47 average
length
——SPIRIT(L)
10 T —— SPIRIT(V)
\ SPIRIT(R)
' > - = % - -NewSPIRIT

Execution Time
o N MO ©

o
N

4 6 8 10
Min. Support

b. Performance results for 253 sequence with 17 average
length
Figure 5: Experimental Results

Our NewSPIRIT require only one pass over the
database, no candidate generation. It needs only a
sufficient memory for SP-Tree which it is restricted
by the regular expression constrant.

Figure 6 shows the results of scalability test of the
four algorithms on data set Il. The database is
growing to multiples of data set |1, with min. support
=1 % . As shown in the figure, the times for all
algorithms linearly scale with data set size. This is
because the number of candidates generated by each
algorithm is independent of the data set size.

200 —o— SPIRIT(L)
2150 —@— SPIRIT(V)
£ / SPIRIT(R)
<100 —>— NewSPIRIT

S
g1 o~
d o , ‘

0 2000 4000 6000
Number of sequences

Figure 6: Scalability test of the four agorithms on data set
I1, with min. support 1%

7 CONCLUSION

In this paper we introduce the problem of mining
sequential patterns with constraints, and presented a

PATTERN TREE

new algorithm for sequential pattern mining with
regular expression constraint (NewSPIRIT) that can
efficiently find all frequent sequential patterns that
satisfy a regular expression constraint. NewSPIRIT
mines the set of al sequentia patterns without
generating candidates or sub-databases and achieve
our goal by scanning the database only once.
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