
TRANSACTION CONCEPTS FOR SUPPORTING CHANGES IN
DATA WAREHOUSES*

Bartosz Bębel, Zbyszko Królikowski, Tadeusz Morzy, Robert Wrembel
Institute of Computing Science, Poznań University of Technology, Poznań, Poland

Keywords: data warehouse, materialized view refreshing, schema modification, data and schema versioning, transaction

Abstract: A data warehouse (DW) provides information from external data sources for analytical processing,
decision-making, and data mining tools. External data sources are autonomous, i.e. they change over time,
independently of a DW. Therefore, the structure and content of a DW has to be periodically synchronized
with its external data sources. This synchronization concerns DW data as well as schema. Concurrent work
of synchronizing processes and user queries may result in various anomalies. In order to tackle this problem
we propose to apply a multiversion data warehouse and an advanced transaction mechanism to a DW
synchronization.

* This work is supported by the grant no. 4 T11C 019 23 from the Polish State Committee for Scientific Research

(KBN), Poland

1 INTRODUCTION

A data warehouse (DW) integrates autonomous and
heterogeneous external data sources (EDSs) in order
to provide the information for analytical processing,
decision-making, and data mining tools. The
operational data, produced by OLTP (On-Line
Transaction Processing) applications are periodically
loaded into a DW, previously being cleaned,
integrated, and often summarized. Then the data are
processed by OLAP (On-Line Analytical
Processing) applications in order to discover trends,
anomalies, patterns of behavior, to predict future,
and support pertinent business decisions. The
subjects of analysis are called facts and they are
described by dimensions that set the context of facts.

External data sources are autonomous, i.e. they
change over time, independently of a DW. We
distinguish three types of data source modifications,
which imply changes in a DW, i.e. fact data changes,
dimension data changes, and schema changes. Fact
data changes represent modification of data, which
are sources for facts in data warehouse. Dimension
data changes represent modifications of data, which
are sources for data warehouse dimensions. A
content modification in the EDS, e.g., inserting a
new record, may lead to a modification of a
dimension structure in a DW. For instance, inserting

a new product in an EDS may lead to modification
of the structure of the Products dimension in a DW.
So far the dimension information has been treated as
static one. But in real life the changes to this kind of
information are common. Schema changes represent
changes to the schema of EDSs, e.g. adding an
attribute to a table, dropping an attribute, adding a
new table.

As data sources change, warehouse data become
obsolete and therefore, the structure and content of a
DW have to be periodically refreshed. An efficient
refreshing a DW under EDSs content changes is one
of the basic problems in data warehouse research
area. A DW needs to be informed when some
changes appeared in EDSs data. This functionality is
the most often provided by EDS wrapper, which
observes data source state and sends notifications to
a DW when changes take place. Having received
such a notification, a DW may begin its refreshing
process.

Data in a DW are stored in materialized views,
which are usually defined by SPJ (selection-
projection-join) query over tables in EDSs. There
are two basic techniques of refreshing a materialized
view, namely full refreshing and incremental
refreshing. The first technique consists in re-
computing a materialized from scratch. Whereas an
incremental refreshing consists in finding and

290
BÄŹbel B., Królikowski Z., Morzy T. and Wrembel R. (2004).
TRANSACTION CONCEPTS FOR SUPPORTING CHANGES IN DATA WAREHOUSES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 290-297
DOI: 10.5220/0002636702900297
Copyright c© SciTePress

applying to a materialized view only these changes
in source tables that appeared since the last refresh.
However, the result of this process can be incorrect
because of concurrent source tables updates. Many
algorithms proposed so far try to solve this problem
using wide range of mechanisms, e.g. (Zhuge,
Garcia-Molina, Hammer, Widom 1995, Zhuge,
Garcia-Molina, Wiener 1996).

Another problem with a DW refreshing is caused
by concurrent work of refreshing processes and
users running analytical queries. Typical way of data
analysis, performed by a DW user, consists of series
of long-lasting, complicated queries, built with join,
group-by, sort, and aggregate operations, reading
large amounts of data. The problem is how to
synchronize DW users' work with the process of
refreshing a DW? Users' queries need to see a
consistent state of data, but concurrent data
warehouse refreshing can violate this requirement.
The refreshing techniques proposed so far, called
commonly on-line warehouse maintenance, use
multiversion concurrency control algorithms (Quass,
Widom, 1997). The limitation of these algorithms is
that they do not support the mechanism of
transaction with its atomicity, consistency, isolation,
and durability properties. In a consequence, a DW
user may see various data anomalies while a DW is
being refreshed. The only algorithm for transactional
DW refresh was proposed by (Chen, Chen,
Rundensteiner 2000), however proposed solution
does not cover all aspects of DW dynamics (for
example dimension updates).

1.1 Basic Definitions

The most popular data model of DWs is based on
multidimensional data cubes, where measures – the
instances of facts, i.e. subjects of analysis, are
described in terms of dimensions. Examples of
measures include: number of items sold, income,
turnover, etc. Typical examples of dimensions are
Time, Geography, Products, etc. A value of a
measure in n-dimensional cube is referenced by n-
dimensional vector, where each element corresponds
to an element of a dimension. Dimensions are
usually organized in hierarchies. An example of a
hierarchical dimension is Geography, with
Countries at the top, that are composed of Regions,
that in turn are composed of Cities, i.e. Cities ->
Regions -> Countries. A schema object in a
hierarchy is called a level. Values in every level are
called dimension members.

Multidimensional cubes can be implemented
either in MOLAP (multidimensional OLAP) or in
ROLAP (relational OLAP) servers. In the former
case, a cube is stored in multidimensional array. In

the latter case, a cube is implemented as the set of
relational tables, some of them represent
dimensions, and are called dimension tables, while
others store values of measures, and are called fact
tables.

In the rest of this paper, we will use the
definitions of a DW schema and a DW instance. A
schema of a DW is composed of the set of all
dimensions, dimension levels, dimension members
and facts. Whereas an instance of a DW consists of
measures, i.e. cell values stored in fact tables.

1.2 Motivating Examples

Changes to the content and structure of EDSs, as
well as concurrent work of user queries and
refreshing processes may lead to serious DW
anomalies.

In order to illustrate these anomalies, let us
assume the existence of three data sources: DS1 with
table Categories (storing categories of products),
DS2 with table Products (storing product
descriptions), and DS3 with table Sales (storing
records about sale of products). A DW integrates
these three sources. Its schema is composed of two
dimensions, namely Category and Time. The latter is
organized hierarchically as follows: Month -> Day.
Fact table Daily_Sales stores information about total
sales of products in every day of a year. The
Daily_Sales fact table is a materialized view, whose
query joins records from Products at DS2 and Sales
at DS3, and groups sale records by the category of
product and the day of sale. Second materialized
view, i.e. Monthly_Sales, aggregates daily sales in
the Time dimension.

Example 1 – incorrect refreshing a materialized
view

Let us assume that transaction T1 at data source
DS2 inserts a new product "soap" of category
"Hygiene" into table Product. The data source
notifies a DW. In a consequence, the DW sends its
maintenance query Q1 to DS3 in order to retrieve a
delta, i.e. new sales for product "soap" from
category "Hygiene". This delta will refresh
materialized view Daily_Sales. During the transfer
of Q1 to DS3, another transaction, T2 at DS3, inserts
into table Sales a record describing the sale of
product "soap". Next, T2 commits and notifies the
DW. When Q1 arrives at DS3, it retrieves a record,
which didn't exist when maintenance query Q1 was
sent. The delta is sent back to the DW and it
refreshes Daily_Sales. In a meantime, the DW
receives notification from DS3, sends maintenance
query Q2 to DS2 and receives the delta, which is the
same record as the one retrieved by Q1. The

TRANSACTION CONCEPTS FOR SUPPORTING CHANGES IN DATA WAREHOUSES

291

materialized view Daily_Sales will be refreshed
twice with the same data, and its content will
become incorrect. This situation is called duplication
anomaly and occurs during concurrent data sources
updates. Additional, overflow records that make
materialized view incorrect are called an error term
(Zhuge, Garcia-Molina, Hammer, Widom 1995,
Zhuge, Garcia-Molina, Wiener 1996).

Example 2 – inconsistent content of dependent
materialized views

Let us assume that a DW user begins its OLAP
session for analyzing monthly sales of given
categories (he/she queries the Monthly_Sales
materialized view). During his/her work, some
products were sold, so the Sales table at data source
DS3 was updated. This change triggers refreshing
the Daily_Sales fact table. As Monthly_Sales
depends on Daily_Sales it should also be refreshed.
If refreshing Daily_Sales and Monthly_Sales is not
realized as a transaction, a user querying
Monthly_Sales and drilling down to Daily_Sales will
see inconsistent data (Zhuge, Garcia-Molina, Wiener
1997).

Example 3 – wrong interpretation of results

Let us assume that the 1st March, 2003 category
"Hygiene" was merged into category "Cosmetics".
In a consequence, each product from table Products,
which previously belonged to category "Hygiene",
belongs to category "Cosmetics". Let us take a look
at DW user's analysis. If a user retrieves information
about monthly sales of products from category
"Cosmetics" he/she will observe that in March the
total sale of "Cosmetics" grows rapidly. A user can
then draw wrong conclusions, not knowing that
category "Hygiene" was merged into "Cosmetics".
This problem was caused by data sources updates,
which resulted in dimension change in a DW.

Example 4 – refreshing under concurrent fact
and dimension updates

This example shows potential problems when
concurrent fact and dimension updates occur. Let us
review the following sequence of transactions at data
sources. T1 at DS3 inserts a record about sale of
product "soap" from category "Hygiene". Before T1
commits, T2 at DS2 changes the category of "soap"
from "Hygiene" to "Cosmetics". Next, T1 and T2
commit. Then T3 at DS3 inserts sales of "soap"; this
time "soap" belongs to "Cosmetics". Now the
problem appears how a DW should be refreshed?
Without a suitable concurrency control mechanism,
all sales of "soap" will refresh the Daily_Sales for
category "Cosmetics", which is incorrect since the
sales, committed by T1, were for product of category
"Hygiene".

Example 5 – broken query
A serious problem with refreshing a DW may

appear if during the execution of transaction T1 at
data source DS2 the schema change occurs at DS3
(for example one attribute of table Sales is dropped).
A maintenance query sent by a DW to DS3, as a
reaction for notification received from DS2, can not
be executed since it is incorrect because of a schema
change at DS3. Refreshing process cannot be
completed. DW schema has to be rebuilt in order to
reflect schema changes at data sources.

Observations. The examples presented above
lead us to two following observations. Firstly,
incorrect refreshing of a materialized view
(Example 1) and inconsistent content of dependent
materialized views (Example 2) anomalies are
caused by the lack of transaction mechanism applied
to DW refreshing. Moreover, in order to alleviate the
incorrect refreshing of a materialized view anomaly,
concurrent changes in EDSs have to be serialized.
Secondly, wrong interpretation of results (Example
3), refreshing under concurrent fact and dimension
(Example 4), and broken query (Example 5)
anomalies are caused by such changes in EDSs that
have impact on a DW schema. In order to handle
this kind and other kinds of schema changes, a DW
has to: either (1) dynamically adapt its structure and
transform existing data to a new structure, or (2) use
versioning mechanism of schema and data, what we
propose.

1.3 Contribution

Our approach to the problem of maintaining a DW
under changes of schemas and contents of EDSs is
based on explicit versioning the whole DW (i.e.
schema and data) (reference removed for blind
reviewing). Changes into a DW structure and data
are reflected in a new, explicitly derived, version of
a DW.

Maintaining versions of the whole DW allows us
on the one hand, to run queries that span multiple
versions and compare various factors computed in
those versions, and on the other hand, to create and
manage alternative virtual business scenarios.

Moreover, in order to assure consistent view of a
DW for a user, while the DW is being refreshed, and
to assure correctness of the whole DW refreshing
process we propose two types of transactions (1) a
fact transaction and (2) a schema and dimension
structure transaction. A fact transaction is
responsible for incremental refreshing DW fact
tables to reflect updates of underlying EDSs' data.
Whereas a schema and dimension transaction is
applied to: (1) modifying a DW schema when EDSs'
schemas change, and (2) to modifying a DW

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

292

dimension structures when EDSs' data reflected in
dimensions change.

Paper organization. The rest of this paper is
organized as follows. Section 2 overviews related
work in the area of DW maintenance under schema
and data changes in EDSs. Section 3 briefly presents
our concept a multiversion data warehouse. Section
4 discusses our concept of transactions in a DW.
Section 5 presents the metamodel of our
multiversion data warehouse. Finally, Section 6
concludes the paper.

2 RELATED WORK

The existing approaches to propagating changes
from EDSs to a DW can be classified into two
categories: (1) data refreshing and (2) handling
changes in a DW schema.

The solutions in the first category incrementally
refresh DW fact table using different mechanism for
avoiding duplication anomaly. The ECA algorithm
(Zhuge, Garcia-Molina, Hammer, Widom, 1995),
removes an error term by applying so called
compensating queries. Two extensions of the basic
ECA algorithm, namely ECAK and ECAL, are able to
process some data source modifications locally at
DW, i.e. without sending maintenance queries to
EDSs. The same idea is used in the Sweep algorithm
(Agrawal, El Abbadi, Singh, Yurek, 1997). Next
solution, i.e. the Strobe algorithm (Zhuge, Garcia-
Molina, Wiener, 1996), stores the list of EDSs’
updates reported to DW during maintenance query
execution. This list, called an action list, is used for
compensating an error term. (Mostefaoui, Raynal,
Roy, Agrawal, 2002) propose an architecture where
EDSs form a ring. The process of finding delta
caused by EDSs' updates is based on exchanging a
token among EDSs. None of above solutions uses
transactional refreshing a DW. In a consequence the
atomicity and isolation of the refreshing process
cannot be guaranteed. Moreover, the above
approaches focus on only those changes in EDSs'
data that do not have any impact on a DW schema.

The only transactional solution to the problem
of incremental DW refresh is, to the best of our
knowledge, (Chen, Chen, Rundensteiner 2000). The
authors propose a special purpose transaction, called
DWMS_Transaction, which covers the whole
process of a DW fact table refreshing. The
DWMS_Transaction has been defined as a sequence
of two transactions, namely local EDS update
transaction and its corresponding DW maintenance
transaction. The main contribution of the reported
work is an observation that the anomaly during the

process of incremental refreshing can be mapped
into the problem of guaranteeing the serializability
of DWMS_Transactions. The authors point out that
DWMS_Transaction is rather conceptual than a real
transaction mechanism, which is the potential
solution's weakness. However, even such conceptual
model of transaction allows to reformulate a
maintenance anomaly problem to well-known "read
dirty data" problem. The compensation techniques
are no longer required. The solution also deals with
schema changes, but does not tackle the problem of
data warehouse dimension structure changes and
concurrent DW users' sessions.

The support for handling changes in a DW
schema was studied in the two following categories:
(1) schema and data evolution, (2) temporal and
versioning extensions. The approaches in the first
category (Koeller, 1998), (Blaschka, 1999),
(Hurtado, 1999a), (Hurtado, 1999b) support only
one DW schema and its instance. When a change is
applied to a schema all data described by the schema
must be converted, that incurs high maintenance
costs.

In the approaches from the second category, in
(Eder, Koncilia, 2001), (Eder, Konicilia, Morzy,
2002), (Chamoni, Stock, 1999), (Mendelzon,
Vaisman, 2000) changes are time stamped in order
to create temporal versions. However, the last two
approaches expose their inability to express and
process queries that span or compare several
temporal versions of data. On the contrary, the
model and prototype of a temporal DW presented in
(Eder, Koncilia, 2001), (Eder, Koncilia, Morzy,
2002) support queries for a particular temporal
version of a DW or queries that span several
versions. In the latter case, conversion functions
must be applied, as data in temporal versions are
virtual.

In (Kang, Chung, 2002), (Kulkarni, Mohania,
1999), (Quass, Widom, 1997), (Rundensteiner,
Koeller, Zhang 2000) implicit versioning in a DW
was proposed. In all of the four approaches, versions
are used for avoiding conflicts and mutual locking
between OLAP queries and transactions refreshing a
DW. Versions are implicitly created and removed by
the system, which is a drawback of these
approaches. On the contrary, (Bellahsene, 1998)
proposes permanent user defined versions of views
in order to simulate changes in a DW schema.
However, the approach supports only simple
changes in source tables and it does not deal either
with typical multidimensional schemas or evolution
of facts or dimensions. Also (Body et al., 2002)
supports permanent time stamped versions of data.
The proposed mechanism, however, uses one central
fact table for storing all versions of data. In a
consequence, the set of schema changes that may be

TRANSACTION CONCEPTS FOR SUPPORTING CHANGES IN DATA WAREHOUSES

293

applied to a DW is limited, and only changes of
dimensions' structure are supported.

3 MULTIVERSION DATA
WAREHOUSE

This section informally overviews our concept of a
multiversion DW. Its formal description was
presented in Morzy, Wrembel, 2003 (reference
removed for blind reviewing).

In order to be able to manage changes in a DW
schema we developed the model of a DW with
versioning capabilities. In our approach, changes to
a schema may be applied to a new version of a DW.
This version, called a child version, is derived from
a previous version, called a parent version. Versions
of a DW form a version derivation graph. Each node
of this graph represents one version, whereas edges
represent derived–from relationships between two
consecutive versions. In our approach, a version
derivation graph is a DAG.

A multiversion data warehouse (MVDW) is
composed of the set of its versions. Every version of
a MVDW is in turn composed of a schema version
and an instance version. The latter stores the set of
data consistent with its schema version.

In our approach we distinguish two following
kinds of DW versions: real versions and alternative
versions. A real version reflects changes in the real
world. Real versions are created in order to keep up
with the changes in a real business environment, like
for example: changing organizational structure of a
company, changing geographical borders of regions,
creating and closing shops, changing prices/taxes of
products. Real versions are linearly ordered by the
time they are valid within.

The purpose of maintaining alternative versions
is twofold. Firstly, an alternative version is created
from a real version in order to support the what-if
analysis, i.e. it is used for simulation purposes.
Several alternative versions may be created from the
same real versions. Secondly, such a version is
created in order to simulate changes in the structure
of a DW schema. The purpose of such versions is
mainly the optimization of a DW structure and
system tuning. A DW administrator may create an
alternative version that would have a simple star
schema instead of an original snowflake schema,
and then test the system performance using new data
structures.

Every version is valid within certain period of
time. In order to check a version validity, every real
and alternative DW version has associated, so called
valid time, represented by two timestamps, i.e. begin
valid time (BVT) and end valid time (EVT).

4 TRANSACTION CONCEPT IN
DATA WAREHOUSE

In order to assure the correctness of a DW refreshing
process we propose two types of transactions: (1) a
fact transaction as well as (2) a schema and
dimension transaction.

4.1 Fact transaction

A fact transaction is responsible for incrementally
refreshing a DW fact tables. This transaction begins
after updates at one of the EDSs were committed.
The following problems may occur during the
refreshing process:
1. Computed delta may be wrong because of an

incorrect refreshing a materialized view (cf.
Example 1).

2. The communication channels between EDSs and
DW may fail during refreshing. As a result, a
DW would not be able to finish its refreshing.

3. If EDSs are extensively used, there may be
started many refreshing processes. A DW should
use some techniques to assure the proper
execution of these concurrent processes.

4. A refreshing process can conflict with a user
analytical sessions.
The problems mentioned above can be solved by

applying to a refreshing process the mechanism of
transaction. Our solution is based on the algorithm
proposed in (Chen, Chen, Rundensteiner 2000)
where the basic functionality of each EDS's wrapper
is extended to support data versions generated by
EDS's updates. Thus, maintenance queries are
answered using appropriate data versions. This
mechanism eliminates an incorrect refreshing a
materialized view (the first problem). The wrapper
can still answer the maintenance queries even if its
data source is unavailable (the second problem). The
proper execution of concurrent refreshing
transactions should be arranged by transaction
scheduler, serial or parallel (the third problem). The
isolation of refreshing transactions and DW user
sessions should be achieved by applying a
multiversion concurrency control algorithm where
user sessions read an "old" version of data while the
"new" version is created at the moment by a
refreshing transaction (the fourth problem).

As an extension to the above algorithm we
propose to introduce a parallelism inside the fact
refreshing transaction. A delta construction process
can be easily made parallel – many concurrent sub-
transactions inside a main transaction concurrently
build separated parts of delta, then a process
coordinator joins the partial results into a final delta.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

294

However, this extension imposes advanced
transaction models.

4.2 Schema and dimension structure
transaction

A schema and dimension structure transaction is
responsible for refreshing a DW schema and
dimensions structures. The necessity to change a
DW schema or/and dimension structures may be
caused by two types of events: (1) changes at EDSs
and (2) explicit changes made by DW users.

In the first case either an EDS schema is changed
(for example – an attribute is dropped from a table)
or data updates, which are the sources for DW
dimensions data, appeared. A DW is notified of
these changes and starts a process to adapt its
schema and/or dimension structure. In the second
case a DW user (administrator) makes decision to
change the schema or the dimension structure. In
both cases the administrator decides if the changes
are applied to the current DW version or are applied
to a new version (a real or an alternative one).

Each change to a DW schema and dimensions
structure should also be reflected in the metadata
describing the DW.

Changes in a schema or dimension structure can
also cause the transformations of fact table data, e.g.
removing a specified dimension from DW schema.
In a consequence, fact data have to be transformed
to a new structure.

We can now define the following steps of
schema and dimension structure transaction.
1. Creation of a new DW version, which depends

on the administrator's decision.
2. Application of schema and/or dimensions

structure changes in the specified version of a
DW (the current or a new one).

3. Modification of DW metadata reflecting the
changes.

4. Transformation of fact table data.
Some of the above steps can be made parallel,

e.g. step 3 and 4. The implementation of operations
within a given step can also be executed in parallel,
e.g. modifications of separated dimensions, the
transformations of fact table data.

We argue that handling DW dynamics can not be
based on the concept of standard OLTP transaction
since:
1. Standard transaction was designed for great

number of very short user interactions with a
database. A DW refreshing process and user
queries are much longer than standard OLPT

activities. Moreover, the concurrency control
mechanisms of OLTP systems (for example
locking the resources) are inappropriate for a
DW since they reduce the degree of concurrency.

2. Standard transaction has a flat structure – it
cannot be divided into set of sub-transactions
executed concurrently.
For these reasons advanced transaction models

should be applied in data warehouses. There are
three such models (Barghouti, Kaiser 1994): (1)
nested transactions, (2) multilevel transactions, and
(3) sagas. A nested transaction is a composition of
the set of subtransactions, each subtransaction can
itself be a nested one. Only the top-level nested
transaction is visible to other transactions and it
appears as a normal atomic transaction. Sub-
transactions inside the top-level transaction are run
concurrently and their actions should be
synchronized by an internal concurrency control
mechanism. A multilevel transaction has similar
structure to a nested one, but it has predefined
number of levels and different concurrency control
mechanism can be used for each level. Saga is a
multilevel transaction limited to only two levels.
Partial results of subtransactions inside one saga are
visible to other sagas.

Another interesting solution is the possibility of
dynamically restructuring running transactions
(Barghouti, Kaiser 1994). This model allows
changing the execution of transaction as the reaction
for modification of user requirements, e.g. splitting
one transaction into several new transactions or
merging several transactions into a new one.

5 METAMODEL OF
MULTIVERSION DW

The advanced models of transactions are currently
implemented in our prototype multiversion DW
management system.

The metamodel of our MVDW is shown in
Figure 1. The diagram presents data dictionary
tables used for representing a multiversion schema
of a DW as well as mappings between fact tables,
dimension tables, and attributes in adjacent DW
versions. The Versions table stores the information
about existing DW versions. Every DW version is
composed of fact tables (dictionary tables Facts and
Versions_Facts) and dimensions (dictionary tables
Dimensions and Dimensions_Versions).

TRANSACTION CONCEPTS FOR SUPPORTING CHANGES IN DATA WAREHOUSES

295

Figure 1: The metamodel of MVDW

Dimensions, in turn, have levels, represented by

dictionary tables Levels and Dimension_Levels. The
association between fact tables and dimensions is
represented by table Dimensions_Facts. The
Fact_Mappings data dictionary table is used for
storing mappings between a given fact table in DW
version Vi and the same fact table in version Vj,
derived from Vi.

Every fact and level table has the set of its
attributes that are stored in Attributes. Every
attribute may have integrity constraints defined
(dictionary tables Constraints and Const_Attrs).
Table Attr_Mappings is used for storing mappings
between an attribute existing in DW version Vi and
the same attribute in adjacent version Vj. The
am_transf_method_forward is used for storing the
name of a transformation program between
continuous values of an attribute in a previous
version Vi to values of this attribute in version Vj,
derived from Vi. Backward transformation program
name is stored in am_transf_method_backward.
Transformation programs are implemented as
procedures stored in a database. Discrete values of
attributes are mapped in a separate table, whose
name is pointed by map_tab_name. The schema of
this mapping table is composed of three attributes:

attr_id, attribute_value_from, and attribute_
value_to. The first one stores the identifier of an
attribute whose value is mapped. An
attribute_value_from stores the original value in
version Vi, whereas attribute_value_to stores the
value as required in version Vj.

The Level_Mappings table represents mappings
between levels in consecutive DW versions.
Level_Inst_Mappings represents mappings between
dimension members in case of structural changes in
dimensions, for example, splitting a faculty, merging
several shops into one, changing the name of a
product. The meaning of lim_map_tab_name,
lim_transf_method_forward, and lim_transf_
method_backward is the same as respective
attributes am_map_tab_name, am_transf_method_
forward, and am_transf_method_backward of
Attr_Mappings.

The Transactions table stores the information
about transactions used for creating new versions of
a DW. Since a DW version may be committed or
under derivation, Transactions store also the status
of every DW version.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

296

6 CONCLUSIONS

In this paper we tackled the problem of
synchronizing a DW content and schema with
respect to changes in EDSs. We analyzed various
anomalies that can appear in a DW during a
refreshing process. These anomalies are the results
of lacking transaction mechanisms in refreshing.

In our approach, handling the changes in EDSs is
done by means of: (1) DW versions and (2)
advanced transaction mechanisms. Currently, we are
implementing our concepts in a multiversion DW
management system based, which is implemented in
Java. Data and metadata are stored in an Oracle9i
database.

Future work will focus on:
• comparing advanced transaction models (nested,

multilevel, and saga) in a DW environment;
• the analysis and development of inter– and intra–

version integrity constraints;
• the development of a query language able to

span, work on, and compare data from multiple
versions of a data warehouse;

• the development of new data structures for
efficient storing and indexing multiversion data
and their experimental evaluation.

REFERENCES

Agrawal D., El Abbadi A., Singh A., Yurek T., Efficient
View Maintenance at Data Warehouse. Proc. of the
1997 ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson,
Arizona, USA.

Barghouti N.S., Kaiser G.E., Concurrency Control in
Advanced Database Applications. Department of
Computer Science, Columbia University, New York,
USA, 1994.

Bellahsene, Z. (1998). View Adaptation in Data
Warehousing Systems. Proc. of the DEXA Conf.

Blaschka, M. Sapia, C., Hofling, G. (1999). On Schema
Evolution in Multidimensional Databases. Proc. of the
DaWak99 Conference, Italy.

Chamoni, P., Stock, S. (1999). Temporal Structures in
Data Warehousing. Proc. of the Data Warehousing
and Knowledge Discovery DaWaK, Italy.

Chen J., Chen S., Rundensteiner E., TxnWrap: A
Transactional Approach to Data Warehouse
Maintenance. Worcester Polytechnic Institute
Technical Report, 2000. (Revisited on February 2002).

Eder, J., Koncilia, C. (2001). Changes of Dimension Data
in Temporal Data Warehouses. Proc. of the DaWak
2001 Conference, Germany.

Eder, J., Koncilia, C., Morzy, T. (2002). The COMET
Metamodel for Temporal Data Warehouses. Proc. of

the 14th Int. Conference on Advanced Information
Systems Engineering (CAISE'02), Canada.

Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A. (1999a).
Maintaining Data Cubes under Dimension Updates.
Proc. of the ICDE Conference, Australia.

Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A. (1999b).
Updating OLAP Dimensions. Proc. of the DOLAP
Conference.

Kang, H.G., Chung, C.W.: (2002). Exploiting Versions for
On–line Data Warehouse Maintenance in MOLAP
Servers. Proc. of the VLDB Conference, China.

Kulkarni, S., Mohania, M. (1999). Concurrent
Maintenance of Views Using Multiple Versions. Proc.
of the Intern. Database Engineering and Application
Symposium.

Mendelzon, A.O., Vaisman, A.A (2000). Temporal
Queries in OLAP. Proc. of the VLDB Conference,
Egypt.

Morzy T., Wrembel R. (2003). Modeling a Multiversion
Data Warehouse: a Formal Approach. Proc. of the 5th
International Conference on Enterprise Information
Systems (ICEIS), Angers, France.

Mostefaoui A., Raynal M., Roy M., Agrawal D., El
Abbadi A., The Lord of the Rings: Efficient
Maintenance of Views at Data Warehouse. Proc. of
16th International Conference Distributed Computing,
DISC 2002, Toulouse, France, October 28-30, 2002.

Quass, D., Widom, J. (1997). On–Line Warehouse View
Maintenance. Proc. of the SIGMOD Conference.

Yang, J., Widom, J. (2000). Temporal View Self–
Maintenance. Proc. of the EDBT Conference,
Germany.

Rundensteiner E., Koeller A., and Zhang X.: Maintaining
Data Warehouses over Changing Information Sources.
Communications of the ACM, vol. 43, No. 6, 2000.

Zhuge Y., Garcia-Molina H., Hammer J., Widom J., View
Maintenance in a Warehousing Environment. Proc. of
the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May 22-25,
1995.

Zhuge Y., Garcia-Molina H., Wiener J., The Strobe
Algorithms for Multi-Source Warehouse Consistency.
Proc. of the 4th International Conference on Parallel
and Distributed Information Systems, December 18-
20, 1996, Miami Beach, Florida, USA.

TRANSACTION CONCEPTS FOR SUPPORTING CHANGES IN DATA WAREHOUSES

297

