
SOLVING INTEROPERABILITY PROBLEMS ON A
FEDERATION OF SOFTWARE PROCESS SYSTEMS

Mohamed Ahmed-Nacer
Computer Science Department/ Faculty of Electrical Engineering, University of Science and Technology Houari

Boumediene, BP 32, El-Alia 16123 Bab-Ezzouar Algeria

Med-Amine Mostefai
Software Laboratory, Center of Research in Scientifique and Technical Information

03 frère Aissou, Ben Aknoun, 16030 Algiers, Algeria

Keywords: Software engineering, software process, interoperability, federation, development platform.

Abstract: Software process components that share information and that cooperate for common tasks lead to multiple
problems of interoperability. Some based-interoperability approaches have been proposed. However, more
problems remain to be solved to enable the heterogeneous process components interoperability at execution
level. This paper presents a process-based approach (architecture) for the federation of software process
systems. Based on this approach, we focus on its implementation problems for the process execution
interoperability. We show how we solve these problems and we discuss their implementation through the
main development techniques of distributed applications.

1 INTRODUCTION

The first Process Centered Software Engineering
Environment (PSEE) approaches such as EPOS
(Conradi, 1995), SPADE (Bandinelli, 1996), APEL
V.3 (Dami, 1998), MARVEL (Kaiser, 1988) and OZ
(Ben-Schaul, 1998) didn’t met the requirements for
a process support environment because of
monolithic approaches (single formalism, non-
openness, weak evolution...).

Many researchers have explored the problem of
PSEE interoperability and multiple systems have
been proposed through different approaches such as
the multi-view approach (Sommerville, 1995)
(interoperability at model level), distributed
process/workflow approach (Bolcer, 1996)
(heterogeneity at execution level) and federation of
distributed process engines (Ben-Schaul, 1998).
However, the federation of process components
remains a real challenge with regard to the multiple
problems of interoperability to solve, especially at
process execution level.

In this paper, we present a new conceptual
approach (architecture) of federated PSEE’s and its
associated implementation problems. We discuss
how we solve these problems through the main
development techniques of distributed applications:
Corba (Miller, 1996), Dcom (Williams, 1994) , EJB
(Sun, 1999) and Soap (W3C, 2000).

Section 2 presents the different approaches of the
federation architectures and the associated problems
for process components interoperability. Section 3
addresses these problems of interoperability, mainly
at process execution level. Solutions for these
problems are given and their implementations are
discussed. Section 4 concludes this paper.

2 FEDERATION OF
INTEROPERABLE PROCESS
COMPONENTS

Many works have been addressed for the
interoperability of process components (Cugola,
2000). Multiple approaches have been proposed

591
Ahmed-Nacer M. and Mostefai M. (2004).
SOLVING INTEROPERABILITY PROBLEMS ON A FEDERATION OF SOFTWARE PROCESS SYSTEMS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 591-594
DOI: 10.5220/0002639805910594
Copyright c© SciTePress

mailto:anacer@wissal.dz
mailto:amostefai@wissal.dz

such as the state-based approach (Estublier, 1999),
(Heimbigner, 1992), the control-based approach
(Orlafi 1997) and the process-based approach
(Estublier, 1998).

This last approach seems adequate for software
process support environments (the recovering
problem is solved through the use of the common
state, flexibility at execution level, control of the
federation behaviour, ...). In this approach, two
specific process components are introduced. The
first one called “Common Process Sensitive System
(PSS)” allows, through its associated model, to
manage the global federation behaviour. The second
process component, called “PSS of
interoperability”, plays the supervisor role.

However , its implementation causes multiple
problems of interoperability at execution level. Next
section presents these problems and tempts to
propose a solution for each of them.

3 PROCESS-BASED
INTEROPERABILITY:
ARCHITECTURE, PROBLEMS
& SOLUTIONS

We present a new conceptual approach
(architecture) of federated PSEE’s and its associated
implementation problems. We discuss how we solve
these implementation problems through the
following development techniques of distributed
applications : Corba, Dcom, EJB and Soap.

3.1 Federation Architecture

The architecture that we retain to federate
interoperable process components is designed
through three levels (Figure 1): 1) the foundation
level to coordinate the execution of the different
process components and to manage the synchronous
(services) and asynchronous (events)
communications, 2) the middleware level to ensures
the transparency of the delivered messages and the
referred services into the federation and 3) the
component level that contains the multiple
components participating in the support of the
process. We have identified three main problems :
Openess and heterogeneity of the federation,
communication infrastructure and external tool
integration.

3.2 Openness and heterogeneity of the
federation:

The heterogeneity of the process components
(different description formalisms, different process
engines,...) make somewhat difficult the desire to
maintain the openness of the federation without
modifying the federation model.

Concerning this problem, our approach is to
associate, for each process component into the
federation, an “abstract” parent that offers some
services called “minimal service”. This includes:

Control operations: They are required by the
PSS of interoperability and concern the launch , the
end and the suspend operations .

Subscription operations: They allow the state
server to manage the global state of the federation.

Message management operations to be sent by
the state server, the foundation level or the
middleware.

Import/export operations: These operations are
used to solve the problem of the different data
formats.

The implementation of this “minimal service”
ensures each process component to be added or
replaced through the control operations (launch, end
and suspend), to communicate via subscription and
message management operations, and to duplicate
easily the common state using the Import and export
operations.

3.3 Communication infrastructure

In order to ensure the transparency of the
synchronous and the asynchronous communications
(event subscriptions and service communications),
the middleware (that is in charge of this
functionality) is decomposed through three
components: 1) a message server component for
message delivering to the components of the
federation, 2) a subscription server component to

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

592

filter messages and to communicate the different
messages sent by the state server to the concerned
components and 3) a registration server to add new
components (service storage) into the federation.

3.4 External tool integration

The needs to reuse existing tools and process
components or to complete them with new ones, has
naturally conducted us to search the way that gives
the possibility to integrate these tools into the
federation without major difficulties (minimal
coasts).

As the external tools (to integrate) didn’t provide
the concept of “minimal service” (that we have
introduced above concerning the problem of
openness and heterogeneity of the federation) and in
order to unifiy them with the other components of
the federation, we associate to each external tool a
special component called “proxy”. This component
is in charge to intercept the different requests from
the federation and to translate them in interpretable
commands to its associated external tools (in forms
of command execution, API,...).

These “proxies” are provided with script
interpreters allowing them to execute their
associated external tool.

3.5 General discussion

We presented in the previous sections the major
problems we can encounter when implementing
federations and we gave our solutions for each
problem. Being nothing more than a distributed
application, we can implement our solutions using
the techniques DCOM, CORBA, EJB or SOAP.

DCOM provides very interesting technologies
such as Automation that can be an efficient method
for external tools integration or GUID identification
that allows a flexible identification mechanism.
However, the main lack of DCOM is its Microsoft
platform dependence.

CORBA provides an architecture for
heterogeneous distributed applications and its
services (as identification) can be a promising
supports for implementing our solutions. However,
its complexity can be a serious obstacle.

Analogically to DCOM suffering of platform-
dependence, EJB lacks of its language dependence
but remains a multiplatform and quite simple
mechanism.

Based on popular standards XML and HTTP,
SOAP is an astonishing simple solution for
implementing distributed application. However,
SOAP is still immature because it does not provide

complete services and supports as the previous
techniques.

The following tables summarize respectively the

advantages and the drawbacks of each technique, the
best techniques for each solution and the degree of
quality of each technique to implement all the
solutions.

Table 1

Advantages

Drawbacks

DCOM

Promising Technology
Oriented component

Microsoft
platform-
dependent

CORBA

Platform-independent
Language-independent

Complex system

EJB

Platform-independent
Oriented-component

Java language
dependent

SOAP

Platform-independent
Language-independent

- Non-object
structure
-Non-component
structure
-No services

TABLE 2

Recommended platforms
for each solution

Openess & component
heterogeneity

CORBA, SOAP

Communication
infrastructure

CORBA, SOAP

tool integration DCOM
Process component support CORBA, DCOM, EJB

Table 3 DCOM CORBA EJB SOAP

Openess
component
heterogeneity

-

+++

-

+++

Communication
infrastructure

+ +++ ++ +++

Tool integration +++ ++ ++ +

(+++) good (++) very acceptable
(+) acceptable (-) not recommended

In one hand, we notice that the use of CORBA

with XML (import/export) can constitute an
adequate solution for the process interoperability at

SOLVING INTEROPERABILITY PROBLEMS ON A FEDERATION OF SOFTWARE PROCESS SYSTEMS

593

execution level. In the other hand, the use of a
platform that derive some benefit from the flexibility
of SOAP protocol and combined with the use of a
programming oriented component concepts can also
constitute a solution seeing the CORBA complexity.

DCOM and EJB can be used with multiple
development tools. However, they are respectively
limited to Microsoft systems and to Java language.

For the process component support aspect that
ensures the development of stable process
components and that make them easy to maintain,
we notice the ability of DCOM, CORBA and EJB to
offer some supports for component development.
DCOM allows the development oriented-component
using the COM technology (the ActiveX
components are a concrete exemple), CORBA offers
the CCM technology (Corba Component Model) and
EJB is provided with Java Beans technology.

4 CONCLUSION

The work presented in this paper deals with the
problem of interoperability aspects of federated
PSEE’s (Process Centered Software Engineering
Environments). Our first concern was to highlight
the multiple implementation problems, and we have
focussed our work on the mechanisms that enable
the interoperability of heterogeneous process
components at execution level

We have proposed solutions to solve
interoperability problems on a federation of software
process systems according to different aspects
(openness, communication infrastructure, external
tool integration and format heterogeneity). The
implementation of these solutions has been studied
through the well-known development techniques of
distributed applications (DCOM, CORBA, EJB and
SOAP).

The general discussion above (section 3.5)
shows that there is a variety of solutions according
to the process federation goals. However, all the
solutions remain open and can be improved in
respect with new protocols and standards (for
instance, WSDL or .net platforms).

Our exploration has led us to conclude that a
general infrastructure for interoperability is more
important than a specific implementation. The
current work aims at studying the concepts of a
general architecture where interoperability is
supported at modeling level and at a high level of
abstraction (semantic interoperability), and enforced
using heterogeneous and distributed process engines
at execution level.

REFERENCES

Bandinelli, S.,et al., 1996. Supporting cooperation in the
SPADE-1 Environment” IEEE Trans. On Soft. Eng.
Vol 22 , pp:841-865.

Ben-Shaul, I. Z. and Kaiser, G. E, 1998. Federating
Process-Centered Environments: the Oz Experience.
ASE Journal (Automated Softawre Engineering), Vol.
5, Issue 1, Kluwer Academic Publishers.

Bolcer, G. A. and Taylor, R. N.,1996. Endeavors: A
process System Integration Infrastrucutre. 4th Int’l
Conference on Software Process ICSP4.

Conradi,R. et al., 1995. PSEE architecture: EPOS process
model and tools. Workshop on process-centered
software engineering environment architecture. 20-23
March 1995. Milano- Italia.

Dami, S., et al., 1998. Apel: A Graphical yet executable
formalism for process modeling. Automated Software
Engineering 5(1):61-96 (1998).

Estublier, J., et al., 1999. Building a Federation of Process
Support Systems. International Conference on Work
Activities Coordination and Collaboration. San
Francisco, California,USA. pp:197-206.

Estublier, J., and Barghouti, N. S., 1998. Interoperability
and Distribution of Process-Sensitive Systems.
Software Engineering for Parallel and Distributed
Systems (PDSE’98). Kyoto.

Heimbigner, D., 1992. The Process Wall: A process state
server approach to process programming.
ACM/SIGSOFT –Conference on Software
Development Environment. Washington, DC.

Kaiser, G. E, et al., 1988. Intelligence assistance for
software development and maintenace. IEEE
Software, 5(3).

Miller, J. A., et al., 1996. CORBA-Based Run Time
Architecures for Workflow Management Systems.
Journal of Database Management, Special Issue on
Multidatabases, 7(1):16-27.

Orfali, R., et al., 1997. Client/server. International
Thomson Publishing Company (F), 2sd Edition.

Sommerville, I., et al., 1995. Process Viewpoints . 4th
European Workshop on Process Technology
(EWST’95), Noordwijkerhout (NL), pp. 2-8.

Sun Microsystems., 1999. Entreprise Java Beans ».
(www.sun.com).

Williams, S., and Kindel, C., 1994. The Component
Object Model. A Technical Overview. Developer
RelationsGroup Bibliothèque. MSDN (Microsoft).

W3C., 2000. Simple Object Access Protocol.
(www.w3c.com).

G. Cugola, G., et al., 2000. Support for Software
Federations : The PIE Platform. EWSPT: 38-53.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

594

http://www.sun.com/
http://www.w3c.com/

