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Abstract:  Mining association rules is a well-studied problem, and several algorithms were presented for finding large 
itemsets. In this paper we present a new algorithm for incremental discovery of large itemsets in an 
increasing set of transactions. The proposed algorithm is based on partitioning the database and keeping a 
summary of local large itemsets for each partition based on the concept of negative border technique. A 
global summary for the whole database is also created to facilitate the fast updating of overall large 
itemsets. When adding a new set of transactions to the database, the algorithm uses these summaries instead 
of scanning the whole database, thus reducing the number of database scans. The results of applying the 
new algorithm showed that the new technique is quite efficient, and in many respects superior to other 
incremental algorithms like Fast Update Algorithm (FUP) and Update Large Itemsets (ULI). 

1  INTRODUCTION 

Data mining is the process of discovering potentially 
valuable patterns, associations, trends, sequences 
and dependencies in data [Agrawal et al., 
1993][Agrawal et al., 1994][Agrawal and Yu 1998]. 
Mining association rules is one of the vital data 
mining problems. An association rule is a relation 
between items in a set of transactions. This rule must 
have a statistical significance (support) with respect 
to the whole database and its structure must have a 
semantic prospective (confidence), as will be stated 
in more details later in section 2.  Apriori algorithm 
[Agrawal et al., 1994] is the first successful 
algorithm for mining association rules. It introduces 
a method to generate candidate itemsets Ck in pass k 
using only large itemsets Lk-1 in the previous pass. 
Direct Hashing and Pruning (DHP) algorithm [Park 
et al., 1997] is the next algorithm for efficient 
mining of association rules. It employs a hash 
technique to reduce the size of the candidate 
itemsets and the database The Continuous 
Association Rule Mining Algorithm (CARMA) 
[Hidber 1998] allows the user to change the support 
threshold and continuously displays the resulting 

association rules with support and confidence 
bounds. 
 
After some Update activities, new transactions are 
added to the database. When new transactions are 
added to the database, insignificant rules will be 
discarded. Similarly new valid ones that satisfy the 
statistical and the semantic constraints will be 
included. The Adaptive algorithm [Sarda and 
Srinivas 1998] is not only incremental but also 
adaptive in nature. By inferring the nature of the 
incremental database, it can avoid unnecessary 
database scans. The Fast Update algorithm (FUP) is 
an incremental algorithm which makes use of past 
mining results to speed up the mining process 
[Cheung et al., 1996]. Update Large Itemsets 
algorithm (ULI) [Thomas et al., 1997] uses negative 
borders to decide when to scan the whole database. 
Recently Fast Online Dynamic Association Rule 
Mining (FODARM) algorithm [Woon et al., 2002] is 
introduced for incremental mining in electronic 
commerce. It uses a novel tree structure known as a 
Support-Ordered Trie Itemset (SOTrieIT) structure 
to hold pre-processed transactional data. Another 
algorithm for Online Generation of Profile 
Association Rules is introduced in [Aggarwal et al., 
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2002].  A New approach to Online Generation of 
Association Rules [Aggarwal and Yu 2001] 
introduces the concept of storing the preprocessed 
data in such a way that online processing  may be 
done by applying a graph theoretic search algorithm 
whose complexity is proportional to the size of the 
output . 
The algorithm presented in this paper NBP: Negative 
Border with Partitioning is based on partitioning the 
database, keeping a summary for each partition. This 
summary includes the locally large itemsets, their 
negative border and any other previously counted 
itemset in the partition. Another global summary 
including the large and negative border itemsets is 
also created for the whole database. When adding a 
new set of transactions to the database, the NBP 
applies the Update Large Itemsets (ULI)-like 
algorithm [Thomas et al., 1997] that uses these 
summaries instead of scanning the whole database, 
thus reducing the number of database scans to less 
than one scan. 
 
The rest of the paper is organized as follows. The 
next section gives a description of the association 
rules mining (ARM) problem while section 3 
presents the negative border with partitioning 
algorithm. Section 4 describes performance analysis 
of the proposed algorithm in comparison with some 
related algorithms. Finally conclusions are discussed 
in Section 5. 

2  PROBLEM DESCRIPTION 

The problem of association rules mining is described 
in the following two subsections. 

2.1 Mining of association rules 

The problem of mining association rules is described 
as follow: let the universal itemset, I = {i1, i2,.., im } 
be  a set of literals called items , D be a database of 
transactions, where each transaction T contains a set 
of items such that T  ⊆  I. An itemset is a set of items 
and k-itemset is an itemset that contains exactly k 
items. For a given itemset X⊆ I and a given 
transaction T, T contains X if and only if X ⊆ T.  
The support count σx of an itemset X is defined as 
the number of transactions in D containing X. An 
item set is large, with respect to a support threshold 
of s%, if σx ≥ |D| × s, where |D| is the number of 
transactions in the database D. An association Rule 
is an implication of the form “X ⇒Y” where X, Y ⊆ I 

and X ∩ Y =∅. The association rule X ⇒Y holds in 
the database with confidence c% if no less than c% 
of the transactions in D that contain X also contain Y.  
The rule X⇒ Y has support s% in D if  σx∪y = |D| 
×s%. For a given pair of confidence and support 
thresholds, the problem of mining association rules 
is to find out all the association rules that have 
confidence and support greater than the 
corresponding thresholds. This problem can be 
reduced to the problem of finding all large itemsets 
for the same support threshold [Agrawal et al., 1993].   

2.2 Update of association rules 

 After some Update activities, new transactions are 
added to the original database D. When new 
transactions are added to the database, an old large 
itemset could potentially become small in the 
updated database. Similarly, an old small itemset 
could potentially become large in the new database.  
Let ∆+ be the set of newly added transactions 
(increment database), D’ be the updated database 
where D’ = ( D ∪  ∆+), σx

’ be the new support count 
of an itemset X in the updated database  D’, LD’ be 
the set of large itemset in D’, Ck is the set of 
candidate k-itemsets in  D and δx be the support 
count of an itemset X in the increment database ∆+. 

3  THE PROPOSED ALGORITHM 

In this section, we develop an efficient algorithm for 
updating the association rules when new transactions 
are added to the database. The proposed algorithm 
uses negative borders [Thomas et al., 1997]. The 
intuition behind the concept of negative border is 
that, for a given set of large itemsets L, the negative 
border NBd(L) contains the closest itemsets that 
could be large too. 
 
The list of symbols that used in our algorithm is 
shown in Table 1. 
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Table 1: Symbols of the proposed algorithm NBP. 
Symbol Definition 

q Partition size 
|pi| Cardinality of partition pi  

Lpi Large itemset of partition pi  

NBd(Lpi) Negative border itemset of 
partition pi  

NBd(LD) Negative border itemset of 
original database D 

NBd(LD’) Negative border itemset of 
updated database D’ 

n Total Number of partitions  

3.1 Algorithm Description 

The new algorithm can be described in two main 
steps. 
 
Preprocessing step 
 
In this step we divide the original transactional 
database into number of partitions with size q. For 
simplicity we assume q as a multiple of | ∆+| (for 
generality q can be of any size). Total number of 
partitions is assumed to be n. In the preprocessing 
step we evaluate for each partition pi; i =1, 2... n the 
large itemset Lpi  with its corresponding negative 
border itemset NBd(Lpi). Each itemset in Lpi or 
NBd(Lpi) is stored with its corresponding support 
count in the partition pi. Also we compute the large 
itemset LD and negative border itemset NBd(LD) for 
the whole database D. 

 
The size of large and negative border itemsets for all 
partitions may be big enough not to be fitted into the 
computer memory due to memory limitations, so we 
suggest adding another support threshold ls “local 
support threshold” as a fraction of the global support 
threshold s which limits the size of negative border 
itemsets for all partitions. Itemsets with support 
count less than ls×s×|pi|  are discarded from the 
negative border itemset of the partition pi. The large 
itemsets for all partitions is kept unchanged as they 
contain significant information of most frequent 
itemsets. 
The Pseudo code of preprocessing step is described 
in both Figures 1and 2. 
 
 
 

 
Function preprocessing (D, n,q) 
Divide the original database into n partitions, each 
partition with size q. 
for i = 1 to  n do 

piL = large-itemset for partition  pi 
NBd(Lpi)=Negtiveborder_gen (Lpi) 

LD = large-itemset for the whole database 
NBd(LD) = Negtiveborder_gen (LD) 

 
Figure 1: A high-level description of preprocessing step 

 
Function Negtiveborder_gen (L) 
Split L into L1 , L2,.., Lr where r is the size of the 
largest itemset in L 
For all k=1, 2, ….,r do 
    Compute Ck+1 using apriori-gen(Lk)  
//Apriori[Agrawal et al., 1994] 
L∪NBd(L) = Ui=2,….,r+1 Ck ∪ I1  , where I1 is the set 
of 1-itemset. 
 

 
Figure 2: The of Negativeborder_gen function. 

 
Updating Step 

 
In this step we have the incremental database ∆+, set 
of n partitions with their corresponding large and 
negative border itemsets. With the assumption that 
partition size q is multiple of the incremental 
database size, ∆+ is added either to the last partition 
or to a new partition. The next step is to update the 
large itemsets Lpn and negative border itemsets 
NBd(Lpn) of the partition pn using NBP(pn, ∆+, pn) 
function. If ∆+ is added to a new partition evaluate 
Lpn and NBd(Lpn)  using Apriori as a level wise 
algorithm (Apriori [Agrawal et al., 1994] generates 
only candidate itemsets, we get the negative border 
itemsets by applying the function 
Negtiveborder_gen(L) to the resulting large itemset 
from Apriori algorithm . 
 
After updating the partitions, the next step is to 
update LD and NBd(LD ) of the whole database to 
obtain the updated large itemset LD’ and updated 
negative border itemset NBd(LD’). First we compute 
the large itemset L∆+ and negative border itemset 
NBd(L∆+) of ∆+, simultaneously we count the 
support for all itemsets t ∈LD ∪NBd(LD) in ∆+. If an 
itemset t∈  LD or NBd(LD) has minimum support in 
D’, then t is  added to LD’ otherwise it is added to 
NBd(LD’). For each itemset x∈ L∆+ ∪ NBd(L∆+)  , x ∉ 
LD and x∉ NBd(LD) add x into NBd(LD’).The change 
in LD could potentially change  NBd(LD) also. 
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Therefore some itemsets may be missed in both LD’ 

and NBd(LD’). We define two sets Large_to_Large 
(set of itemsets that moved from LD to LD’) and 
Negative_to_Large (set of itemsets that moved from 
NBd(LD) to LD’). Join Negative_to_Large with 
Large_to_Large to get new set Self_Join_Set, using 
the function join (Lk-1) which join a set of large 
itemsets with length (k-1) with itself to get Ck a set 
of candidate itemsets with length k. the join (Lk-1) 
function is described in Figure 3. 
 
function  join (Lk-1) 
Ck = Φ 
For each  X , Y ⊂ Lk-1 do 

if   X.item1 = Y.item1,..,X.itemk-2 = Y.itemk-2 , 
X.itemk-1 < Y.itemk-1  then 

Z = X.item1, X.item2,.., X.itemk-1, Y.itemk-1  
Insert Z into Ck 

//pruning step 
For all itemsets c ∈  Ck do 
 For all (k-1) subsets s of c do 
  if (s∉  Lk-1) then   
                                 delete c from Ck 
Return Ck 
 

Figure 3: High Level Description of the join function 
 
For each itemset t ∈  Self_Join_Set, check all 
partitions pi, i = 1, 2, …, n. If t is found at the large 
itemset Lpi or negative border itemset NBd(Lpi), then 
update the support count of t. If t is not found in 
either Lpi or NBd(Lpi) then scan partition pi to get the 
support count of t. Scanning a partition is done once 
for all itemsets need to be scanned in this partition. 
This means, we only need maximum of one scan for 
the whole database (all partitions) at worst case. In 
general, the proposed algorithm needs a fraction of a 
scan to update the large and negative border itemsets 
for the updated database. We use the hash tree 
structure (Apriori [Agrawal et al., 1994]) to get the 
support count of a set of itemsets within this 
partition. If the support count of t ≥ the support 
threshold of D’, then add t to LD’; otherwise add t to 
NBd(LD’).  
The description of the NBP (D, ∆+, Partitions) 
function is described Figure 4. 
 
Function NBP ( D, ∆+, Partitions) 
LD’= Ф , NBd(LD’)= Ф, Large_to_Large = Ф and 
Negative_to_Large = Ф // initialization 
Compute L∆+, NBd(L∆+)  
If | pn | < q  then 

Add  ∆+ to pn   and update the partition pn 

else  n++, Add  ∆+ to the new partition ,Compute 
Lpn, NBd(Lpn)  
For each itemset x ∈ LD 
       if (σx +δx ≥  s * (|D| +| ∆+|) then 
//s :minimum support threshold 
          add x to both  LD’ and Large_to_Large sets 
      else add x to NBd(LD’)  
For each itemset x ∈NBd(LD) 
      if (σx +δx ≥  s * (|D| +| ∆+|) then        
           add x to both  LD’ and Negative_to_Large sets 
     else     add x to NBd(LD’) 
For each itemset x ∈ L∆+ ∪ NBd(L∆+)  , x∉  LD and 
x∉  NBd(LD) do  
       add x to NBd(LD’) 
if LD ≠ LD’then  

ULNBd(LD’,NBd(LD’), Large_to_Large, 
Negative_to_Large, Partitions) 

 
Figure 4: Negative Border with Partitioning algorithm 

using function NBP ( ) 
The pseudo code of the function ULNBd () is given 
in Figure5. 
 
ULNBd (LD’,NBd(LD’),Large_to_Large, 
Negative_to_Large, Partitions) 
// generate all possible candidates “Self_Join_Set” 
//for the set of large items in the updated database D’ 
Self_Join_Set1= Ф      
// initialize Self_Join_Set of length1 to be empty 
For k = 1, 2, ….,ℓ do  
 //ℓ:size of the largest itemset in Negative_to_Large  

LLk= set of itemsets with length k from 
Large_to_Large 
NLk = set of itemsets with length k from 
Negative_to_Large  
Self_Join_Setk+1 = join(LLk ∪  NLk  ∪  
Self_Join_Setk) 

For i=1, 2, …, n do     // n: number of partitions  
pi _itemsets= Ф // pi _itemsets: set of items to 
be scanned within a partition pi 

For each itemset t∈  Self_Join_Set do 
σt

’=0         // initialize support count of itemset t 
For i=1, 2, …, n do                        
// search all partitions for the support count of 
all elements found in Self_Join_Set 

if t  ∈ Lpi  then 
 σt

’= σt
’+ support count of t in Lpi 

else  if  t ∈ NBd(Lpi) then  
σt

’= σt
’+ support count of t in NBd(Lpi) 

else     add t to  pi _itemsets 
For i=1, 2, …, n do 

if pi _itemsets ≠ Ф  then  
Scan pi to get support count of each itemset 
 x ∈ pi _itemsets   
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//scanning using hash tree structure // (Apriori [Agrawal et al., 
1994]) 

For each itemset t ∈  Self_Join_Set do 
//Update support count of t after scanning all 
//partitions 

if σt
’  ≥ minsup*(|D| +| ∆+|)  then  
 add t to LD’ 

      else   add t to NBd(LD’) 
 

Figure 5: Update Large and Negative Border of D’ using 
ULNBd () function 

 
The number of scans over the whole database 
needed for NBP algorithm is varying from 0 to 1. 
The zero scan is obtained when the information 
needed after adding the increment database is found 
in either the global summary of the whole database 
or the local summary in each partition. The one scan 
is occurred at the worst case when the algorithm 
needs to scan all partitions (whole database) to get 
the count of some itemsets. In general, the algorithm 
needs a fraction of a scan to reach the final results 

4  PERFORMANCE ANALYSIS  

In this section, the proposed algorithm is tested 
using several test data to show its efficiency in 
handling the problem of incremental mining of 
association rules. 

4.1 Generation of synthetic data 

In this experiment, we used synthetic data as the 
input database to the algorithms. The data are 
generated using the same technique as introduced in 
[Agrawal et al., 1994], modified in [Park et al., 
1997] and used in many algorithms like [Thomas et 
al., 1997] and [Cheung et al., 1996]. Table 2 gives a 
list of the parameters used in the data generation 
method.  
 

Table 2: Parameters for data generation 
|| D  Number of transactions in original 

database 
|| 'D  Number of transactions in the 

updated database 
|| +∆  Number of added transactions 

|T| Mean size of transactions 
| I | Mean size of potentially large 

itemsets 
| £ | Number of potentially large itemsets 
N  Number of items 

We use the notation Tx.Iy.Di+d , and modified  from 
the one used in [Agrawal et al., 1994] , to denote an 
experiment using databases with the following sizes 
|D| = i thousands, ∆+=k thousands, |T|= x, and |I|=y . 
In the Experiments we set N=1000 and |£|=2000.The 
increment database is generated as follow: we 
generate 100 thousand transactions, of which (100-
d) thousands is used for the initial computation and d 
thousands is used as the increment, where d is the 
fractional size (in percentage) of the increment. 

4.2 Experimental Results 

In each experiment, we run the proposed algorithm 
NBP on the previous test data.  We compare the 

execution time of the incremental algorithm NBP 
with respect to running Apriori on the whole data 

set. The proposed algorithm is tested using the 
settings T10.I4.D100+d. The support threshold is 

varying between 0.5% and 3.0%.  For simplicity we 
assumed that the partition size q is a multiple of the 

size of the increment database | ∆+| .We run the 
algorithm for q = 1, 2, 5, 10 multiples of | ∆+| and d 

= 1% as a fraction from the whole database size. 
Figure 6 shows the speed up of the incremental 
algorithm over Apriori with support threshold is 

varying between 0.5% and 3.0%. It can be shown 
that when applying the NBP algorithm on the test 

data it achieves an average speed up ranging from 6 
to 67 in comparison with Apriori 

algorithm.
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Figure 6: Performance Ratio of NBP at ∆
+
 = 1% 

 
Figures 7 and 8, show the experimental results when 
applying the new algorithm NBP on the same test 
data but with d is 2% and 5% respectively. The 
support threshold is varying between 0.5%and 3.0% 
in both experiments. It can be concluded from 
Figure 7 that the proposed algorithm has an average 
speed up ranging from 4 to 37 in comparison with 
Apriori algorithm. From Figure 8 the NBP algorithm 
achieves an average speed up ranging from 2 to 14. 
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Figure 8: Performance Ratio of NBP at ∆
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From Figures 6, 7 and 8, it is noticed that the 
proposed algorithm shows better performance for 
high support than low support.  At high support 
thresholds, the possibility to get new large itemsets 
from the original negative border is low so the 
searching time within the partitions’ large itemsets 
and negative border itemsets is small. At low 
support thresholds, there is a high probability of 
getting more new large itemsets immigrating from 
the set of negative border to the set of large itemsets. 
This increases the possibility to scan most partitions 
causing the increase of execution time. Also, the 
speed up of the proposed algorithm is higher for 
smaller increment sizes since the new algorithm 
needs to process less data. It can be shown that the 
NBP algorithm achieves better performance when 
the partition size is five times of the increment 
database ∆

+
 and the size of increment database is 1% 

of the whole database. 
 

4.3 Comparisons with FUP 

 FUP may require O (k) scans over the whole 
database where k is the size of maximal large 
itemsets, while the new NBP algorithm needs a 
fraction of a scan to update the results. In this 
experiment, we run the proposed algorithm NBP on 
the previous test data.  We compare the execution 
time of the incremental algorithm NBP with respect 
to running FUP on the same data set. For support 
threshold varying between 1.0% and 3.0%, and | ∆

+
| 

= 1 % Figure 9 shows that the proposed NBP 
algorithm has an average speed up ranging from 6 to 
67 while FUP algorithm achieves a speed up from 2 
to 7 against Apriori algorithm. 
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Figure 9: Speed up of NBP against FUP 

 

4.4 Comparisons with ULI 

    It is costly to run ULI at high support thresholds 
where the number of large itemsets is less and at low 
support threshold the probability of the negative 
border expanding is higher so ULI may have to scan 
the whole database. We run the proposed algorithm 
NBP on the previous test data and compare the 
execution time of the incremental algorithm NBP 
with respect to running ULI on the same data set.It is 
concluded from Figure 10 that for support threshold 
varying between 0.5%and 3.0%, and | ∆

+
| = 1 % The 

NBP algorithm has an average speed up ranging 
from 6 to 67 while ULI algorithm achieves a speed 
up from 5 to 20 against Apriori algorithm. 
 

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

280



0
10
20
30
40
50
60
70

3 2.5 2 1.5 1
0.7

5 0.5

Support Threshold (%)

Sp
ee

d 
U

p

NBP

ULI

 
Figure 10: Speed up of NBP against ULI 

5  CONCLUSIONS 

        In this paper a new algorithm NBP: Negative 
Border with Partitioning is presented for 
incremental mining of association rules. The 
proposed algorithm is based on partitioning the 
database, keeping a summary for each partition. 
Another global summary including the large and 
negative border itemsets is also created for the 
whole database. When adding a new set of 
transactions to the database, the NBP applies a ULI-
like algorithm that uses these summaries instead of 
scanning the whole database, thus reducing the 
number of database scans to less than one scan. 
From algorithm discussion and experimental results, 
the following points can be concluded: 
 

1. The new algorithm NBP, can efficiently 
handle the problem of incremental mining 
of association rules. NBP shows better 
performance than the algorithms of FUP 
and ULI. 

2. The number of scans over the whole 
database needed for NBP algorithm is 
varying from 0 to 1.  

3. NBP achieves high speed up from 6 to 67 
for support threshold varying from 0.5 to 
3.0 against the Apriori algorithm. 
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