
HETEROGENEOUS INTEGRATION OF SERVICES INTO AN
OPEN, STANDARDIZED WEB SERVICE

A Web Service-Based CSCW/L System

Thorsten Hampel, Jörg Halbsgut, Thomas Bopp
Heinz Nixdorf Institute

Computer Science
University of Paderborn

 Fürstenallee 11, 33102 Paderborn, Germany

Keywords: web services, e-learning, sTeam, WSDL, SOAP, CSCW, CSCL

Abstract: There are currently a wide variety of services that are difficult or impossible to use because their interfaces,
protocols and programming languages are either unknown or proprietary. In the future, this problem will be
compounded by the growing range of services available, especially in the area of e-learning, and not least by
the increasing number of service consumers (clients) and the resulting heterogeneity in terms of applications
and protocols. The web service architecture presented in this paper uses the successfully applied open-
source sTeam system to illustrate how arbitrary services can be integrated into a heterogeneous web service.
A flexible service structure of this kind is designed to create standardized interfaces allowing new web-
based interoperability.

1 INTRODUCTION

The rapidly growing number of web-based services
offers the promise of an ever increasing variety of
potential applications. Unfortunately, this promise
cannot be kept because unknown or proprietary
interfaces, protocols and programming languages
make such services difficult or even impossible to
use. The growing number of different applications
and protocols on the client side seriously compounds
the problems caused by this lack of interoperability.

A flexible and integrated service structure with
standardized interfaces is needed if the various
existing heterogeneous systems are to continue to be
accessible to a wide range of users with highly
diverse application systems. Such an open service
infrastructure ensures high scalability with respect
to future service requirements and, where possible,
global use of the services offered.

The interoperability of heterogeneous services is
especially necessary in the area of cooperative
knowledge organization. The available systems,
which differ in terms of the quality of their
knowledge organization or the scope of the
information considered, should not continue to exist
separately from one another. Integrating these
services into a single system opens up completely

new use options. This is illustrated by the following
scenario.

The search for a specific document using a
keyword is a service already provided by various
data sources. Such a search must, however, be
conducted in each of these data sources separately.
In the worst-case scenario, it also involves using
different applications or devices. Integrating such
search services will enable an arbitrary client to
make a single, simple search request to the overall
system. This will yield a search result that includes
all the results of existing data sources.

For a number of years now, work has been under
way in Paderborn to design and test various
architectures for cooperative knowledge
organization and e-learning (e.g. Hampel & Bopp,
2003). Developing new forms of web-based
interoperability and standardization is a specific
prerequisite for creating an open-source architecture
capable of integrating a variety of application
concepts. Conceptually, our efforts to build such an
infrastructure are based on the idea of cooperative
knowledge spaces (cf. Hampel & Keil-Slawik,
2003).

Cooperative virtual knowledge spaces combine
synchronous and asynchronous forms of cooperation
for administering hypermedia documents. Users

182
Lüken M. (2004).
INTRODUCING AN OPERATIONAL AND TECHONOLOGICAL E-COMMERCE FRAMEWORK FOR EUROPEAN SMES - Designing regional and
interegional e-commerce zones for SMEs in four Less Favoured European Regions (LFRs) based on Request Based Virtual Organisation (RBVO)
concept.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 182-189
DOI: 10.5220/0002632101820189
Copyright c© SciTePress

(learners) meet in virtual knowledge areas, where
they can use web-based facilities to store and
actively process documents by obtaining shared
views of them, by exchanging, arranging, mutually
annotating and linking them. This form of open and
cooperative handling of material is supported by
authentication processes such as user groups and
access authorization.

Here, the principle of self-administration allows
specific knowledge structures to be created for
groups and individual users and enables virtual
communities to be built on a self-organized basis.
Cooperative knowledge spaces are currently
provided by the open-source sTeam system.

The sTeam system’s architecture has already
been presented at a number of conferences (cf.
Hampel & Keil-Slawik, 2003).

The functionality offered by sTeam can be used
with different interfaces. These include various
standard protocols that have been implemented on
the server side within the sTeam kernel. E-mail
protocols (e.g. POP3, IMAP, SMTP) and file-
transfer protocols (e.g. FTP, WebDAV) are
supported. In addition, the COAL protocol (cf.
sTeam, 2003) allows communication with the sTeam
server. This enables, for instance, methods to be
directly executed on sTeam objects. The
implementation of the protocol is available in the
languages Pike and Java.

An Internet browser can also be used to access
sTeam via a web interface, the available data objects
being presented to the user in graphical or text form.

1.1 Shortcomings of the Existing
System

All the above-mentioned protocols offer a
standardized but highly specialized form of
communication with the sTeam server. The familiar
e-mail protocols can be used only with the specified
e-mail applications, and FTP programs are needed to
transfer data via the FTP interface. It is, however,
conceivable that application developers might wish
to access e-mails in sTeam from their own software,
which was developed for a specific application area.
To make this possible, the e-mail protocols would
have to be implemented on the client side. Such an
implementation, though awkward, is possible. If,
however, the application is to access objects in
sTeam in order to manipulate them, this is not
possible using the above-mentioned standard
protocols. The only available alternative is to use the
COAL interface. Here, however, recourse must be
had to the existing Java API, meaning that the
application is again tied to a single programming
language, or application developers must

reimplement COAL in the language they use (e.g.
C#). In most cases, though, the additional effort this
involves is unjustifiable. Also, the advantages that
might come with using a development environment
(IDE) can no longer be exploited because such
environments do not support COAL.

Nor is COAL an unambiguously defined
description language – a fact that gives rise to two
disadvantages: it is not possible to automatically
connect a client to sTeam or to generate client
classes using an IDE, and COAL fails to give any
information about the service functionality provided.

The sTeam server does have a partially modular
design, i.e. modules written in Pike can be added to
extend the functionality. But it cannot be extended to
include external programs. The sTeam kernel cannot
access concurrently available programs in other
languages in order to make use of them.

Given these shortcomings, sTeam can be
described, in summary, as a relatively closed,
monolithic system with a proprietary interface.

The shortcomings of the Paderborn sTeam
environment apply to practically all available CSCW
and CSCL systems. Their architecture, mostly
consisting of monolithic servers, makes them
difficult to integrate flexibly into web services. This
means that such systems have problems taking into
account all possible needs and use constellations in
the interfaces and functionality they provide. This
dilemma can only be resolved by integrating
different services and applications.

However, for the reasons mentioned above, it
has not yet proved possible to combine sTeam with
other services or applications to create an integrated
overall knowledge management system. The
following scenarios attempt to show, by reference to
the sTeam system, why such integration is needed
and give initial instances of the use of the web
service architecture presented in this paper.

1.2 Scenarios and Requirements

Using cooperative knowledge management, sTeam
enables different types of documents to be
administered. These include text documents, which
may be annotated, or e-mails. For instance, a user
engaged in writing a research paper wishes to make
a search using a keyword in his/her own and in other
sTeam documents. But the search is to be extended
to external texts and web pages as well as to the
university’s literature database. The results of the
search should then be available in the user’s own C#
application, running on his/her Windows laptop, for
use as references in the paper being written. Finally,
it should be possible to annotate selected references

HETEROGENEOUS INTEGRATION OF SERVICES INTO AN OPEN, STANDARDIZED WEB SERVICE - A WEB
SERVICE-BASED CSCW/L SYSTEM

183

and make them available for subsequent work or to
other sTeam users.

The system needed to perform these tasks must
be able not only to conduct a search on sTeam but,
parallel to this, to access other services, e.g. an
Internet and library search. On completion of the
search, the user/client application should be supplied
with a normalized search result that is compatible
with the C# application. The system should also be
capable of integrating potentially annotated search
results in sTeam in the form of structured data.

Time-scheduling and calendar functions are also

important in a system employed by several users
cooperatively, e.g. to work jointly on an object for a
specific deadline using the whiteboard provided by
sTeam, or for a real meeting at an appointed time. In
most cases, however, users are unwilling to depart
from their traditional time-scheduling applications
because these are also used in other contexts.
Changing from one time-scheduling system to
another would be time-consuming and lead to
synchronization errors. It is therefore a good idea to
enable the time-scheduling system currently
employed by the user to access the cooperative
system and use it to make appointments with other
users.

sTeam does not currently support time
scheduling that may have to be synchronized with
other users. If the sTeam kernel is extended to
include calendar and time-scheduling functions,
standardized interfaces must be provided to ensure
the interoperability with arbitrary time-scheduling
systems. The same applies in cases where, parallel to
sTeam, the knowledge management system is
extended to include a centralized time-scheduling
system.

The above scenario is an example of how
existing cooperative systems like sTeam could also
benefit from cooperation with other services, e.g. a
time-scheduling system. This would enable the
scope of the required functionality within a system,
which is basically already available, to be drastically
reduced.

Consideration of these scenarios yields a wide

range of requirements that must be met by an
integrated overall system consisting of different
services for cooperative knowledge organization and
e-learning.

A key issue here is the standardized integration
into the system of various client types that differ in
terms of the programming language used, the
transmission protocols available, performance,
hardware resources and usability. A mobile phone
running a Java application has nothing in common
with a C# application on a desktop computer. But in

both cases the same services should be usable from
the applications. These services, in turn, should be
part of a complex service structure with diverse
functionalities.

Besides supporting specialized standard
protocols for e-mail and file transfer (POP3,
WebDAV, ...), the desired system must also be able
to meet changing requirements. On the server side,
this includes the uncomplicated and swift
implementation of desired functionalities and the
extension and modification of existing services. On
the client side, the services provided by the system
should be easy to use. As in the case of the service
provider, this involves extending existing
applications or completely redesigning applications
based on the given interfaces.

2 GENERAL SOLUTION

A web service (WS) is particularly well-suited for
meeting the described requirements.

The required web service is a system of
distributed service components, differing in terms of
the hardware and software they use, which are made
available to service consumers (clients) via the
Internet using different protocols and message
formats. To this end, the available services are
encapsulated by an interface. This must be
standardized and self-describing in order to achieve
the greatest possible interoperability. Clients may
take any form, e.g. a PC, a PDA, a software
application or even a service provider itself. The
client must merely connect to the WS’s interface and
a corresponding standardized message transfer
format. The efficient development of client
applications and a flexible service structure must
also be ensured, with the option of integrating new
services and adapting existing ones.

As part of a system with these features, sTeam is
integrated with any other desired services to create a
heterogeneous web service. Such an architecture is,
of course, highly portable, which means that
different CSCW/L systems could be integrated in the
same way as the sTeam system.

The architecture’s highly modular design also
offers the advantage of load balancing, with the
option of establishing individual services on
different servers. “Outwardly”, however, the web
service always appears as a uniform, integrated
service. This is illustrated in Figure 1.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

184

Figure 1: Webservice

3 ARCHITECTURE

The architecture presented here is designed to
implement a web service for cooperative knowledge
organization. It contains sTeam as a service kernel
component. It is shown which concrete technologies
are needed to implement this web service, taking
into account the requirements mentioned in Section
2 (General Solution). It is also clearly demonstrated
which fundamental design decisions must be taken
based on the desired interface functionalities.
Consideration is further given to important aspects
such as security and interoperability. The aim is to
present an architecture that serves as a model for the
integratability of different existing web-based
systems into a web service architecture.

3.1 Architecture Model

The web service can be broken down into several
main components. These include the application
server and service provider, responsible for the
service logic. For communication purposes, the
SOAP technologies (cf. W3C, 2000) and the
corresponding protocols for accessing subservices
are needed, in this case COAL for sTeam.

This reflects both a logical view of the system
and its concrete technical implementation. The
concrete example of the sTeam system is used below
to demonstrate the conversion of a monolithic
CSCW system into a web service architecture. With
certain minor restrictions, this approach is clearly
portable to a whole series of web-based system
solutions.

3.1.1 Application server

The application server contains the service
applications (service providers). It receives requests
made to the web service from “outside”, i.e. from
client applications. These service requests cause the
server to trigger the service providers with the
desired functionality. Potential results are then
returned to the requesting client.

Apache’s open-source application- and web-
server Tomcat is an obvious choice here. It is
implemented in Java and offers various options for
executing Java applications on the server side. In the
architecture presented here, the service providers are
implemented by servlets inside Tomcat.

3.1.2 Service providers

The logic of the individual service authorities is
implemented inside the service providers. The entire
web service can be built from an arbitrary number of
service providers. This offers the advantage of
extending the web service’s functionality simply by
adding a new service, without affecting existing
components. The web service’s design is thus
entirely modular. Which functions are integrated
into a single service provider is a matter of choice
and remains a design decision (see also Section 0).

The number of service providers thus constitutes
the directly usable “service layer”. By contrast, there
exists a further layer of “subservices” that is used by
the service layer. sTeam is an example of a
subservice. The individual subservices can be based
on arbitrary technologies, but they must be
encapsulated by a service provider in order to
integrate them into the web service and thus make
them usable. The service provider uses a suitable
protocol to access the subservice.

The various services are implemented in Java
because they are executed inside the Tomcat server
as servlets (see Section 0).

HETEROGENEOUS INTEGRATION OF SERVICES INTO AN OPEN, STANDARDIZED WEB SERVICE - A WEB
SERVICE-BASED CSCW/L SYSTEM

185

Figure 2: Web Service Architecture

3.1.3 sTeam as a subservice of the service
providers

In this architecture, the sTeam server functions as a
subservice of the service providers. This means that
the functions of sTeam are available to the service
providers via the COAL protocol. Outwardly, then,
sTeam is completely encapsulated by one or more
providers. The extent to which sTeam is used
depends on the logic of the individual services. The
possibilities range from the service making no use at
all of sTeam to the work being completely
outsourced to the sTeam server. In this case, the
service provider would merely be used to “pass on”
the service requests. Section 0 takes a systematic
look at the different ways of distributing and shifting
the service logic over the two above-mentioned
layers. By integrating an existing system like sTeam
as a subservice of a service provider, all the sTeam
system’s functionality can be used in combination
with arbitrary other services. Already developed and
tested parts of the sTeam system can then be used
via access layers encapsulated by the web service.

3.1.4 Persistence layer

Another web service component is the database
needed by sTeam. This could also be used jointly by
the service layer and other subservices. It is, of
course, possible to install additional databases.

3.1.5 Communication protocols

The SOAP protocol is always used for
communication between the clients and the web
service/service providers. By contrast, a service
provider uses a suitable protocol to access a

subservice. In the case of the subservice sTeam,
this would be COAL.

SOAP is particularly well-suited for

communication between the web service and the
calling applications. As an XML protocol, SOAP
enables remote methods to be called – in this case
the functions of the service providers – irrespective
of the programming language in which the client
application or the service has been programmed.
This is a basic advantage in comparison to other
technologies for web services, e.g. Java RMI or
CORBA. SOAP is specified in (W3C, 2000) and
realized in various open-source or freely available

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

186

implementations for a large number of programming
languages.

An example of an API that supports the

implementation of web services based on SOAP and
WSDL is Apache Axis (Apache Software
Foundation, 2003). This API can be used to generate
JAVA methods and classes from a WSDL
document. The generation and sending of messages
conforming to SOAP is encapsulated by the API’s
JAVA methods, making it very easy to do and
promising to help avoid programming errors. In
addition, it is possible to automatically generate a
WSDL document from an existing server
implementation or JAVA-interface and data-type
definition.

When working with WSDL and SOAP,
efficiency can be improved by using so-called “web
service toolkits”. Examples of such products can be
found in (Borland 2003, Systinet 2003, IBM 2003
and Sun Microsystems 2003). They can be
integrated into commonly used development
environments and allow the generation of WSDL
documents and the corresponding client and server
implementations based on SOAP within the usual
IDE, e.g. Netbeans, Eclipse or JBuilder. Some of
these toolkits use well-known APIs, such as the
Apache Axis mentioned above.

The COAL protocol serves as an interface

between sTeam and the service providers
implemented in Java (see also Section 0). In the
sTeam environment, there is a corresponding API
that implements the COAL protocol, thus providing
easy-to-use methods in Java. This API must be made
available to the implementation of the service
providers as a class library.

3.1.6 WSDL

The officially recognized standard for describing
web services, WSDL (specified in W3C, 2003), can
be used to unambiguously structure and define the
functionality of the web service. This is necessary,
among other things, to enable the application
developer or the development environment to
implement the SOAP calls in conformity with the
given web service interface. Which parameters are
needed for a successful call and which data might be
used as return values is defined unequivocally within
the WSDL document.

Figure 2 shows the relations between the main
components of the web service.

3.2 Design Decisions

The web service with the above-described
architecture is able to offer a wide variety of services
and thus different functions. We focus below on
three different functions: abstract functions
encapsulating complex logic inside the service
provider, basic functions that provide the basic
functionality of subservices or protocols, and service
functions – in this case sTeam service functions
offering special web service functions implemented
within a subservice.

3.2.1 Abstract functions

The web service provides a service function, which
is realized within the service provider by
implementing complex logic. The service may
contain a range of functions and can, in order to
accomplish the service's task, access other
subservices, e.g. sTeam, or even extreme services.

Towards a possible client, the complex
implementation is encapsulated and a single method
call is provided.

In the field of e-learning, an abstract web service
function “conduct literature research” is
conceivable, which would search for literature based
on a certain topic or keyword. The user is offered
only this one operation, its logic being implemented
inside the service provider.

3.2.2 Basic functions

The client can be provided with different basic
functions – in the case of sTeam, using the COAL
interface. The service provider can implement this
functionality by simply calling the desired sTeam
methods and returning the result to the client – no
special logic is needed here.

Such web service functions would be very
powerful when accessing the sTeam server directly.
But this would be at odds with the initial idea of
creating an easy-to-use interface. Indeed, sTeam’s
entire functionality would be available directly in the
used programming language. Even proprietary
protocols such as COAL can be encapsulated via a
web service in standardized protocols. The service
provider must simply map the respective protocol to
the appropriate SOAP call.

3.2.3 sTeam service functions

If necessary, a complex service function is
implemented inside the sTeam server and made
available via a service provider. As in the previous
section, the main logic was moved to the subservice.
This is useful in cases where many sTeam accesses

HETEROGENEOUS INTEGRATION OF SERVICES INTO AN OPEN, STANDARDIZED WEB SERVICE - A WEB
SERVICE-BASED CSCW/L SYSTEM

187

are needed to perform the web service's task.
Otherwise, numerous repeated calls via the COAL
interface would mean large performance losses. It is
a good idea, then, when searching for certain sTeam
users to allow the whole task to be performed by the
sTeam server, with only the final result being
returned by the service provider to the calling client.
Otherwise, if the search were left to the service
provider, a large number of individual calls to the
sTeam server might be necessary.

Depending on the use case, there are different
options for distributing and shifting the service logic
over the “service provider” and “subservice” layers.
This is also possible later on, e.g. if new service
providers are added.

3.3 Basic Implementation Steps

The following basic steps are needed to practically
implement the described web service architecture. In
concrete applications, they may be slightly modified
or used in a different order.

a) Making the relevant design decisions (described

in Section 0)
b) Providing the necessary infrastructure

Basically, they include an application server and
a SOAP implementation, e.g. Tomcat and Apache
AXIS (see also Section 0)

c) Implementing the service logic
d) Creating the WSDL file(s) as a “by-product” of

the implemented service logic
e) Deployment and publication of the web service

by integrating the service providers’
implementations and the WSDL file into the
application server. In addition, publication of the
WSDL file on a UDDI server makes the web
service globally accessible (for further details, see
OASIS UDDI, 2003).

3.4 Security

The web service functionality should not be
universally accessible. It must be possible to allow
only authenticated users access to the web service
and to assign different access rights to members of
this group. These options are precisely defined in
WS Security, specified by Microsoft and IBM
(Microsoft & IBM, 2002). WSDL or a
corresponding implementation can be extended, e.g.
to include authentication functions.

In addition, the already existing security
mechanisms of SOAP’s underlying transport
protocols, e.g. HTTPS, can be used. This means that
transmitted messages would be encoded for third
parties.

3.5 Interoperability

Unfortunately, some of the various implementations
of SOAP are not interoperable because of different
interpretations of the specification. For instance, it
may be the case that a client implemented in C# is
unable to communicate with a web service in Java
because the serialization of complex data types is
incompatible.

With the specification WS-I Basic Profile (WS-I,
2003), the Web Services Interoperability
Organization (WS-I) is attempting to make the
implementations of web services and clients
compatible.

3.6 Data Synchronization

Another aspect must be considered when
implementing and using web services. It is
fundamentally impossible to work with object
references. If, for instance, a data object is returned
to a client as a result of a function call, it is always a
copy of the object. Changes therefore only affect the
copy and not the original object within the web
service. When changed objects are returned to the
web service, data synchronization is necessary. At
present, this is still left to the developer on both the
server and client side. Programming-language-
independent solutions are already available in
SyncML (SyncML Initiative, 2002).

4 RELATED WORK

There are currently a number of Internet services
that have been made available via web services not
only for Internet browsers but also for various other
applications. These include the Google search
engine (www.google.de) and Amazon
(www.amazon.de). Both of these web services are
described by corresponding WSDL files. In addition,
APIs are available that implement, in languages such
as Java or C#, corresponding classes for calling
methods via SOAP. For instance, the SOAP call
“doGoogleSearch” can be used to conduct a search
with given keywords. A similar search exists for
Amazon, where users have the additional option of
ordering goods.

5 SUMMARY AND OUTLOOK

This paper shows how easy it is to generate a
modern web service architecture to integrate existing
systems. By using various standardized

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

188

communication protocols like SOAP and a Web
Service Description Language (WSDL), parts of an
existing application (in this case the sTeam system)
can be made available for other web services and
any other type of application, thus enabling a
flexible web-based service infrastructure to be built.

The advantages of such an approach are obvious.
Elaborately developed and tested web-based systems
can be neatly integrated, allowing a sustainable
infrastructure to be built. And web-based interfaces
make the interoperability of different systems
possible for the first time – which fits in particularly
well with open-source approaches like the sTeam
system.

 This concept could also conceivably be used for
building or supporting a peer-to-peer network. On
the one hand, a web service could make it possible
to find a P2P partner. And on the other, a client
might also be a service provider, resulting in a
network of highly diverse services that could be
used on a peer-to-peer basis. The process of finding
such – possibly widely distributed – services could
be supported by UDDI. Another alternative, in small
networks, might be a variant of the Zeroconf
Protocol (IETF, 2003), which would have to be
extended to include self-description capabilities.
This would make it possible to automatically
integrate services provided by the individual peers in
an Intranet.

REFERENCES

Apache Software Foundation: WebServices – Axis, 2003.
URL: http://ws.apache.org/axis/ [31.10.2003]

Borland: Web Services – Solutions for Web Services,
2003. URL: http://www.borland.com/webservices
[31.10.2003]

Hampel, T., Bopp, T.: Combining Web-Based Document
Management and Event-Based Systems -Integrating
MUDs and MOOs With DMS to Form a Cooperative
Knowledge Space, Fifth International Conference on
Enterprise Information Systems, April 23-26, 2003,
Angers, France, 219-223.

Hampel, T., Keil-Slawik, R.: sTeam: Structuring
Information in a Team – Distributed Knowledge
Management in Cooperative Learning Environments.
In: ACM Journal of Educational Resources in
Computing 1(2) 2002, 1–27.

Hampel, T., Keil-Slawik, R.: Experience With Teaching
and Learning in Cooperative Knowledge Areas.,
Proceedings of The Twelfth International World Wide
Web Conference, 20-24 May 2003, Budapest,
Hungary, on CD-ROM, 1-8.

IBM: WebSphere SDK for Web Services (WSDK)
Version 5.1, 2003. http://www-106.ibm.com/
developerworks/webservices/wsdk/ [31.10.2003]

IETF: Zero Configuration Networking (Zeroconf), 2003.
URL: http://www.zeroconf.org [31.10.2003]

Microsoft, IBM: Web Services Security (WS-Security),
2002. URL: http://www-
106.ibm.com/developerworks/
webservices/library/ws-secure/ [31.10.2003]

Oasis: Universal Description, Discovery and Integration
(UDDI) of Web Services – About UDDI, 2003. URL:
http://www.uddi.org/about.html [31.10.2003]

Universität Paderborn: sTeam – cooperative learning,
2003. URL: http://steam.upb.de [31.10.2003]

W3C: Simple Object Access Protocol (SOAP) 1.1, 2000.
URL: http://www.w3.org/TR/SOAP/ [31.10.2003]

W3C: Web Services Description Language (WSDL)
Version 1.2 Part 1: Core Language, 2003. URL:
http://www.w3.org/TR/wsdl12 [31.10.2003]

WS-I: Basic Profile Version 1.0a – Final Specification,
2003. URL: http://www.ws-i.org/Profiles/Basic/2003-
08/BasicProfile-1.0a.HTML [31.10.2003]

Sun Microsystems: Java Web Services Developer Pack
1.2, 2003. http://java.sun.com/webservices/
webservicespack.html [31.10.2003]

SyncML Initiative: SyncML - Data Synchronization and
Device Management, 2002. URL:
http://www.openmobilealliance.org/syncml,
[31.10.2003]

Systinet: WASP Developer, 2003. URL:
http://www.systinet.com/products/wasp_developer
[31.10.2003]

HETEROGENEOUS INTEGRATION OF SERVICES INTO AN OPEN, STANDARDIZED WEB SERVICE - A WEB
SERVICE-BASED CSCW/L SYSTEM

189

