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Abstract: The significant growth of sequence database sizes in recent years increase the importance of developing 
new techniques for data organization and query processing. Discovering sequential patterns is an important 
problem in data mining with a host of application domains. For effectiveness and efficiency consideration, 
constraints are essential for many sequential applications. In this paper, we give a brief review of different 
sequential pattern mining algorithms, and then introduce a new algorithm (termed NewSPIRIT) for mining 
frequent sequential patterns that satisfy user specified regular expression constraints. The general idea of our 
algorithm is to use a finite state automata to represent the regular expression constraints and build a 
sequential pattern  tree that represents all sequences of data which satisfy this constraints by scanning the 
database of sequences only once. Experimental results shows that our NewSPIRIT is much more efficient 
than existing algorithms. 

1 INTRODUCTION 

Sequential pattern mining from a large database of 
sequences is an important data mining problem with 
broad applications. Briefly, given a set of data 
sequences, the problem is to discover subsequences 
that are frequent, in the sense that the percentage of 
data sequences containing them exceeds a user-
specified minimum support (Agrawal,1995, Srikant, 
1996). Mining frequent sequential patterns has found 
a host of potential application domains, including 
retailing (i.e., market-basket data), 
telecommunications, and, more recently, the World 
Wide Web (WWW).  
There have been many studies on efficient sequential 
pattern mining algorithms and their applications 
(e.g. (Agrawal,1995, Srikant, 1996, Mannila, 1997, 
Pei, 2001, Zaki, 2001)). Sequential pattern mining 
algorithms, in general, can be categorized into three 
classes: (1) Apriori-based, with horizontal 
formatting method, with GSP (Srikant, 1996) as its 
representative; (2)Apriori-based, with vertical 
formatting method, such as SPADE (Zaki, 2001); 
and (3) projection-based pattern growth method, 
such as PrefixSpan (Pei, 2001).  
For effectiveness and efficiency considerations, 
constraints are essential in many data mining 

applications. In the context of constraint-based 
sequential pattern mining, Srikant and Agrawal 
(Srikant, 1996) generalize the scope of sequential 
pattern mining (Agrawal,1995) to include time 
constraints, sliding time windows, and user-defined 
taxonomy. Garofalakis et al. (Garofalakis, 1999) 
proposed regular expressions as constraints for 
sequential pattern mining and develop a family of 
SPIRIT algorithms. In the SPIRIT framework, 
pattern constrains are specified as regular 
expressions, which is an especially convenient 
method if a user wants to significantly restrict the 
structure of patterns to be discovered. It has been 
shown that pushing regular expression constraints 
deep into the mining process can reduce processing 
time by more than an order of magnitude. 

The remainder of this paper is organized as 
follow:  section 2 gives a formal statement of 
sequential pattern mining problem, section 3 gives a 
formal statement of mining sequential pattern with 
constraint, while section 4 address the problem of 
sequential pattern mining with Regular Expression 
constrains explaining SPIRIT algorithms and its 
drawback. Finally, we will introduce a new efficient 
algorithm for this problem named “NewSPIRIT” in 
section 5 and its experimental results and 
performance analysis in section 6. 
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2 SEQUENTIAL PATTERN 
MINING PROBLEM  

In this section, we first define the problem of 
sequential pattern mining, and then illustrate some 
of the well known Sequential Pattern Mining 
Algorithms explaining their working with examples. 

2.1 Definitions 

The formal statement of sequential pattern mining is 
defined in (Agrawal,1995) as following: 
Let I = {x1,……,xm} be a set of items. An  itemset is 
a non-empty subset of items, and an itemset with l 
items called a l-itemset. 
A  sequence s = 〈 s1,…,sn 〉 is an ordered list of 
itemsets where si is the ith element of s and is called 
a transaction. The number of transaction in a 
sequence is called the length of the sequence. A 
sequnce s with length k is called k-sequence and is 
denoted by |s|. 
Consider two data sequences s = 〈 s1,…,sn 〉 and t = 〈 
t1,…,tm 〉. We say that s is a subsequence of t if s is a 
“projection” of t derived by deleting elements and/or 
items from t. More formally s is a subsequence of t 
if there exist integers j1 < j2 < j3 <…<jn such that s1 
⊆ tj1, s2 ⊆ tj2,…,and sn ⊆ tjn. For example sequences 〈 
1 3 〉 and 〈 1 2 4 〉 are subsequences of 〈 1 2 3 4 〉, 
while 〈 3 1 〉 is not.  
Following (Srikant, 1996), the sequence s is defined 
to be subsequence with a maximum distance 
constraint of δ, or alternately δ-distance 
subsequence, of t if there exist integers j1 < j2 < j3 
<…<jn such that s1 ⊆ tj1, s2 ⊆ tj2, sn ⊆ tjn and jk – jk-1 
≤ δ for each k = 2,3,4,…,n. That is, occurrences of 
adjacent elements of s within t are not separated by 
more than δ elements.  
As a special case of the above definition, we say that 
s is a contiguous subsequence of t if s is a 1-
distance subsequence of t, i.e., the elements of s can 
be mapped to a contiguous segment of t. 
A sequence s is said to contain a sequence p if p is a 
subsequence of s.  
The support of a pattern p is defined as the fraction 
of sequences in the input database that contain p.  
Given a set of sequences S, we say that s ∈ S is 
maximal if there are no sequences in S  - { s } that 
contain it. 

2.2 Sequential Pattern Mining 
Algorithms 

Sequential pattern mining has been intensively 
studied during recent years, so there exist a great 
diversity of algorithms for sequential pattern mining. 

Most of these algorithms are based on the Apriori 
property proposed in association rule mining 
(Agrwal, 1994), which states that any sub-pattern of 
a frequent pattern must be frequent. Based on this 
heuristic, a series of Apriori-like algorithms have 
been proposed: AprioriAll, AprioriSome, 
DynamicSome in (Agrawal,1995), and GSP 
(Srikant, 1996). Later on another series of data 
projection based algorithms became popular because 
of their efficiency, which include FreeSpan (Han, 
2000) and PrefixSpan (Pei, 2001). Recently, Zaki 
proposed an efficient algorithm called SPADE 
(Zaki, 2001), which is a lattice based algorithm. 
After that, a fast algorithm, called SPAM (Ayres, 
2002) is proposed, it uses a vertical bitmap 
representation of the data. Also, a memory indexing 
based approach called MEMISP (Ming-Yen, 2002) 
is proposed, it uses a memory indexing scheme to 
reduce the I/O complexity. 

3 SEQUENTIAL PATTERN 
MINING AND CONSTRAINTS 

Like many frequent mining problems, there are two 
major difficulties in sequential pattern mining: (1) 
effictiveness: mining may return a huge number of 
patterns, many of which could be uninteresting to 
users, and (2) efficiency: it often takes substantial 
processng power for mining the complete set of 
sequential paterns in a large sequence database. 
Constraint-based mining may overcome both 
difficulties since constraints usually represents user′s 
interest and focus, which confines the patterns to be 
found to a particular set o conditions. Moreover, if 
constraints can be pushed deep into the mining 
process, it is likely to achieve efficiency since the 
search can be focused. This motivates the study of 
constraint-based mining of sequential patterns. 

3.1 Categories of Constraints 

For real-world data mining, it is interesting to 
examine some interesting constraints from the 
application point of view. These constraints are 
presented in (Pei, 2002). Although this is by no 
means complete, it covers most of the interesting 
constraints in applications.  
Alternatively, constraints can be categorized 
according to their properties for constraint pushing 
in the candidate generation and pruning 
processes(Ng, 1998, Pei, 2000, Pei, 2001). 
Monotonicity, anti-monotonicity, and succinctness 
are three categories of constraints that  we briefly 
discuss below. 
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• A constraint CA is anti-monotonic if a 
sequence s satisfying CA implies that every 
nonempty subsequence of s also satisfies CA.  

• A constraint CM is monotonic if a sequence s 
satisfies CM implies that every super sequence 
of s also satisfies CM.  

• The basic idea behind succinct constraint is 
that, with such a constraint, one can explicitly 
and precisely generate all the sets of items 
satisfying the constraint without recourse to a 
generate-everything-and-test approach. A 
succinct constraints is specified using a precise 
“formula”. According to the “formula”, one 
can generate all the patterns satisfying a 
succinct constraint. 

3.2 Mining Sequential Patterns with 
Constraints 

The classical constraint-pushing framework based 
on anti-monotonicity, monotonicity, and 
succinctness can be applied to a large class of 
constraints (Ng, 1998). Thus the corresponding 
constraint-pushing strategy can be integrated easily 
into any one of sequential pattern mining algorithms, 
such as GSP, SPADE, and PrefixSpan. However, 
some important classes of constraints, such as RE 
(regular expressions), average, and  sum, do not fit 
into this framework.  
Sequential pattern can also be mined using level-by-
level, candidate-generation-and-test Apriori-like 
methods. For example to find  a sequential pattern 
〈abc〉, which is an ordered list of three transactions 
{a}, {b}, and {c}, we can first find frequent length-1 
patterns 〈 a 〉,  〈 b 〉, and 〈 c 〉. Then, length-2 
candidates 〈 aa 〉, 〈 ab 〉, …., 〈 (ab) 〉, 〈 (ac) 〉, and  
〈(bc)〉 can be generated and tested. If  〈 ab 〉, 〈 ac 〉, 
and 〈 bc 〉 are all frequent, length-3 candidate 〈 abc 〉 
can be generated and tested. Even Apriori-like 
sequential pattern mining methods are intuitive 
extensions, they meet difficulties in handling many 
constraints (Pei, 2002). 

4 SEQUENTIAL PATTERN 
MINING WITH REGULAR 
EXPRESSION CONSTRAINT  

A regular expression (RE) constraint R  is specified 
as a RE over the alphabet of sequence elements 
using the established set of RE operators, such as 
disjunction ( | ) and Kleene closure (*) (Garofalakis, 
1999). Thus, a RE constraint R specifies a language 
of strings over the element alphabet or, equivalently, 
a regular family of sequential patterns that is of 

interest to the user. A well-known result from 
complexity theory states that REs have exactly the 
same expressive power as deterministic finite 
automata (Garofalakis, 1999). Thus, given any RE  
R, we can always build a deterministic finite 
automaton AR such that AR accepts exactly the 
language generated by R. Figure 2 depicts the state 
diagram of a deterministic finite automaton for the 
RE 1*(22|234|44) (i.e., all sequences of zero or more 
1′s followed by 2 2, 2 3 4, or 44) Following 
(Garofalakis, 1999), we use double circles to 
indicate an accept state and > to emphasize  the start 
state (a) of the automaton. 

 
 
 

 
 

 
Figure 2: Automaton for the RE 1*(22|234|44) 

4.1 Problem Statement 

The abstract definition of our constrained pattern 
mining problem is as follows. 
• Given: A database of sequences D, a user-

specified minimum support threshold, and a 
user-specified RE constraint R (or, 
equivalently, an automaton AR ). 

• Find: All frequent and valid sequential 
patterns in D. 

Thus, the objective is to efficiently mine patterns 
that are not only frequent but also belong to the 
language  of sequences generated by the RE R. 

4.2 The SPIRIT Algorithms  

Garofalakis et al. proposed a family of algorithms 
that uses the RE as a flexible constraint specification 
tool that enable users to focus on what he needs 
from the mining process (Garofalakis, 1999). Using 
an input parameter C to denote a generic user-
specified constraint on the mined patterns. The 
output of a SPIRIT algorithm is the set of frequent 
sequences in the database D that satisfy constraint C. 
The algorithmic framework is similar in structure to 
the general Apriori strategy of Agrawal and Srikant 
(Srikant, 1996). The candidate counting step is 
typically the most expensive step of pattern mining 
process and its overhead is directly proportional to 
the size of  Ck , Thus the goal of an efficient pattern 
mining strategy is to employ minimum support 
requirements and any additional user-specified 
constraint to restrict as much as possible the set of 
candidate k-sequences counted during the pass k. 
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The SPIRIT framework strives to achieve this goal 
by using two different types of pruning within each 
pass k. 
• Constraint-based pruning using a relaxation 

C′ of the user-specified constraint C; that is, 
ensuring that all candidate k-sequences in Ck  
satisfy C′. This is accomplished by 
appropriately employing C′ and F in the 
candidate generation phase. 

• Support-based pruning; that is, ensuring that 
all subsequences of a sequence s in Ck that 
satisfy  C′ are present in the current set of 
discovered frequent sequences F.  

Intuitively, constraint-based pruning tries to restrict 
Ck by (partially) enforcing the input constraint C, 
where as support-based pruning tries to restrict Ck  
by checking the minimum support constraint for 
qualifying subsequences. Note that, given a set of 
candidates Ck and a relaxation C′ of C, the amount 
of support-based pruning is maximized when C′ is 
anti-monotone (i.e. all subsequences of sequence 
satisfying C′ are guaranteed also to satisfy C′). This 
is because support information for all of the 
subsequences of a candidate sequence s in Ck   can 
be used to prune it. However, when C′ is not anti-
monotone, the amounts of constraint-based and 
support-based pruning achieved vary depending on 
the specific choice of C′. 

5 NEWSPIRIT: A NEW ALGORITHM 
FOR SEQUENTIAL PATTERN 
MINING WITH REGULAR 
EXPRESSION CONSTRAINTS 

In this section, the proposed algorithm for sequential 
pattern mining with constraint named, NewSPIRIT 
is described. NewSPIRIT scans the sequence 
database only once to build the sequence-pattern tree 
in the main memory and get the valid frequent 
sequences by traversing this tree using a standard 
depth-first search (DFS) manner.  

5.1 Sequential Pattern Tree Design 
and Construction 

The algorithm represents the discovered patterns in a 
tree structure called SP-Tree (sequential-pattern 
tree). This tree is growing progressively by the 
algorithm such that each valid sequence is 
represented in the tree with its support count. We 
assumes that the SP-Tree ( and all data structures 
used for the algorithm) completely fit into main 
memory, this is because the size of current main 
memories reaching gigabytes and still growing.  

Each sequence in the SP-Tree can be considered as 
either a sequence-extended sequence or an itemset-
extended sequence. A sequence-extended sequence 
is a sequence generated by adding a new transaction 
consisting of a single item to the end of its parent′s 
sequence in the tree. An itemset-extended sequence 
is a sequence generated by adding an item to the last 
itemset in the parent′s sequence, such that the item is 
greater than any item in that last itemset. For 
example, if we have a sequence sa = 〈 (a b )   a 〉, 
then   〈 (a b)  a  c 〉 is an extended sequences of sa but 
〈 ( a b )   ( a c ) 〉 is an itemset-extended sequence of 
sa. In our algorithm we extend this definition by 
using the interval time between adjacent elements in 
a pattern as a dimension for counting the support for 
each pattern. Fig. 3 shows a sample of SP-Tree, 
where each node has its sequence extension, the 
interval time between it and its parent , and the 
support count for this interval. Note that, itemset 
extension occurs when the interval time = 0, 
otherwise the extension will be sequence extension.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. SP-Tree ( Sequential Pattern Tree ) 
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5.2 The NewSPIRIT algorithm 

Fig. 4 depicts the algorithmic skeleton of the 
NewSPIRIT algorithm, using an input constraint C  
to denote a generic user-specified constraint on the 
mined patterns. The output of the NewSPIRIT is the 
set of frequent sequences in the database D that 
satisfy constraint C. The NewSPIRIT needs only one 
database scan to construct the SP-Tree which its 
sequences are valid with respect to the constraint C. 
Note that, the SP-Tree is built using constraint based 
pruning only, where the support count is become 
known after finishing the sequence tree building. 
After that the support based pruning ( that is, 
ensuring that all sequences are frequent ) is achieved 
by traversing SP-Tree in DFS manner. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: NewSPIRIT Algorithm 

5.3 SP-Tree Traversal 

The NewSIRIT traverses the sequence tree described 
above in a standard DFS manner to get all valid 
sequences with its support count. The support count 
is the minimum count from the nodes that represent 
this sequence ( i.e. from the last sequence extension 
for this sequence).  At each node n, the support of 
each sequence-extended child is tested. If the 
support of a generated sequence s is greater than or 
equal to minSup, we store that sequence and repeat 
DFS recursively on s. If the support of s is less than 
minSup, then we do not need to repeat DFS on s by 
the Apriori principle, since any child sequence 
generated from s will not be frequent (Srikant, 1996). 

If none of the generated children are frequent, then 
the node is a leaf and we can backtrack up the tree. 

6 EXPERIMENTAL RESULTS  

To evaluate the effectiveness and efficiency of the 
NewSPIRIT algorithm, we performed an extensive 
study of four algorithms: SPIRIT(L), SPIRIT(V), 
SPIRIT(R) and NewSPIRIT on many samples of 
data sets, with various kinds of sizes and data 
distributions. The implementation of these 
algorithms was done to compare between them at 
the same platform, and at the same environment. 
Detailed algorithm implementation is described as 
follows. 
- SPIRIT(L), SPIRIT(V), and SPIRIT(R) 

algorithms are implemented according to the 
description in (Garofalakis, 1999). 

- NewSPIRIT is implemented as described in this 
thesis . 

For the data sets used in our performance study, we 
use two samples of data sets from real database. We 
have obtained these samples of data sets from 
student database in AAST. The sequences are 
generated from the student course registration table 
which contain student-id, counse-id, and registration 
term. The Regular Expression constraint  are 
constructed from the course plan of a specified 
department. In these data sets the number of items 
were 70 item (Number of courses in the course plan 
in this department), while the number of sequences 
and its average lengths are :- 
- 1323 sequence with average length 47 for data 

set I 
- 253 sequence with average length 17 for data set 

II 
The testing result in figure 5  makes clear distinction 
among the algorithms tested, where it shows that our 
NewSPIRIT is much more efficient than SPIRIT(V), 
SPIRIT(R), and SPIRIT(L). The execution time of 
our NewSPIRIT is independent of min. support 
threshold where it constructs its SP-Tree based only 
on the Regular Expression constraint. With the 
above comprehensive performance study, we are 
convinced that NewSPIRIT is the clear winner 
among all the four tested algorithms. The other three 
algorithms (SPIRIT(L), SPIRIT(V), and SPIRIT(R) 
require many passes over the databases where they 
are based on GSP. GSP method that it bear three 
nontrivial, inherent costs which are independent of 
detailed implementation techniques. 
1- A huge set of candidate sequences could be 

generated in a large sequence database.  
2- Many scans of databases in mining.  

Algorithm : NewSPIRIT Mine sequential patterns with 
regular expression constraint using SP-Tree. 
Input : A transaction Database, D; minimum support 
threshold, min_sup; Regular expression Constraint C. 
Output  : The complete set of sequential patterns F 
Method :- 
- Read the regular expression constraint C and construct  
  the finite state automata 
- Create the root of the SP-Tree and label it as “Null” 
- Foreach sequence s in the database D 

• Foreach valid 
subsequence t 
from s  

- Parse the SP-Tree with the valid sequence 
              t , visit its nodes, and then insert the 
              remainder part of t that is not found in it.  

• End foreach 
- End Foreach 
- Traverse the SP-Tree to get the complete set of  
   sequential patterns where each path on the  
   SP-Tree is a sequence with support count at the  
   last node on this  path. 
-  Pruning the sequences which its support count <  
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3- The Aperiori-based method encounters 
difficulty when mining long sequential 
patterns.  
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Figure 5: Experimental Results 
 

Our NewSPIRIT require only one pass over the 
database, no candidate generation. It needs only a 
sufficient memory for SP-Tree which it is restricted 
by the regular expression constrant.  
Figure 6 shows the results of scalability test of the 
four algorithms on data set II. The database is 
growing to multiples of data set II, with min. support 
= 1 % . As shown in the figure, the times for all 
algorithms linearly scale with data set size. This is 
because the number of candidates generated by each 
algorithm is independent of the data set size. 
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Figure 6: Scalability test of the four algorithms on data set 
II, with min. support 1% 

7 CONCLUSION 

In this paper we introduce the problem of mining 
sequential patterns with constraints, and presented a 

new algorithm for sequential pattern mining with 
regular expression constraint (NewSPIRIT) that can 
efficiently find all frequent sequential patterns that 
satisfy a regular expression  constraint. NewSPIRIT 
mines the set of all sequential patterns without 
generating candidates or sub-databases and achieve 
our goal by scanning the database only once. 
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