
IMPROVING QUERY PERFORMANCE ON OLAP-DATA
USING ENHANCED MULTIDIMENSIONAL INDICES

Yaokai Feng, Akifumi Makinouchi, and Hiroshi Ryu
Graduate School of Information Science and Electrical Engineering, Kyushu University,

 Fukuoka City, Japan

Keywords: OLAP, multidimensional index, R*-tree, range query

Abstract: Multidimensional indices are efficient to improve the query performance on OLAP data. As one multi-
dimensional index structure, R*-tree is popular and successful, which is a member of the famous R-tree
family. We enhance the R*-tree to improve the performance of range queries on OLAP data. First, the
following observations are presented. (1) The clustering pattern of the tuples (of the OLAP data) among
the R*-tree leaf nodes is a decisive factor on range search performance and it is controllable. (2) There
often exist many slender nodes when the R*-tree is used to index OLAP data, which causes some problems
both with the R*-tree construction and with queries. And then, we propose an approach to control the
clustering pattern of tuples and propose an approach to solve the problems of slender nodes, where slender
nodes refer to those having a very narrow side (even the side length is zero) in some dimension. Our
proposals are examined by experiments using synthetic data and TPC-H benchmark data.

1 INTRODUCTION

There is increasing requirement for processing
multidimensional range queries on business data
usually stored in relational tables. For example,
Relational On-Line Analytical Processing (ROLAP)
in data warehouse is required to answer complex and
various types of range queries on large amount of
such data. A typical ROLAP range query is as
follows. “Select sum (EXTENDEDPRICE*
DISCOUNT) From LINEITEM Where
QUANTITY ≤ 25 and 0.1 ≤ DISCOUNT≤0.3
and 2001-01-01≤SHIPDATE ≤ 2001-12-31”, where
LINEITEM is a table having sixteen attributes used
in TPC-H benchmark (Council, 1999). In this query,
three attributes QUANTITY, DISCOUNT, and
SHIPDATE form the range condition. In order to
get good performance for such multidimensional
range queries, multidimensional indices are helpful
(V. Markl and Bayer, 1999a; V. Markl and Bayer,
1999b), in which the tuples are clustered among
the leaf nodes to restrict the nodes to be accessed
for a query.

Many index structures have been proposed in the
last two decades. Among them, R*-tree
(Beckmann and Kriegel, 1990) is one of the
well-known and successful ones and widely used in
many applications and researches (C. Chung and

Lee, 2001; D. Papadias and Delis, 1998; H.
Horinokuchi and Makinouchi, 1999; H. P. Kriegel
and Schneider, 1993; Jurgens and Lenz, 1998). In
this study, the R*-tree is enhanced for indexing
business data to improve the performance of
multidimensional range queries on the business
data. Note that our proposal can also be used to
other members of the famous R-tree family.

In the works (C. Chung and Lee, 2001; Kotidis
and N. Roussopoulos, 1998; Jurgens and Lenz 1998;
N. Roussopoulos and Y. Kotidis, 1997; S. Hon and
Lee, 2001), the aggregate values are pre-computed
and stored in a multidimensional index as
materialized view. The OLAP queries find aggregate
values of data within a given range. When
required, the aggregate values can be retrieved
efficiently. In this study, we also use a
multidimensional index for OLAP data. However,
it is completely different from the related works in
that our study focuses on using an enhanced R*-tree
to speed up evaluation of range queries themselves.

In this paper, first, it is pointed out that, when
the R*-tree is used for indexing business data, the
clustering pattern of tuples among the leaf nodes is
a decisive factor on range search performance.
Then, we explain the clustering pattern is
controllable and show how to control it to improve
the group performance of range queries, i.e., to

282
Feng Y., Makinouchi A. and Ryu H. (2004).
IMPROVING QUERY PERFORMANCE ON OLAP-DATA USING ENHANCED MULTIDIMENSIONAL INDICES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 282-289
DOI: 10.5220/0002632602820289
Copyright c© SciTePress

improve the total performance of evaluating a group
of range queries issued on a relational table.
Meanwhile, we also point out that there often exist
many very slender leaf nodes when the R*-tree is
used to index business data, which causes some
problems both with the R*-tree construction and
with queries, where Slender nodes means those
having a very narrow side (even the side length is
zero) in some dimension. We also propose an
approach to solve the problems of slender nodes.

The rest of the paper is organized as follows.
Section 2 introduces the R*-tree and describe how to
use multidimensional indices for relational table.
Section 3 presents our new observations when the
R*-tree is used to business data. Section 4
describes our proposal. Section 5 gives experimental
comparison using synthetic data as well as realistic
data, and Section 6 concludes the paper.

2 R*-TREE IN BUSINESS DATA

This section gives a brief review of the R*-tree and
describe how to use it to business data.

2.1 R*-tree

Let us briefly recall the R*-tree.
The R*-tree (Beckmann and Kriegel, 1990) is a

hierarchy of nested d-dimensional MBRs (Minimum
Bounding Rectangles). Each non-leaf node of the
R*-tree contains an array of entries, each of which
consists of a pointer and an MBR. The pointer
refers to one child node of this non-leaf node and the
MBR is the minimum bounding rectangle of the
child node referred to by the pointer. Each leaf node
of the R-tree contains an array of entries, each of
which consists of an object identifier and its
corresponding point (for point-object databases) or
its MBR (for extended-object databases). The
R*-tree is built by inserting the objects (tuples for
relational tables) one by one. Throughout the
remainder of this paper, no distinction is made
between R*-tree nodes and their corresponding
MBRs in the corresponding multidimensional space
when the meaning is clear in the context. Also, the
terms of tuple and object are also used
interchangeably.

The R*-tree is one of the most successful
variants of the well-known R-tree family. It uses
sophisticated insertion and node splitting algorithms
with the forced reinsertion mechanism.

2.2 Indexing Business Data Using
R*-tree

Now, we briefly recall how the R*-tree index
business data stored in a relational table and give
some terms. Let T be a relational table with n
attributes, denoted by T(A1, A2, …, An). Attribute Ai
(1≤i≤n) has domain D(Ai), a set of possible values
for Ai. The attributes often have types such as
Boolean, integer, floating point, character string,
date and so on. Each tuple t in T is denoted by <a1,a2,
…,an>, where ai (1≤i≤ n) is an element of D(Ai).

When the R*-tree is used in relational tables,
some of the attributes are usually chosen as index
attributes, which are used to build the R*-tree. For
simplification of description, it is supposed without
loss of generality that the first k (1≤k≤n) attributes of
T, <A1,A2, … ,Ak>, are chosen as index attributes.
Since the R*-tree can only deal with numeric data,
an order-preserving transformation is necessary for
each non-numeric index attributes.

After necessary transformations, the k index
attributes form an k-dimensional space, called index
space, where each tuple of T corresponds to one
point.

It is not difficult to find such a mapping
function for Boolean attributes and date attributes.
For Boolean data, “True” and “False” can be
mapped onto 1 and 0, respectively, if “True” >
“False” is assumed forcedly. This ordering has no
practical problems, because the predicate of
“equality” such as “A = True” or “A = False” is the
only predicate pattern for the Boolean attribute.
Although implementation of “date” depends on
DBMS, typical example of “date” in TPC-H
benchmark consists of three integers representing
year, month, and day. A simple function to get a
numeric value for a “date” is to use the number of
days from some reference date to this ``date''. In
this paper, the day of Jan. 1, 1900 is used as the
reference day, that is, the number of days from Jan. 1,
1900 to Apr. 5, 1998 is used to represent the date of
Apr. 5, 1998.

It is not easy to map an arbitrary character
string to a unique numeric data. The work (H. V.
Jagadish and Srivastava, 2000) proposes an efficient
approach that maps character strings to real
numeric values within [0,1], where the mapping
preserves the lexicographic order. This approach is
also used in this study to deal with attributes of
character string.

We call the value range of Ai, [li,ui] (1 ≤i
≤k), data range of Ai attribute (in this paper,
“dimension” and “index attribute” are used
interchangeably). The length of the data range of Ai,
|ui-li|, is denoted by R(Ai). The k-dimensional

IMPROVING QUERY PERFORMANCE ON OLAP-DATA USING ENHANCED MULTIDIMENSIONAL INDICES

283

hyper-rectangle, [l1,u1]× [l2,u2]×…×[lk,uk], forms the
index space.

Let us see the following example.

Table 1: YearlySales

Figure

Figure 1 sho

where the data
are integer, cha
respectively. The
index attributes,
space of “Year-P
Product are mapp
approach (H. V. Ja
lengths of the
R(Product)}=0.36

Simple but b
in the paper. Th
chaining atomic
atomic predicate
dimension like “l
and u are range co
A≤ l” means “A
T(A1,A2,…,An) is
language as follow

Here {Aq1,…
specified in the ra
attributes.

Selec
From
Wher
…
And l
…
And l

3 OBSERVATIONS ON R*-TREE
USED FOR OLAP DATA

Because of the particularity of business data, some
new features occur when the R*-tree is used to index
business data.

As a feature of business data, the data ranges of
the attributes are very different from each other. For
instance, the data range of ``Year'' from 1990 to
2003 is only 13 while the amount of “Sales” for
different ``Product'' may be up to several hundreds
of thousands.

Another typical example of such domains with
small cardinalities is Boolean attribute, which has
inherently only two possible values. Attribute with
other data type may also semantically have small
cardinality (e.g., day of the “week” with seven
values). In LINEITEM table of TPC-H benchmark,
RETURNFLAG, SHIPINSTRUCT, and
SHIPMODE have only 3, 4, and 7 distinct values,
respectively, although their data type is character

 Year Product Sales
t1 1999 “TV” 6,000,000
t2 2000 “VIDEO” 3,000,000
t3 2001 “CAMERA” 1,000,000

(“TV”) 0.3851

9 0 1

2

6

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

284
199
1: Exam

ws th
types
racter
 first
which
roduc
ed to
gadish

data r
16.
asic r
e que
predic
 repr
≤A≤ u
nstan
 = l”

 expr
s.
,Aqm}

nge qu

t …
 T
e lq1 ≤

qj≤Aqj

qm ≤
200
ple o

e ind
of Ye
strin

two
 form
t”. Th
floatin
 and
anges

ange
ry co
ates b
esents
'', wh

ts. Th
. A
essed

 ⊆ {
ery co

Aq1 ≤

 ≤uqj

Aqm ≤
 200
t1
t

t3
R(Year)
f index

ex sp
ar, Pr
g, an
attribu
 2-di
e att
g poi
Sriva
 are

querie
nditio
y log
 an
ere A
e spec
range
 by an

A1,…,
nditio

uq1

uqm
R(Product)
 s

a
o
d
t
m
ri
n
st

s
n
i

i

A
n

Year
 (“VIDEO”) 0.4182
(“PC”) 0.3029
 (“CAMER”) 0.056
pace

ce of Table 1,
duct, and Sales
 long integer,
es are used as
ensional index
bute values of
t data using the
ava, 2000). The
R(Year)=2 and

 are considered
 is formed by
cal “And”. An
interval of a

is an attribute, l
al case of “l ≤
query on table
SQL-like query

k}. Attributes
 is called query

string. These attributes cause inappropriate
clustering pattern of the tuples among the R*-tree
leaf nodes, which may deteriorates the search
performance.

3.1 Imbalanced Clustering
Deteriorates Range Search
Performance

Let us see the above example again.
 The length of data range in “Sales” dimension

is very large (e.g., 5,000,000) while that in “Year”
dimension is very small (e.g., only 14 from 1990 to
2003). According to our investigations, the MBR of
each leaf node almost cover entire data range of Year
dimension. This incurs fatal deterioration of range
query performance. If only Sales dimension is
specified as the query attribute, the query can restrict
the nodes to be accessed, so it is evaluated more
efficiently. On the other hand, if only Year attribute
is specified in the range query condition like “Year =
1993”, almost all nodes of the index have to be
accessed to evaluate the queries. Thus, range query
performance in this case depends on what attributes
are used as query attributes.

Fortunately, the clustering pattern of the tuples
among the R*-tree leaf nodes can be controlled,
which will be discussed in detail later.

3.2 The Problems of Slender Nodes

Slender nodes means those having a very narrow
side (even side length is zero) in some dimension.

Some examples are those MBRs roughly shaped
as line segments in 2-dimensional spaces and
roughly shaped as plane segments in 3-dimensional
spaces.

The existing of slender nodes leads to some
problems both with R*-tree construction and with
queries.

3.2.1 Problem with R*-tree Construction

Let us consider the insertion algorithm of the
R*-tree, using the example depicted in Figure 2 (a).
Point p is to be newly inserted. Certainly it should be
inserted in Node B since it is nearer to Node B than
to Node A. However, according to the insert
algorithm of the R*-tree, p will be inserted to Node
A in this case. This is because the area increment of
doing so is smaller than that of inserting p to Node B.
This will lead to a bad clustering of tuples among
the leaf nodes, which greatly cut down the
performance of queries.

Let us to see another case shown in Figure 2 (b).
There are two MBRs shaped as line segments, A and
B. Let assume p is a point to be inserted. Intuitively,
p should be included in Node B whose MBR is a
line segment. Actually, p may be inserted in Node A,
although this may enlarge the overlap of A and B.
This is because the insertion algorithm of the
R*-tree cannot determine which node, A or B,
should be selected since both volume increment and
overlap increment of selecting A and selecting B are
0. As a result, either Node A or Node B is selected as
default without consideration of actual overlap.
Here, we assume that Node A is selected. When a
new point with the same coordinate of A2 dimension
as p is inserted again, the same process is repeated
and the point is also inserted into Node A. The
repeated insertion of such points leads to the
overflow of Node A. The node is split into Node A
and a new node, say Node A″. Repeated insertions

Figure 2: Slender nodes exist

of points like p leads to node A splitting again,
which generate a new Node A″, and so on. As a

result, the space utilization of such nodes degrades
and the total number of nodes tends to increase.
Moreover, the heavy overlaps among the leaf nodes
also greatly influence the search performance.

3.2.2 Problem with Range Query

In all the range search algorithms, it is necessary to
decide whether one node MBR and the query range
intersect or not. The existing method to do so is to
calculate the overlap volume between them. If one
of them has the volume of zero, their overlap
volume is zero and they are considered not
intersected with each other even if the fact is
contrary, which may lead to a wrong query result.

In addition, the range query performance with
imbalanced clustering depends on what attributes are
used as query attributes (discussed in Section 3.1).
That is, if some attributes are used in query, the
query performance may be much worse than that of
some others being used.

4 ENHANCING R*-TREE FOR
OLAP DATA

In this section, we explain how to control the
clustering pattern to improve range search
performance and how to solve the problems of
slender nodes.

4.1 Controlling the Tuples Clustering
Pattern to Improve Range Search
Performance

It is well known that normalization is a common
way to deal with the big difference among the data
range in different dimensions. In the existing
normalization, the attribute data are scaled so as to
fall within a small range of [-1.0, 1.0] or [0.0, 1.0]
in each index dimension (H. Horinokuchi and A.
Makinouchi, 1999; J. Han and Kamber, 2001).

However, the existing normalization is too stiff;
that is, all the index attributes are dealt with in the
same way. In this study, extended normalization is
used to control the clustering pattern according to
requirement (e.g., according to importance degrees
of the index attributes).

A point (a1,a2,…,ak) in the index space is
virtually mapped to

,)(
)(

,),(
)(1

1

11
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
×

−
k

k

kk Ac
AR

laAc
AR

la
L

A1

A2

Node A

Node B

p

Node A Node B

p

A1

A2

(a) (b)

IMPROVING QUERY PERFORMANCE ON OLAP-DATA USING ENHANCED MULTIDIMENSIONAL INDICES

285

where (l1,l2,…,lk) is the left-lower corner of the
index space , R(Ai) (1≤i≤k) is the length of data
range of Ai, and c(Ai) (1≤i≤k) is control coefficient
of Ai. The new normalized distance Ndist(p1,p2)
between two points p1(a1,…,ak) and p2 (b1,…,bk) is
defined as

.)(
)(

),(
1

2

21 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
=

k

i
i

i

ii Ac
AR
ab

ppNdist

While the existing normalization relocates

virtually the data range of each dimension to [0.0,
1.0] or [-1.0, 1.0], the extended normalization
relocates the data range of Ai (1≤i≤k) dimension to
[0,c(Ai)]. Obviously, the existing normalization is a
special case of the extended normalization when
c(Ai)= 1 for 1 ≤i ≤k. Data clustering among the leaf
nodes will change along with the control coefficients
varying. Our basic idea is, by selecting appropriate
control coefficients for each dimension, to control
the tuples clustering pattern among the leaf nodes
and then to improve the group performance of range
queries, where the group performance refers to the
total performance of a group of range queries.

If the index attributes with larger control
coefficients are used as query attributes, the number
of index nodes to be accessed to evaluate the range
query becomes smaller. This consideration leads to
the idea that giving larger control coefficients to
more important attributes may improve the total
performance of range queries.

A simple idea to determine importance degree
of an attribute is based on the number of its
occurrences in the range conditions of the given
query group. The more frequent it is used, the
bigger its importance degree is. The control
coefficients of the attributes used in the index
construction are roughly proportional to their
importance degrees. Importance degree of an
attribute is not necessarily proportional to the
number of its occurrence, if some attribute(s) need to
be more emphasized. Anyway, it is not necessary to
create a new data set for the extended normalization,
which can be realized when the data are inserted in
the index.

4.2 Solving the Problems of Slender
Nodes

Extended normalization can improve the group
performance of range queries. However it can not
solve the problems of slender nodes. The reason is as
follows. After normalization or extended

normalization, the density of objects (or say tuples)
along every dimension may become very different
from each other. Thus, when the objects are inserted
one by one to build the R*-tree, some dimension
may be chosen as split axis very often. As a result,
many slender nodes arise.

Our solution to the Problems of Slender
Nodes includes the following measures.

1. Revising the insert algorithm of the R*-tree. It

is known that the insert algorithm of the R*-tree
is a decisive factor to the clustering pattern of
the objects among the leaf nodes, which greatly
affect the query performance. The R*-tree use
area-criterion, including area-enlargement and
overlap-enlargement of nodes, to decide the
sub-tree that the insert algorithm should follow
next. However, this method has caused some
problems, as discussed before, when the R*-tree
is used on business data. In this study, a novel
distance-criterion is introduced to settle this
problem. When a new object is inserted to the
R*-tree, the distance-criterion is used first to
decide which sub-tree should be followed next.
Concretely speaking, the insert algorithm will
recursively choose the child node having the
nearest distance from the new object to follow.
In the case that more than one node have the
nearest distance from the new object, the
existing area-criterion is used. Let the points s
= (s1,…,sn) and t = (t1,…,tn) be the two
vertices of the node MBR with the minimum
coordinates and maximum coordinates in each
axis, respectively. The distance of a node ν(s,t)
from point p = (p1,…,pn) is given by:

,),(
1

2∑
=

−=
n

i
ii rppdist ν

where

⎪
⎩

⎪
⎨

⎧
>
<

=
otherwisep

tpift
spifs

r

i

iii

iii

i

Figure 3 is an example. If the existing
area-criterion is used in the insertion algorithm,
the new object p is inserted in Node A. If the
distance-criterion is used in this case, p is
inserted in Node B, which, obviously, leads to a
better clustering of the tuples among the leaf
nodes. Again, the clustering of the tuples
among the leaf nodes is a decisive factor on the
search performance.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

286

Figure 3: Choosing node to follow in
the insert algorithm.

 2. When deciding whether one node and the
query range intersect or not, we check if they
overlap in every dimension, instead of
calculating the overlap area between them.
Overlap area of one node MBR and the query
range can not be used in this case since a node
MBR and the query range may intersect even
if their overlap area is zero.

5 EXPERIMENTS

We performed various experiments to show how
much the range query performance is improved
using our proposals. Due to the limitation of space,
only the result of the examination using realistic data
based on TPC-H benchmark is presented. The page
size in our system is 4KB and all the index
structures are built based on “one node one page”.
To evaluate the performance of range queries we use
average number of node accesses, which is a
common criterion for evaluation of search
performance (H. V. Jagadish and Srivastava, 2000).
In OLAP field, attributes are generally categorized
into two types (R. Agrawal and Sarawagi, 1997):
index attributes (dimensions in index space) and
measure attributes (whose values are often
aggregated).

We examine our proposals using the following
four R*-tree based structures. (1) Original R*-tree.
(2) AR*-tree: created using the new distance-
criterion. (3) NAR*-tree, using the new
distance-criterion and the original normalization
(normalized to [0, 1] in each dimension). (4)
FER*-tree: Fully Enhanced R*-tree, enhanced by
the new distance-criterion and the extended
normalization.

We use LINEITEM table (in TPC-H
benchmark) having sixteen attributes, of which the

six attributes, SHIPDATE (date), QUANTITY
(floating point data), DISCOUNT (floating point
data), SHIPMODE (character string), SHIP-
INSTRUCT (character string), and RETURNFLAG
(character string), are selected as index attributes
since they are used in the queries of the benchmark
as query attributes. The total number of tuples is
600,000. We implemented the approach proposed
in the work (H. V. Jagadish and Srivastava, 2000) to
handle character string attributes, where the string
data is stored in a file outside the index. Thus, the
number of string accesses was also measured for
comparison.

5.1 Effect of the New
Distance-criterion

We created two indices: the original R*-tree and
AR*-tree. The number of nodes and storage
utilization of each tree are shown in Table 2. Total
number of nodes in the original R*-tree is about
twice as many as that in AR*-tree. Since the
storage utilization of the original R*-tree used for
common spatial data is expected to be approximately
70% (Jurgens and Lenz, 1998), 58.7% utilization
(see Table 2) is a serious degradation. On the
contrary, AR*-tree can achieve reasonable storage
utilization even when some attributes have small
cardinalities.

Table 2: R*-tree vs. AR*-tree

 R*-tree AR*-tree
Number of non-leaf
nodes

16713 15145

Number of leaf
nodes

90012 69308

Total number of
nodes

106725 84453

Storage utilization
(%)

58.7 72.1

Number of node
accesses

46319 10201

Number of string
accesses

102042 22560

Performance of range query is also presented in

Table 2. The query ranges of the attributes of
SHIPDATE, QUANTITY, and DISCOUNT are
intervals like “2002-01-01≤SHIPDATE ≤ 2002 -12
-31”, where the intervals are set to 10% of data
range. The other attributes, i.e., RETURNFLAG,
SHIPINSTRUCT, and SHIPMODE, are used in
“equality” predicates because of their data types.
The query is executed 30 times and each execution
is done with randomly selected query range. Table 2
shows the search performance using the AR*-tree is

Node A

Node B

p

A1

A2

IMPROVING QUERY PERFORMANCE ON OLAP-DATA USING ENHANCED MULTIDIMENSIONAL INDICES

287

much better than that using the original R*-tree.

5.2 Effect of the Extended
Normalization

Using the above-mentioned TPC-H table,
comparison among the three indices of AR*-tree,
NAR*-tree, and FER*-tree is made in terms of
group performance of range queries. Certainly, we
can not exhaust all the possible patterns of range
query group using six index attributes. We select
range queries using three or two index attributes.
Two groups of range queries are tested as examples.

Table 3 shows the attributes and their
corresponding dimensions. Tables 4 and 5 are the
two groups of queries.

Table 4 is Query group A having five range
queries, each of which has three or two query
attributes. Table 5 shows Query group B consisting
of four range queries. Unlike Query Group A, each
query has same number of query attributes in Query
Group B. The importance degree given to each
attribute, which is used to construct FER*-tree, is
based on the occurrence of each attribute in the

Table 3: Attributes and their dimensions
Attributes Dimensions
SHIPDATE A1
QUANTITY A2
SHIPMODE A3
SHIPINSTRUCT A4
DISCOUNT A5
RETURNFLAG A6

Table 4: Query group A
 A1 A2 A3 A4 A5 A6
query-1 ○ ○ ○

query-2 ○ ○

query-3 ○ ○ ○
query-4 ○ ○

query-5 ○ ○

Importance
Degree

3 3 2 2 1 1

Table 5: Query group B
 A1 A2 A3 A4 A5 A6
query-1 ○ ○ ○

query-2 ○ ○ ○

query-3 ○ ○ ○
query-4 ○ ○ ○

Importance
Degree

3 3 2 2 1 1

query group. Predicates concerning SHIPDATE,
DISCOUNT, and QUANTITY use intervals like
“l≤A≤ u”. Constants l and u are selected so that the
selectivity of each predicate is 10%. Attributes of
RETURNFLAG, SHIPINSTRUCT, and
SHIPMODE are used in “equality” predicates.
Cardinalities of these 3 attributes are 3, 4, and 7,
respectively. Each query is executed 30 times and
the average numbers of index node accesses are
presented in Tables 6 and 7.

In the two tables, the numbers in parentheses
are the number of strings accesses. The last row of
each table indicates the total number of index node
accesses of the query group. FER*-tree clearly
outperforms the other two trees in terms of both total
number of index node accesses and that of strings
accesses. However, the AR*-tree is the most
efficient when query-1 in Query Group A and
query-3, 4 in Query Group B are concerned, which
seems because that the queries using SHIPDATE
and QUANITITY restrict most the nodes to be
searched. These experiments indicate that the group
performance of range queries is improved using the
FER*-tree more than using NAR*-tree.

Table 6: Performance of Query group A
 AR*-tree NAR*-tree FER*-tree

Number
of

nodes

84453 83446 83653

query-1 1164(0) 2565(0) 2030(0)
query-2 8106(6704) 7730(7291) 5998(5690)
query-3 8676(14143) 3122(6211) 2601(5119)
query-4 8564(7902) 8410(8367) 6242(6225)
query-5 12533(8556) 8557(8061) 7049(6616)

Total 39046(3735) 30384(29940) 23922(23650)

Table 7: Performance of Query group B
 AR*-tree NAR*-tree FER*-tree
query-1 11862(19474) 3593(6932) 2873(5539)
query-2 6800(5429) 2595(2376) 2666(2463)
query-3 1188(976) 3017(3007) 1770(1746)
query-4 1409(1219) 2932(2894) 1617(1602)
Total 21259(27098) 12137(15209) 8926(11350)

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

288

6 CONCLUSIONS

In the field of OLAP, it is important to process
various types of range queries on business data. The
R*-tree is one of the successful multidimensional
index structures and is also helpful to improve the
query performance on OLAP data. In this paper, we
tried to enhance the R*-tree in order to evaluate
range queries on OLAP data more efficiently. It is
pointed out that there often exist many slender nodes
when the R*-tree is used on OLAP data, which
cause some problems. This paper presented two
approaches. One is to control the clustering pattern
of the tuples among the R*-tree leaf nodes and then
to improve the group performance of range queries.
The other is to introduce a distance criterion to the
insert algorithm of the R*-tree. Our proposals are
discussed in detail and examined by experiments.

REFERENCES

C. Chung, S. Chun, J. Lee, and S. Lee (2001). Dynamic
Update Cube for Range-Sum Queries.

Proc. VLDB Intl. Conf.,
Council (1999). TPC benchmark H standard specification

(decision support)".
http://www.tpc.org/tpch/
D. Papadias, N. Mamoulis, and V. Delis (1998).

Algorithms for Querying by Spatial Structure.
Proc. VLDB Intl. Conf.
H. Horinokuchi, and A. Makinouchi (1999). Normalized

R*-tree for Spatiotemporal Databases and Its
Performance Tests.

IPSJ Journal, Vol. 40, No. 3.
H. P. Kriegel, T. Brinkhoff, and R. Schneider (1993).
Efficient Spatial Query Processing in Geographic

Database Systems.
H. V. Jagadish, N.Koudas, and D. Srivastava (2000).
On Effective Multi-Dimensional Indexing for Strings.

Proc. ACM SIGMOD Intl. Conf.
J. Han and M. Kamber (2001). Data Mining--Concepts

and Techniques. Morgan Kaufmann press.
M. Jurgens, and H.-J. Lenz (1998). The Ra*-tree: An

Improved R-tree with Materialized Data for
Supporting Range Queries on OLAP-Data. Proc.
DEXA Workshop.

N. Beckmann, and H. Kriegel (1990). The R*-tree: An
Efficient and Robust Access Method for Points and
Rectangles. Proc. ACM SIGMOD Intl. Conf.

N. Roussopoulos, S.K and F. Vincent (1995). Nearest
neighbor Query. Proc. ACM SIGMOD Intl. Conf.

N. Roussopoulos, Y. K and M. Roussopoulos (1997).
Cubetree: Organizaiton of and Bulk Incremental Updates

on the Data Cube. Proc. ACM SIGMOD Intl. Conf.
R. Agrawal, A. Gupta, and S. Sarawagi (1997). Modeling

Multidimesnional Databases. Proc. Intl. Conf. on
Data Engineering (ICDE).

S. Hon, B. Song, and S. Lee (2001). Efficient Execution of
Range-Aggregate Queries in Data Warehouse
Environments. Proc. the 20th Intl. Conf. on
CONCEPTUAL MODELING.

V. Markl, F. Ramsak, and R. Bayer (1999a). Improving
OLAP Performance by Multidimensional Hierarchical
Clustering. Proc. IDEAS Intl. Synposium.

V. Markl, M. Zirkel, and R. Bayer (1999b). Processing
Operations with Restrictions in Relational Database
Management Systems without external Sorting. Proc.
Intl. Conf. on Data Engineering.

Y. Kotidis, and N. Roussopoulos (1998). An Alternative
Storage Organization for ROLAP Aggregate Views
Based on Cubetrees. Proc. ACM SIGMOD Intl. Conf.

IMPROVING QUERY PERFORMANCE ON OLAP-DATA USING ENHANCED MULTIDIMENSIONAL INDICES

289

