
TOWARDS DESIGN RATIONALES OF SOFTWARE
CONFEDERATIONS

Jaroslav Král
Charles University

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Michal Žemlička
Charles University

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Keywords: Service orientation, software paradigm, user involvement, autonomous component, user-oriented component
interface, software confederations.

Abstract: The paper discuss reasons why service-oriented architecture is a new software paradigm and the consequences
of this fact for the design of enterprise information systems. It is shown that such systems called confederations
need not use web services in the sense of W3C. It is, however, more or less a necessity in e-commerce.
Confederations (service-oriented systems with known set of services) are typical for manufacturing systems.
As business processes supported by enterprise systems must be supervised by businessmen, the same must
hold for communication inside service-oriented systems. It implies that the interfaces of the services must be
user-oriented (user-friendly). It can be easier achieved in confederations than in e-commerce systems. User
oriented interface has positive consequences for the software engineering properties of the confederation.
Confederations should sometimes include parts based on different implementation philosophies (e.g. data
orientation). Pros and cons of it are discussed. Open issues of service orientation are presented.

1 INTRODUCTION

Enterprise information systems (EIS) tend to have
the service-oriented architecture (SOA), i.e. a peer-
to-peer (virtual) network of almost independent (au-
tonomous) software units providing some services.
EIS differ from the systems supporting e-commerce
as EIS have

• known and almost fixed collection of services,

• user interface to whole system (often called portal),
and

• known set of multistep business processes involv-
ing the services.

Information systems (and software systems in gen-
eral) having such properties are called (software)
confederations whereas the SOA systems support-
ing e-commerce are called alliances (see (Král and
Žemlička, 2003a) for details). Note, that in e-
commerce the set of business partners is not known
and the partners must to be looked for. The emphasis
of SOA on peer-to-peer principles is not commonly
accepted (see e.g. (Tůma, 2003)). Peer-to-peer is a
crucial property of SOA.

Middleware
e.g. Internet

¶µ ³́
UC

6
?

AC
¡
¡µ¡
¡ª

AC

6
?

AC
¶µ ³́UC-¾ -¾

¶µ ³́
UC

@
@R@
@I

AC

¡
¡µ¡
¡ª

Log database

@
@R

AC ... autonomous component

UC ... user interface component

(e.g. XSLT component or portal)

Figure 1: Software confederation

The structure of a confederation is given in Fig. 1.
It can be meaningful not to limit middleware to be
Internet-based. The middleware can even be based on
a combination of different communication technolo-
gies and/or communication infrastructures. It follows
that the services (peers) in confederations need not be
web services in the sense of W3C (W3 Consortium,

105
Král J. and Žemlička M. (2004).
TOWARDS DESIGN RATIONALES OF SOFTWARE CONFEDERATIONS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 105-112
DOI: 10.5220/0002639301050112
Copyright c© SciTePress



2002; Jablonski and Petrov, 2003). We use SOA in
this broader sense.

Software confederations appear quite often e.g. in
e-government, health care systems, and public organi-
zations. The user involvement in the activities of soft-
ware confederation is deeper and wider than in classi-
cal logically monolithic software systems1. Confed-
erations open new variants of user involvement into
human interaction with the software systems.

A proper solution of human involvement in the de-
velopment and the use of confederations usually re-
sults into better functions of the confederations and
into enhancement of software engineering properties
of the system (see section 3).

The application of service orientation is nowadays
rather a paradigm than simply a new technique only.
By a paradigm we understand according to the Web-
ster Dictionary ‘a generally accepted perspective of
a particular discipline at a given time’. By a soft-
ware paradigm we understand a consistent collection
of methods, tools, examples of good practices, and
development/activity patterns governed by a specific
philosophy. New paradigms always require a new
way of thinking and new methods and tools. Any new
paradigm requires therefore a lot of effort and time to
be governed and properly used. Old habits and in-
tuitions must be changed or replaced by new ones.
There should be changes in education and training of
software experts (Král and Žemlička, 2004a; Král and
Žemlička, 2004c).

One can object that service orientation is a quite old
technique. It is true for e.g. soft real-time systems like
flexible manufacturing systems (see e.g. (Král and
Demner, 1979; Král et al., 1987)) but service orien-
tation was not a paradigm in the above sense – it was
no generally accepted philosophy at that time. Let us
show that service orientation is becoming a leading
software engineering paradigm now.

We exploit the experience with the development
of the systems having some properties of SOA.
The systems were several successful projects of
Flexible Manufacturing System (later integrated into
CIM systems), several automated warehouse projects
(Kopeček, 2003; Skula, 2001) and analysis of the sys-
tems for municipal authorities. We often speak about
services as about components to point out that a ser-
vice is provided by a specific software component
beeing often a complete application.

2 NEW PARADIGM

The concept of service-oriented architecture in the
form of confederation is known for decades. The first

1Even if sometimes physically distributed.

application of SOA was in soft real-time system like
the flexible manufacturing systems dated back in the
seventies (compare e.g. (Král and Demner, 1979)).
Some features of SOA were even present in COBOL
systems. One can therefore argue that SOA is not a
new paradigm. It is not so due to the following argu-
ments:

1. SOA was not ten years ago in a leading edge
of software development. The classical object-
oriented paradigm was the main topic. Information
systems typically had no service-oriented architec-
ture.

2. The SOA-based philosophy differs from the object-
oriented one like the data-oriented philosophy is
different from the object-oriented one. First SOA
systems used a very simple not too powerful mid-
dleware. SOA were therefore not able to be used
in large distributed information systems. New mid-
dleware opens new ways for software systems how
to be developed and/or used. These challenges are
not investigated enough yet.

3. The conferences, publications and standards on
SOA-related topics/problems has appeared recently
only.

4. The concept of SOA was not generally accepted
and strictly speaking there is now no complete con-
sensus what is SOA about.

5. The practice indicates that it is not easy for the
object-oriented people to accept and properly use
the service-oriented philosophy.

Let us discuss the last point in more details as it
also confirms the conjecture that the service-oriented
paradigm is a new paradigm different e.g. from the
object-oriented one. It is indicated e.g. by the follow-
ing facts (compare (Brown et al., 1998)):
• The antipattern “Stovepipe Enterprise/Islands of

Automation” ((Brown et al., 1998), pp. 147–157)
is in service-orientation rather a pattern if a proper
gate connecting the island to a middleware is avail-
able.

• The basic attitude in SOA is the decomposition
of the system into large components providing
complex functions. It is a turn near to the an-
tipattern “Functional Decomposition”. The mod-
eling of such systems can use a modification of
data flow diagrams, a tool that disappeared from
object-oriented methodology during the last ten
years (compare (Rumbaugh et al., 1991) and from
the UML standard (Object Management Group,
2001)).

• Encapsulation and autonomous development of ap-
plications (e.g. legacy systems, third party prod-
ucts) is the main design pattern in SOA. It is,
however, near to the stovepipe system antipattern

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

106



((Brown et al., 1998), pp. 159–190, although the
recommendations from p. 162 can be applied).
Service-orientation simplifies refactoring of or

even excludes the antipatterns: Lava Flow (the tech-
nology changes can be hidden inside the services
behind their interfaces), Vendor Lock-In (possible
but can be easily overcome), Reinvent the Wheel
(legacy systems and third-party products can easily
integrated), Corncob (unpleasant hacker can develop
his own service), etc.

3 HUMAN INVOLVEMENT IN
SERVICE-ORIENTED
SYSTEMS

The lack of user involvement in requirements specifi-
cations is the main reason of software project failures.
The novelty of service orientation is that the involve-
ment of users in the system activities is deeper than in
classical systems. The activities of human beings are
not limited to UC from Fig. 1 only. The communica-
tion (dialog) in e-commerce is usually stateless. The
dialog starts with looking for a service (autonomous
component) that provides the contact and other infor-
mation on potential business partners (e.g. supplier).
This is often done using UDDI and WSDL. It im-
plies that the communication between partners must
be supported by a widely accepted middleware (Inter-
net) and must use generally accepted message formats
based on appropriate standards (XML).

The dialog is usually in a SOAP-based formats.
The dialog is used to perform a business process
(e.g. business agreement conclusion) under the (possi-
ble) personal supervision of businessmen of the part-
ners. The business documents produced in this way
are to be often formally confirmed by businessmen
(signed traditionally or electronically).

'
&

$
%MiddlewareAC G1

-¾ -¾ ACG2

¢A

g
¢A

g
6

¶
µ
³
´Log

B
B
BB

£
£

££

B
B
BB

£
£

££

Figure 2: Semi-automated contract dialog scheme: Users
should be able to supervise communication and to analyse
Log datastore

Business processes are internal matters of the com-
municating parties. The coordination of the business
processes of several partners can be therefore a quite

complicated task. Optimal requirements specification
on the supervising activity of individual steps of busi-
ness processes is a corner stone of requirement speci-
fication of the alliance as a whole.

As the businessmen must able to understand the
communication between the autonomous compo-
nents, they must be able to understand the formats of
the messages produced and/or accepted by the gates
G1 and G2 in Fig. 2. This is easy only if the mes-
sage formats are based on the languages of the user
knowledge domains. We say that the interfaces are
user-oriented. It can be more easily achieved in con-
federations where the partners know each other and
can agree message formats according their needs. As
their knowledge domains are usually based on a long
term activities and they are therefore in some sense
”tuned”, the user-oriented interfaces of G1 and G2

(i.e. the languages defined by message formats) tends
to be stable (not so varying as IT technologies). It has
important software engineering advantages described
below.

In confederations users must be able to define and
to supervise business process being networks of steps
performable by particular services. The communica-
tion traffic in service-oriented systems can and should
be logged. The confederations admit, however, a
wider set of implementation principles than alliances.

The data defining business processes are best to
store in user interface components (portals). The busi-
ness steps are then supervised via the portal. An ex-
treme solution is that there are no business processes
(workflows) defining data and the business processes
are completely controlled by users.

Business data analysis (via e.g. OLAP) must be
based on data-oriented view. In this case the users
(usually managers) must have a transparent access to
data (tiers) of the components.

The notions and/or languages specifying the ac-
tions of components (e.g. bookkeeping) are often re-
markably stable. The same can hold for the languages
of the interfaces of corresponding services. It is quite
possible that the interface of a component does not
vary in spite of the fact that the component implemen-
tation varies. The stability of interfaces is important
for the communication partners of the given compo-
nent and for the stability of the whole confederations.
It has further substantial software engineering advan-
tages (modifiability, outsourcing opportunities, reduc-
tion of number of messages, integration of products of
various vendors, openness, etc.).

It is not feasible to limit the philosophy and the
software architecture to one choice. It is especially
important for the confederations. So the crucial
point of the requirements specification for confeder-
ations is what philosophy or combination of philoso-
phies will be used. Examples of the philosophies
are classical data flow batch systems (see (Your-

TOWARDS DESIGN RATIONALES OF SOFTWARE CONFEDERATIONS

107



don, 1988)), data driven systems (see (Donnay Soft-
ware Designs, 1999)), object-oriented systems (see
(Rumbaugh et al., 1991; Jacobson and et all, 1995)).
This issue is not addressed in existing CASE tools and
only a little addressed by research.

4 DATA-FLOW BATCH SYSTEMS
(DFBS)

DFBS were typical for the COBOL era more than
thirty years ago when due to the limits of hardware
(and to some degree to then state-of-art at that time)
the possibilities of on-line (interactive) elaboration as
well as of the use of modern database system were
limited, if any. Such systems were usually written in
COBOL. Note that COBOL compilers are still well
supported.

DFBS has many important advantages. The case
Y2K has shown that DFBS are extremely stable. In
many enterprises they had been in use without al-
most any maintenance for years – sometimes even for
decades. The enterprises had even no COBOL pro-
grammers about year 2000 although they had been
using systems written in COBOL and DFBS’s inten-
sively.

DFBS is typically a collection of autonomous pro-
grams providing some services usually written in
COBOL. The tasks of the programs were the trans-
formation of massive data from several input files into
(massive) data in several output files. The programs
can be developed almost independently. The batch
character of the systems simplifies the development
and reduces maintenance effort. There are still many
situations when DFBS can and should be used. Exam-
ples are massive data correctness control, data repli-
cation, off-line data filtering and transformations, and
(statistic) data analysis. Note that the philosophy of
DFBS can be easily adapted to the case when the data
are in data stores (e.g. copies of databases), not nec-
essarily in files. It is, however, assumed that the data
elaboration can be off-line (i.e. performable in the
batch mode). Batch systems can be necessary when
data analysis is very time consuming.

The first DFBS’s were based on the analysis of the
data (originally paper documents) flows already ex-
isting in the organization. Such analysis is known as
function decomposition. Function decomposition re-
flects the basic features of workflows in enterprises. It
is an advantage that some other specification philoso-
phies do not have. On the other hand the use of DFBS
does not properly support the horizontal communica-
tion in organizations. It has further drawbacks espe-
cially in an object-oriented environment. It can make
the business process (re)construction more difficult.

From technical point of view it can be difficult to

synchronize DFBS with the every-day activities of
on-line (interactive) systems. So DFBS are not of-
ten used but it does not mean that they are useless.
If a DFBS can be used, we should specify the re-
quirements as transformations of input data into out-
put data. It is not equal to the way we specify the
data and data operations in data-driven system and
object-oriented system described below. DFBS use
data-flow diagrams as a main system visualization
tool and structured analysis and design as a system
development tool (Yourdon, 1988). If a DFBS can be
used, it can save a lot of effort and it can simplify the
maintenance and increase the reusability of the sys-
tem. DFBS has the architecture of a network of au-
tonomous services – it is a property that has recently
returned in a modified form in software confedera-
tions.

DFBS are still usually written in COBOL. The
classical COBOL thinking is not obsolete here. The
thinking oriented towards a network of autonomous
services partly applicable during the implementation
of DFBS substantially simplifies the task, provided
that the network based architecture is possible. It is
the case of DFBS being formed by a virtual network
of autonomous programs (a predecessor of services).
The autonomous programs can be autonomously de-
veloped using different methodologies and/or pro-
gramming languages if necessary. The programs can
be reused or they can be third party products. It is
a great advantage having its counterpart in software
confederations. It need not therefore be a good idea
of some CIO’s to avoid ‘COBOL thinking’ (com-
pare (Sneed, 2002)) and to require every DFBS to be
reengineered to be an object-oriented system.

Batch systems are usually very stable, well main-
tenable and have good software engineering proper-
ties. Such systems can be applied in confederations in
the cases of massive data reconstructions, data repli-
cations and even in the time consuming cases of data
analysis. In these cases the batch-oriented attitude is
more or less a practical necessity. We know banks
performing due to safety reasons financial transac-
tions in two steps. In on-line mode the transaction
data are stored in a temporal database. The transac-
tions are completed in batch mode by DFBS.

The use of batch system can impose some limita-
tions on the system performance as some operations
cannot be done on-line. The importance of such lim-
itations is often overestimated and advantages of the
application of batch system underestimated. The con-
sequence is that the batch philosophy is wrongly con-
sidered to be obsolete and useless. Due to this prej-
udice some opportunities are missed as the analysis
does not include the question whether some applica-
tions should not be implemented via a batch subsys-
tem.

DFBS attitude can be an optimal solution in mas-

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

108



sive data filtering, presentation (report generation)
and other task performable in batch mode.

The modeling of batch systems is possible via data-
flow diagrams known from structured analysis and de-
sign (Yourdon, 1988) or by the tools of functional de-
sign.

5 DATA DRIVEN SYSTEM (DDS)

Data driven systems appeared after the success of
modern database systems. The aim at that time was
usually to computerize operative level of an enterprise
(warehouses, bookkeeping, business data). Data types
were known and various operations could be defined
over the same data. Moreover properly designed data
structures can be used for many other potential oper-
ations – i.e. the data enable many further operations
not specified yet. It was and still is supported by the
power of the SQL language.

The substantial properties of the architecture of the
developed system was the data model expressed by
ER-diagrams often accompanied by data-flow model
(Donnay Software Designs, 1999). The condition for
the application of such a strategy was a proper qual-
ity of hardware (servers, client workplaces, data net-
works).

Data driven systems are still a good solution in the
situations when the kernel of the problem is in the
data area, i.e.:

• The main problem is to define data and data struc-
tures and to collect data in an electronic form.

• The operations can be easily derived from data and
data concepts, there are many possible operations
over the same data (i.e. a value can be used by many
different operations in different ways).

• The properties of the system depend heavily on the
optimality of the operations on data.

• There is a need to work with and analyze massive
data (statistics, OLAP, etc.).

The requirements specification starts from the data
specifications and/or data model and from basic op-
erations. As data enables a broad set of operations the
system is open in this sense.

Data oriented philosophy is appropriate in the case
when a system is built from scratch starting from data
tier.

The existence of data orientation in modern sys-
tems is confirmed by the existence of resource defi-
nition framework (RDF (W3 Consortium, 1999)) and
(meta)data oriented research. Data orientation is typ-
ical for management information systems. Such sys-
tems assume a flexible open system of operations over
massive data.

The fact that the collection of operations is open
can be felt sometimes disadvantageous (optimality
issues, some important operations need not be de-
tected). The practice indicates that DDS are usually
not felt as a system of collaborating autonomous ser-
vices. Note, however, that common database with
triggers can be quite easily adapted to serve as mid-
dleware. The message transfer can be implemented as
a storing some data including an activation of a trigger
causing proper activation of the addressee of the mes-
sage. The integration of software pieces is in this case
via a common data tier. The used tools are SQL, ER-
diagrams, RDF, data-flow-diagrams. A strong point
of DDS is their openness and support for data analy-
sis. Weak points are:

• the problems with definition of common data struc-
ture/database,

• issues connected with data replication and unifica-
tion (common format/structure),

• large systems are difficult to reconstruct,

• inflexibility of “middleware” services (data rout-
ing) compared with the middleware implementa-
tion and message passing via e.g. Internet.

Elements of DDS must be often applied in the
parts performing on-line (interactive) data analysis
(e.g. OLAP/ROLAP2) and generally the management
tier of information systems. Elements of data ori-
entation can appear on quite low level. In (Král
and Žemlička, 2003b; Král and Žemlička, 2004b)
a practical implementation of the interface between
Scheduler and an automated machine tool workshop
is described. The interface was based on a common
database and its presentation tool having features of
data analysis. The implementation facilitated the suc-
cess of several projects of several flexible manufac-
turing systems.

6 IMPLEMENTATION OF
SOFTWARE
CONFEDERATIONS

Technically a legacy system AC is integrated into a
confederation via adding a gate G to AC (Fig. 3). G

connects AC to a middleware. AC is also redesigned
to be a permanent process (if not already one). The
software confederation has then the structure from
Fig. 3.

AC can be implemented using object-oriented phi-
losophy. Sometimes it can happen that a system can
(seemingly) be designed as a confederation or as a

2OLAP = on-line analytical processing, ROLAP = rela-
tional OLAP.

TOWARDS DESIGN RATIONALES OF SOFTWARE CONFEDERATIONS

109



monolithic system in which all autonomous compo-
nents should be completely rewritten and “dissolved”
in the system.

¶µ ³́
UC -¾ Middleware

6
?

6
?

AC

AC

-¾ AC

Figure 3: Software confederation with gates

Although the choice between the two alternatives
seems to be a quite technical one, it should be in-
cluded into requirements specification. The require-
ments specification should be adapted to the fact
whether the monolithic or confederated philosophy is
to be used as it influences substantially user proper-
ties of the system and the set of feasible solutions. If
a particular autonomous component AC “belongs” to
some department/division (being e.g. its local infor-
mation system), the department is satisfied with AC,
and AC can provide all required information/services
to other collaborating autonomous components, then
AC can and often should be integrated. Note that
it reduces development effort as substantial parts of
code are reused. The department people feel that
they still (mentally) ‘own’ AC. It is well known that
of such ownership feeling is advantageous and often
necessary.

Confederative architecture can make feasible re-
quirement types raised by CEO like the transfor-
mation of the enterprise organization structure into
a decentralized form, selective outsourcing of some
parts of the information system, selling out some di-
visions/departments, integration of newly purchased
firms/divisions, support for supply chain manage-
ment, and forming various business coordination
groups (Král and Žemlička, 2002). Autonomous
components can be developed as a “black boxes” us-
ing any of the developing strategies mentioned above.

7 BUSINESS PROCESSES IN
CONFEDERATIONS; USERS AS
SERVICES

The business processes in confederations can be quite
complex, they can be a complex networks of activities
(variants of workflow). There can be various levels of
automation of business processes and their particular
steps. It is highly desirable that the processes can be
(in principle) supervised by users. Users can:

• define or modify the definition of processes,

• can start processes, supervise/influence/perform
their steps, on-line redefine and reschedule process
steps,

• change the run of the running (active) processes
(change the sequence of the steps, etc.),

• replace some services intended to be provided by
software by ‘manual activities’.

The last requirement is especially important dur-
ing the system development as it can serve as the pro-
totyping tool and even substitution of not yet devel-
oped (implemented) services. It is a very useful tool
for run-time of the system as it can happen that some
services will be always provided by human beings or
that users will have to simulate or provide services not
available due a failure at the given moment. The con-
dition is that user interface components (UC, portals)
are able to accept the messages for the missing ser-
vices, present it to the users and to produce answers
defined by users. It is often a quite simple task to
implement it (Král et al., 1987) – provided that the in-
terfaces of gates are user-oriented in the above sense.

More complicated business processes should use
(should be controlled) by some process defining data.
There is a problem where to store business process’
states and data. The most promising seems the strat-
egy to include the data into the data of the associated
user ‘owning’ (responsible for) the process. It is also
possible to generate a new service S associated with
UC. The purpose of S is then to serve as an agent
controlling business processes owned by some user.

8 SOFTWARE ENGINEERING
ISSUES

The user-oriented interfaces of components enhance
the following software engineering properties of the
service-oriented systems:

1. User involvement. The governance of business pro-
cesses by users is easier than in classical systems.

2. Modifiability

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

110



• implementation changes in services can be hid-
den, it simplifies maintenability as well;

• some autonomous components can be pur-
chased, insourced or outsourced.

3. Incremental development as well as iterative devel-
opment.

4. Prototyping and temporal replacement of the ser-
vices that are currently not available.

5. Short milestones (autonomous services can be not
too large software units).

6. Solution/refactoring of many antipatterns (Brown
et al., 1998), see above.

7. New turns, e.g. testing the response time of real-
time control systems (Král, 1998).

8. Reduction of development effort due:

• integration of legacy systems,
• purchasing autonomous component from ven-

dors,
• decomposition the system into small units that

due to dependency between the system size
and the development effort reduces the effort
(Effort .

= c · Size
1+a, a > 0), see COCOMO

II,
• shorter feedback between developers and users.

The are open issues:

1. It is not clear what services should be good to be
provided as a central (infrastructure) ones. Cen-
tral services can be a bottleneck (access traffic, too
strong influence of big vendors, data correctness
checking, service modification, etc.).

2. Confederative architecture can make customers
less dependent on large vendors. The vendors are
not happy with it and try to resist it.

3. As a new paradigm the confederations need the de-
velopers to precisely understand the user knowl-
edge and needs. This opposes the strong computer-
oriented feeling and interests of software experts.
To avoid it they should understand and accept the
thinking and philosophy of experimental sciences
(e.g. physics, to some degree economy) and math-
ematical statistics. It is quite difficult to achieve it.

4. Data intensive functions (for management and
DDS in general) can benefit from service orienta-
tion but there is no good methodology available for
it now.

5. In some parts of confederations some seem-
ingly obsolete techniques (COBOL) can be used.
The traditional integration (into object-oriented or
database applications/systems) of such services
need not be a simple matter.

6. There are problems with security and effectiveness.
Note, however, that the user-oriented interfaces im-
ply reduction of the number of messages and there-
fore can enhance system performance and can limit
threats due to misuse of RPC.

9 MAIN POINTS OF DESIGN OF
SERVICE-ORIENTED
SYSTEMS

As there is no common agreement what service ori-
entation and service-oriented architecture are about
(Barry and Associates, 2003), it is necessary to de-
cide first whether the architecture of the system will
be a virtual peer-to-peer network. We believe that the
choice of peer-to-peer is the best one and we shall dis-
cuss this case. The components (peers of the network)
should be quite large applications behaving like ser-
vices in human society. The services should be spec-
ified via their interfaces and integrated therefore as
black boxes.

The services (their interfaces) should mirror the
real-world services provided by the organizational
units of enterprises or by people. Their interfaces
should be (and due to the above conditions can be)
user-oriented, i.e. understandable to system users.
The system then behaves like the human society being
also a network of autonomous services.

Users should be deeply involved in the specifica-
tion and design of the interfaces.

The development process of SOA system depends
on the variants of decomposition and integration. The
implementation of interfaces can be different in con-
federations (known collection of services) and al-
liances (e-commerce).

There can be problems with the acceptance of the
philosophy in the above sense, as service orientation
is a new paradigm for many people especially for the
strongly object-oriented beings. The acceptance and
governing of a new paradigm need many years.

It is preferable for the development, debugging
and use of service-oriented system to design ser-
vices/programs so that they can be substituted by dis-
cussion with human bodies via user interface. It is
good to support the human involvement as much pos-
sible (i.e. automate as little as possible). The develop-
ment process should be incremental using Pareto 80-
20 law as much as possible. It is against the strategy
computerize as much as possible promoted by soft-
ware vendors and accepted by some users.

TOWARDS DESIGN RATIONALES OF SOFTWARE CONFEDERATIONS

111



10 CONCLUSIONS

The service-oriented architecture is a very powerful
and in many areas a quite new paradigm. There are,
however, several issues to be solved yet:

1. Education of people to be able to use service orien-
tation properly. Service orientation is not any sim-
ple and straightforward modification of the object-
oriented techniques and object-oriented philoso-
phy.

2. Design patterns as well as new tools of modeling
are not available yet.

3. The SOA influences the specification of require-
ments more substantially than other architectures
do.

4. The collaboration of users (including their top
management) with developers as well as users in-
volvement should be tighter than before.

5. The developers should have a deeper knowledge of
the user problem and knowledge domain.

Important issues are the prejudices of software devel-
opers like insisting on full computerization, belief that
users are too stupid to take part in requirements spec-
ifications, etc.

Service orientation is, however, today already an
attitude promising to develop software of the quality
known from the other branches of industry.

Supported by the Czech Science Foundation, grant
No. 201/02/1456.

REFERENCES

Barry and Associates (2003). http://www.service-
architecture.com.

Brown, W. J., Malveau, R. C., Hays W. ”Skip” McCormick,
I., and Mowbray, T. J. (1998). AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, New York.

Donnay Software Designs (1999). Mature, portable, data-
driven systems. http://www.dclip.com/datadr.htm.

Jablonski, S. and Petrov, I. (2003). Web services, workflow
and metadata management as the integration means
in the electronic collaboration era. Tutorial at the
ICEIS’03 conference.

Jacobson, I. and et all (1995). Object Oriented Software
Engineering: A Use Case Driven Approach. Addison
Wesley.

Kopeček, P. (2003). Private communication.

Král, J. (1998). Informačnı́ Systémy, (Information Systems,
in Czech). Science, Veletiny, Czech Republic.

Král, J. and Demner, J. (1979). Towards reliable real time
software. In Proceedings of IFIP Conference Con-
struction of Quality Software, pages 1–12, North Hol-
land.

Král, J., Černý, J., and Dvořák, P. (1987). Technology of
FMS control software development. In Menga, G. and
Kempe, V., editors, Proceedings of the Workshop on
Information in Manufacturing Automation, Dresden.

Král, J. and Žemlička, M. (2002). Autonomous compo-
nents. In Hamza, M. H., editor, Applied Informatics,
pages 125–130, Anaheim. ACTA Press.

Král, J. and Žemlička, M. (2003a). Software confedera-
tions and alliances. In CAiSE’03 Forum: Information
Systems for a Connected Society, Maribor, Slovenia.
University of Maribor Press.

Král, J. and Žemlička, M. (2003b). Software confederations
and manufacturing. In Camp, O., Filipe, J., Ham-
moudi, S., and Piattini, M., editors, ICEIS 2003: Pro-
ceedings of the Fifth International Conference on En-
terprise Information Systems, volume 3, pages 650–
653, Setúbal. EST Setúbal.

Král, J. and Žemlička, M. (2004a). Architecture, specifi-
cation, and design of service-oriented systems. In re-
viewing process.

Král, J. and Žemlička, M. (2004b). Service orientation and
the quality indicators for software services. Accepted
for EMCSR’04 in Vienna.

Král, J. and Žemlička, M. (2004c). Systemic of human
involvement in information systems. Technical Re-
port 2, Charles Univerity, Faculty of Mathematics
and Physics, Department of Software Engineering,
Prague, Czech Republic.

Object Management Group (2001).
Unified modeling language.
http://www.omg.org/technology/documents/formal/uml.htm.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. (1991). Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, New Jersey
07632.

Skula, J. (2001). Private communication.

Sneed, H. (2002). Position statement at panel discussion at
CSMR 2002, Budapest, Hungary.

Tůma, P. (2003). Modern software architectures: Novel
solutions or old hats? In Popelı́nský, L., editor,
DATAKON 2003, pages 151–162, Brno, Czech Re-
public. Masaryk University.

W3 Consortium (1999). Resource description
framework. A proposal of W3C Consortium.
http://www.w3.org/RDF/.

W3 Consortium (2002). Web services activity.
http://www.w3.org/2002/ws/ – as visited on 31st
October 2003.

Yourdon, E. (1988). Modern Structured Analysis. Prentice-
Hall, 2nd edition.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

112


